메뉴 건너뛰기




Volumn , Issue , 2016, Pages 658-666

Generating images with perceptual similarity metrics based on deep networks

Author keywords

[No Author keywords available]

Indexed keywords

ABSTRACT REPRESENTATION; CLASS OF LOSS FUNCTIONS; COMPUTING DISTANCES; CONVOLUTIONAL NETWORKS; HIGH RESOLUTION; HIGH RESOLUTION IMAGE; IMAGE FEATURES; PERCEPTUAL SIMILARITY;

EID: 85019269786     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1102)

References (26)
  • 2
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 4
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Comput., 18(7):1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 5
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pages 609-616, 2009.
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • July
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 7
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 8
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 11
    • 0001081011 scopus 로고    scopus 로고
    • A perceptual distortion metric for digital color images
    • S. Winkler. A perceptual distortion metric for digital color images. In in Proc. SPIE, pages 175-184, 1998.
    • (1998) Proc. SPIE , pp. 175-184
    • Winkler, S.1
  • 14
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, arthur Szlam, and R. Fergus. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. In NIPS, pages 1486-1494, 2015.
    • (2015) NIPS , pp. 1486-1494
    • Denton, E.L.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 15
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 17
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016.
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 18
    • 84999041243 scopus 로고    scopus 로고
    • Autoencoding beyond pixels using a learned similarity metric
    • A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels using a learned similarity metric. In ICML, pages 1558-1566, 2016.
    • (2016) ICML , pp. 1558-1566
    • Larsen, A.B.L.1    Sønderby, S.K.2    Larochelle, H.3    Winther, O.4
  • 20
    • 84990854047 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, pages 694-711, 2016.
    • (2016) ECCV , pp. 694-711
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 21
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, 2015.
    • (2015) CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 25
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 26
    • 84986250533 scopus 로고    scopus 로고
    • Inverting visual representations with convolutional networks
    • A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks. In CVPR, 2016.
    • (2016) CVPR
    • Dosovitskiy, A.1    Brox, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.