메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2818-2826

Rethinking the Inception Architecture for Computer Vision

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA; COMPUTATIONAL EFFICIENCY; CONVOLUTION; ERRORS; PATTERN RECOGNITION;

EID: 84986296808     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.308     Document Type: Conference Paper
Times cited : (27622)

References (23)
  • 3
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Springer
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In Computer Vision-ECCV 2014, pages 184-199. Springer, 2014.
    • (2014) Computer Vision-ECCV 2014 , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 21
    • 84893343292 scopus 로고    scopus 로고
    • Divide the gradient by a running average of its recent magnitude
    • Accessed: 2015-11-05
    • T. Tieleman and G. Hinton. Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012. Accessed: 2015-11-05.
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.4
    • Tieleman, T.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.