메뉴 건너뛰기




Volumn , Issue , 2014, Pages 580-587

Rich feature hierarchies for accurate object detection and semantic segmentation

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTIONAL NEURAL NETWORKS; OBJECT RECOGNITION; SEMANTICS;

EID: 84911400494     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.81     Document Type: Conference Paper
Times cited : (28694)

References (37)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. TPAMI, 2012.
    • (2012) TPAMI
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 5
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. TPAMI, 2012.
    • (2012) TPAMI
    • Carreira, J.1    Sminchisescu, C.2
  • 6
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • D. Cireşan, A. Giusti, L. Gambardella, and J. Schmidhuber. Mitosis detection in breast cancer histology images with deep neural networks. In MICCAI, 2013.
    • (2013) MICCAI
    • Cireşan, D.1    Giusti, A.2    Gambardella, L.3    Schmidhuber, J.4
  • 7
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 12
    • 79851509694 scopus 로고    scopus 로고
    • Category independent object proposals
    • I. Endres and D. Hoiem. Category independent object proposals. In ECCV, 2010.
    • (2010) ECCV
    • Endres, I.1    Hoiem, D.2
  • 14
  • 17
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 21
    • 84887374674 scopus 로고    scopus 로고
    • Diagnosing error in object detectors
    • D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In ECCV. 2012.
    • (2012) ECCV
    • Hoiem, D.1    Chodpathumwan, Y.2    Dai, Q.3
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 26
    • 84887354170 scopus 로고    scopus 로고
    • Sketch tokens: A learned mid-level representation for contour and object detection
    • J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
    • (2013) CVPR
    • Lim, J.J.1    Zitnick, C.L.2    Dollár, P.3
  • 27
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.1
  • 28
    • 84887351971 scopus 로고    scopus 로고
    • Histograms of sparse codes for object detection
    • X. Ren and D. Ramanan. Histograms of sparse codes for object detection. In CVPR, 2013.
    • (2013) CVPR
    • Ren, X.1    Ramanan, D.2
  • 31
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multi-stage feature learning
    • P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-stage feature learning. In CVPR, 2013.
    • (2013) CVPR
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    Lecun, Y.4
  • 33
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013.
    • (2013) NIPS
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 36
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.
    • (2013) ICCV
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 37
    • 84911394230 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In CVPR, 2011.
    • (2011) CVPR
    • Zeiler, M.1    Taylor, G.2    Fergus, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.