-
1
-
-
0038166193
-
Database-friendly random projections:johnson-lindenstrauss with binary coins
-
June
-
D. Achlioptas. Database-friendly random projections:johnson-lindenstrauss with binary coins. Journal of Computer and System Sciences, 66:671C687, June 2003.
-
(2003)
Journal of Computer and System Sciences
, vol.66
-
-
Achlioptas, D.1
-
2
-
-
33746060884
-
Unifying divergence minimization and statistical inference via convex duality
-
H.U. Simon and G. Lugosi, editors, LNCS Springer
-
Y. Altun and A.J. Smola. Unifying divergence minimization and statistical inference via convex duality. In H.U. Simon and G. Lugosi, editors, Proc. Annual Conf. Computational Learning Theory, LNCS, pages 139-153. Springer, 2006.
-
(2006)
Proc. Annual Conf. Computational Learning Theory
, pp. 139-153
-
-
Altun, Y.1
Smola, A.J.2
-
4
-
-
0014814325
-
Space/time trade-offs in hash coding with allowable errors
-
July
-
B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13:422C426, July 1970.
-
(1970)
Communications of the ACM
, vol.13
-
-
Bloom, B.H.1
-
5
-
-
38449122174
-
Graph kernels for disease outcome prediction from protein-protein interaction networks
-
Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murray, and Teri E Klein, editors, Maui Hawaii, January World Scientific.
-
K. M. Borgwardt, H.-P. Kriegel, S. V. N. Vishwanathan, and N. Schraudolph. Graph kernels for disease outcome prediction from protein-protein interaction networks. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murray, and Teri E Klein, editors, Proceedings of the Pacific Symposium of Biocomputing 2007, Maui Hawaii, January 2007. World Scientific.
-
(2007)
Proceedings of the Pacific Symposium of Biocomputing 2007
-
-
Borgwardt, K.M.1
Kriegel, H.-P.2
Vishwanathan, S.V.N.3
Schraudolph, N.4
-
6
-
-
84898957872
-
Improving the accuracy and speed of support vector learning machines
-
M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Cambridge, MA, MIT Press
-
C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375-381, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 375-381
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
8
-
-
0026087709
-
Structureactivity relationship of mutagenic aromatic and heteroaromatic nitro compounds, correlation with molecular orbital energies and hydrophobicity
-
A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structureactivity relationship of mutagenic aromatic and heteroaromatic nitro compounds, correlation with molecular orbital energies and hydrophobicity. J Med Chem, 34:786-797, 1991.
-
(1991)
J Med Chem
, vol.34
, pp. 786-797
-
-
Debnath, A.K.1
Lopez De Compadre, R.L.2
Debnath, G.3
Shusterman, A.J.4
Hansch, C.5
-
9
-
-
33745290974
-
The Forgetron: A kernel-based perceptron on a fixed budget
-
Y. Weiss, B. Schölkopf, and J. Piatt, editors Cambridge, MA, MIT Press
-
O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a fixed budget. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems 18, Cambridge, MA, 2006. MIT Press.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
-
-
Dekel, O.1
Shalev-Shwartz, S.2
Singer, Y.3
-
10
-
-
0041743078
-
Distinguishing enzyme structures from non-enzymes without alignments
-
Jul
-
P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without alignments. J Mol Biol, 330(4):771-783, Jul 2003.
-
(2003)
J Mol Biol
, vol.330
, Issue.4
, pp. 771-783
-
-
Dobson, P.D.1
Doig, A.J.2
-
11
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
Dec
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. JMLR, 2:243-264, Dec 2001.
-
(2001)
JMLR
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
14
-
-
73549085134
-
A universal kernel for learning regular languages
-
L. Kontorovich. A universal kernel for learning regular languages. In Machine Learning in Graphs, 2007.
-
(2007)
Machine Learning in Graphs
-
-
Kontorovich, L.1
-
16
-
-
84876811202
-
Rcv 1: A new benchmark collection for text categorization research
-
D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv 1: A new benchmark collection for text categorization research. The Journal of Machine Learning Research, 5:361-397, 2004.
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
17
-
-
84864064770
-
Conditional random sampling: A sketch-based sampling technique for sparse data
-
B. Schölkopf, J. Platt, and T. Hoffman, editors MIT Press, Cambridge, MA
-
P. Li, K.W. Church, and T.J. Hastie. Conditional random sampling: A sketch-based sampling technique for sparse data. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 873-880. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 873-880
-
-
Li, P.1
Church, K.W.2
Hastie, T.J.3
-
18
-
-
0242288917
-
-
Technical report, University of Wisconsin, Computer Sciences Department, Madison
-
O. L. Mangasarian. Generalized support vector machines. Technical report, University of Wisconsin, Computer Sciences Department, Madison, 1998.
