-
1
-
-
84946079063
-
Fixed point optimization of deep convolutional neural networks for object recognition
-
IEEE
-
S. Anwar, K. Hwang, and W. Sung. Fixed point optimization of deep convolutional neural networks for object recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 1131-1135. IEEE, 2015.
-
(2015)
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference On
, pp. 1131-1135
-
-
Anwar, S.1
Hwang, K.2
Sung, W.3
-
2
-
-
84951960494
-
From generic to specific deep representations for visual recognition
-
H. Azizpour, A. Sharif Razavian, J. Sullivan, A. Maki, and S. Carlsson. From generic to specific deep representations for visual recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 36-45, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 36-45
-
-
Azizpour, H.1
Sharif Razavian, A.2
Sullivan, J.3
Maki, A.4
Carlsson, S.5
-
3
-
-
84969930652
-
Compressing neural networks with the hashing trick
-
W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing neural networks with the hashing trick. In ICML, 2015.
-
(2015)
ICML
-
-
Chen, W.1
Wilson, J.T.2
Tyree, S.3
Weinberger, K.Q.4
Chen, Y.5
-
4
-
-
84988920420
-
Binarynet: Training deep neural networks with weights and activations constrained to +1 or -1
-
M. Courbariaux and Y. Bengio. Binarynet: Training deep neural networks with weights and activations constrained to +1 or -1. CoRR, 2016.
-
(2016)
CoRR
-
-
Courbariaux, M.1
Bengio, Y.2
-
6
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical image database. In CVPR09, 2009.
-
(2009)
CVPR09
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
FeiFei, L.6
-
7
-
-
84898971588
-
Predicting parameters in deep learning
-
M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Predicting parameters in deep learning. In NIPS, 2013.
-
(2013)
NIPS
-
-
Denil, M.1
Shakibi, B.2
Dinh, L.3
Ranzato, M.4
De Freitas, N.5
-
8
-
-
84937896655
-
Exploiting linear structure within convolutional networks for efficient evaluation
-
E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within convolutional networks for efficient evaluation. In NIPS, 2014.
-
(2014)
NIPS
-
-
Denton, E.L.1
Zaremba, W.2
Bruna, J.3
LeCun, Y.4
Fergus, R.5
-
9
-
-
33144466753
-
One-shot learning of object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE transactions on pattern analysis and machine intelligence, 28(4):594-611, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
11
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580-587, 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
12
-
-
79951563340
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Glorot, X.1
Bengio, Y.2
-
15
-
-
84965175092
-
Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding
-
S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. In ICLR, 2015.
-
(2015)
ICLR
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
16
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network. In Advances in Neural Information Processing Systems, pages 1135-1143, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 1135-1143
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.4
-
18
-
-
85013813121
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, 2015.
-
(2015)
CoRR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
20
-
-
84920265200
-
Fixed-point feedforward deep neural network design using weights+ 1, 0, and- 1
-
IEEE
-
K. Hwang and W. Sung. Fixed-point feedforward deep neural network design using weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pages 1-6. IEEE, 2014.
-
(2014)
Signal Processing Systems (SiPS), 2014 IEEE Workshop On
, pp. 1-6
-
-
Hwang, K.1
Sung, W.2
-
21
-
-
85014063345
-
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and ¡1mb model size
-
F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and ¡1mb model size. CoRR, abs/1602.07360, 2016.
-
(2016)
CoRR
-
-
Iandola, F.N.1
Moskewicz, M.W.2
Ashraf, K.3
Han, S.4
Dally, W.J.5
Keutzer, K.6
-
26
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
27
-
-
84894522762
-
Attribute-based classification for zero-shot visual object categorization
-
C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3):453-465, 2014.
-
(2014)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.36
, Issue.3
, pp. 453-465
-
-
Lampert, C.H.1
Nickisch, H.2
Harmeling, S.3
-
31
-
-
84959241183
-
Sparse convolutional neural networks
-
B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Liu, B.1
Wang, M.2
Foroosh, H.3
Tappen, M.4
Pensky, M.5
-
35
-
-
85016074905
-
Xnornet: Imagenet classification using binary convolutional neural networks
-
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnornet: Imagenet classification using binary convolutional neural networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Rastegari, M.1
Ordonez, V.2
Redmon, J.3
Farhadi, A.4
-
36
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, pages 91-99, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
39
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
40
-
-
85031124575
-
Is learning the n-th thing any easier than learning the first?
-
S. Thrun. Is learning the n-th thing any easier than learning the first? Advances in neural information processing systems, pages 640-646, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, pp. 640-646
-
-
Thrun, S.1
-
43
-
-
84899672206
-
Augem: Automatically generate high performance dense linear algebra kernels on x86 cpus
-
Q. Wang, X. Zhang, Y. Zhang, and Q. Yi. Augem: automatically generate high performance dense linear algebra kernels on x86 cpus. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, 2013.
-
(2013)
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
-
-
Wang, Q.1
Zhang, X.2
Zhang, Y.3
Yi, Q.4
-
44
-
-
85015334059
-
Learning structured sparsity in deep neural networks
-
W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Wen, W.1
Wu, C.2
Wang, Y.3
Chen, Y.4
Li, H.5
-
45
-
-
84984986578
-
-
arXiv preprint
-
J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional neural networks for mobile devices. arXiv preprint, 2015.
-
(2015)
Quantized Convolutional Neural Networks for Mobile Devices
-
-
Wu, J.1
Leng, C.2
Wang, Y.3
Hu, Q.4
Cheng, J.5
-
46
-
-
84973904224
-
Deep fried convnets
-
Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z. Wang. Deep fried convnets. In ICCV, 2015.
-
(2015)
ICCV
-
-
Yang, Z.1
Moczulski, M.2
Denil, M.3
De Freitas, N.4
Smola, A.5
Song, L.6
Wang, Z.7
-
47
-
-
84959238721
-
Efficient and accurate approximations of nonlinear convolutional networks
-
X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient and accurate approximations of nonlinear convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhang, X.1
Zou, J.2
Ming, X.3
He, K.4
Sun, J.5
|