-
(1998)
Generalized Support Vector Machines
-
-
Mangasarian, O.L.1
-
19
-
-
0004010079
-
-
Technical report, Dept. Computer Science, Austral. Nat. Univ.
-
B. D. McKay, nauty user's guide. Technical report, Dept. Computer Science, Austral. Nat. Univ., 1984.
-
(1984)
Nauty User's Guide.
-
-
McKay, B.D.1
-
20
-
-
38249002613
-
A note on uniform laws of averages for dependent processes
-
A. Nobel and A. Dembo. A note on uniform laws of averages for dependent processes. Statistics and Probability Letters, 17:169-172, 1993.
-
(1993)
Statistics and Probability Letters
, vol.17
, pp. 169-172
-
-
Nobel, A.1
Dembo, A.2
-
21
-
-
33846672214
-
Biological network comparison using graphlet degree distribution
-
Jan
-
N. Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23 (2):e177-e183, Jan 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.2
-
-
Przulj, N.1
-
22
-
-
85161980201
-
Random features for large-scale kernel machines
-
J.C. Piatt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J.C. Piatt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Rahimi, A.1
Recht, B.2
-
23
-
-
0003893955
-
-
R. Oldenbourg Verlag, Munich
-
B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997. Download: http://www.kernel-machines.org.
-
(1997)
Support Vector Learning
-
-
Schölkopf, B.1
-
25
-
-
73549083164
-
-
Max Welling and David van Dyk, editors
-
Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and S. V. N. Vishwanathan. Hash kernels. In Max Welling and David van Dyk, editors, Proc. Intl. Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2009.
-
(2009)
Proc. Intl. Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics
-
-
Shi, Q.1
Petterson, J.2
Dror, G.3
Langford, J.4
Smola, A.5
Strehl, A.6
Vishwanathan, S.V.N.7
Kernels, H.8
-
26
-
-
33749250953
-
Fast and space efficient string kernels using suffix arrays
-
New York, NY, USA, ACM Press. ISBN 1-59593-383-2. doi:http://doi.acm.org/ 10.1145/1143844.1143961
-
C. H. Teo and S. V. N. Vishwanathan. Fast and space efficient string kernels using suffix arrays. In ICML '06: Proceedings of the 23rd international conference on Machine learning, pages 929-936, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-383-2. doi:http://doi.acm.org/10.1145/1143844.1143961.
-
(2006)
ICML '06: Proceedings of the 23rd International Conference on Machine Learning
, pp. 929-936
-
-
Teo, C.H.1
Vishwanathan, S.V.N.2
-
27
-
-
0037818351
-
Statistical evaluation of the predictive toxicology challenge 2000-2001
-
July
-
H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma. Statistical evaluation of the predictive toxicology challenge 2000-2001. Bioinformatics, 19(10):1183-1193, July 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.10
, pp. 1183-1193
-
-
Toivonen, H.1
Srinivasan, A.2
King, R.D.3
Kramer, S.4
Helma, C.5
-
28
-
-
1642338802
-
Marginalized kernels for biological sequences
-
K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences. Bioinformatics, 18 (Suppl. 2):S268-S275, 2002.
-
(2002)
Bioinformatics
, vol.18
, Issue.SUPPL. 2
-
-
Tsuda, K.1
Kin, T.2
Asai, K.3
-
29
-
-
84864066856
-
Fast computation of graph kernels
-
B. Schölkopf, J. Platt, and T. Hofmann, editors, Cambridge MA, MIT Press
-
S. V. N. Vishwanathan, Karsten Borgwardt, and Nicol N. Schraudolph. Fast computation of graph kernels. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19, Cambridge MA, 2007a. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Vishwanathan, S.V.N.1
Borgwardt, K.2
Schraudolph, N.N.3
-
30
-
-
33846637208
-
Binet-Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes
-
S. V. N. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. International Journal of Computer Vision, 73 (1):95-119, 2007b.
-
(2007)
International Journal of Computer Vision
, vol.73
, Issue.1
, pp. 95-119
-
-
Vishwanathan, S.V.N.1
Smola, A.J.2
Vidal, R.3
-
31
-
-
0002531715
-
Dynamic alignment kernels
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39-50, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 39-50
-
-
Watkins, C.1
|