-
1
-
-
84890553932
-
A survey on activity recognition and behavior understanding in video surveillance
-
[1] Vishwakarma, S., Agrawal, A., A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29:10 (2013), 983–1009.
-
(2013)
Vis. Comput.
, vol.29
, Issue.10
, pp. 983-1009
-
-
Vishwakarma, S.1
Agrawal, A.2
-
2
-
-
84921772594
-
Fuzzy human motion analysis: a review
-
[2] Lim, C.H., Vats, E., Chan, C.S., Fuzzy human motion analysis: a review. Pattern Recognit. 48:5 (2015), 1773–1796.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.5
, pp. 1773-1796
-
-
Lim, C.H.1
Vats, E.2
Chan, C.S.3
-
3
-
-
0036522847
-
Recent developments in human motion analysis
-
[3] Wang, L., Hu, W., Tan, T., Recent developments in human motion analysis. Pattern Recognit. 36:3 (2003), 585–601.
-
(2003)
Pattern Recognit.
, vol.36
, Issue.3
, pp. 585-601
-
-
Wang, L.1
Hu, W.2
Tan, T.3
-
4
-
-
84902318725
-
A survey on still image based human action recognition
-
[4] Guo, G., Lai, A., A survey on still image based human action recognition. Pattern Recognit. 47:10 (2014), 3343–3361.
-
(2014)
Pattern Recognit.
, vol.47
, Issue.10
, pp. 3343-3361
-
-
Guo, G.1
Lai, A.2
-
6
-
-
84875494948
-
A survey of video datasets for human action and activity recognition
-
[6] Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A., A survey of video datasets for human action and activity recognition. Comput. Vis. Image Understand. 117:6 (2013), 633–659.
-
(2013)
Comput. Vis. Image Understand.
, vol.117
, Issue.6
, pp. 633-659
-
-
Chaquet, J.M.1
Carmona, E.J.2
Fernández-Caballero, A.3
-
7
-
-
84903184329
-
A survey of datasets for human gesture recognition,
-
[7] S. Ruffieux, D. Lalanne, E. Mugellini, O.A. Khaled, A survey of datasets for human gesture recognition, in: M. Kurosu (Ed.), Human–Computer Interaction. Advanced Interaction Modalities and Techniques, Lecture Notes in Computer Science, vol. 8511, 2014, pp. 337–348.
-
(2014)
M. Kurosu (Ed.), Human–Computer Interaction. Advanced Interaction Modalities and Techniques, Lecture Notes in Computer Science
, vol.8511
, pp. 337-348
-
-
Ruffieux, S.1
Lalanne, D.2
Mugellini, E.3
Khaled, O.A.4
-
8
-
-
77956552331
-
-
[8] W. Li, Z. Zhang, Z.Liu, Action recognition based on a bag of 3D points, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2010, pp. 9–14.
-
Z.Liu, Action recognition based on a bag of 3D points, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2010, pp. 9–14.
-
-
Li, W.1
Zhang, Z.2
-
9
-
-
84906782091
-
Human activity recognition from 3D data: a review
-
[9] Aggarwal, J., Xia, L., Human activity recognition from 3D data: a review. Pattern Recognit. Lett. 48 (2014), 70–80.
-
(2014)
Pattern Recognit. Lett.
, vol.48
, pp. 70-80
-
-
Aggarwal, J.1
Xia, L.2
-
10
-
-
84954026755
-
-
[10] R. Lun, W. Zhao, A survey of applications and human motion recognition with microsoft kinect, Int. J. Pattern Recognit. Artif. Intell. 29 (5), 2015, 1–48.
-
A survey of applications and human motion recognition with microsoft kinect, Int. J. Pattern Recognit. Artif. Intell. 29 (5), 2015, 1–48.
-
-
Lun, R.1
Zhao, W.2
-
11
-
-
84863061964
-
RGBD-HuDaAct: A color-depth video database for human daily activity recognition,
-
[11] B. Ni, G. Wang, P. Moulin, RGBD-HuDaAct: A color-depth video database for human daily activity recognition, in: Proceedings of the IEEE Conference on Computer Vision Workshops, 2011, pp. 1147–1153.
-
(2011)
Proceedings of the IEEE Conference on Computer Vision Workshops
, pp. 1147-1153
-
-
Ni, B.1
Wang, G.2
Moulin, P.3
-
12
-
-
80054915082
-
Human activity detection from RGBD images,
-
[12] J. Sung, C. Ponce, B. Selman, A. Saxena, Human activity detection from RGBD images, in: Proceedings of the AAAI workshop on Pattern, Activity and Intent Recognition, 2011, pp. 47–55.
-
(2011)
Proceedings of the AAAI workshop on Pattern, Activity and Intent Recognition
, pp. 47-55
-
-
Sung, J.1
Ponce, C.2
Selman, B.3
Saxena, A.4
-
13
-
-
84862069071
-
Instructing people for training gestural interactive systems,
-
[13] S. Fothergill, H. Mentis, P. Kohli, S. Nowozin, Instructing people for training gestural interactive systems, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, Austin, Texas, USA, 2012, pp. 1737–1746.
-
(2012)
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, Austin, Texas, USA
, pp. 1737-1746
-
-
Fothergill, S.1
Mentis, H.2
Kohli, P.3
Nowozin, S.4
-
14
-
-
84866672692
-
Mining actionlet ensemble for action recognition with depth cameras,
-
[14] J. Wang, Z. Liu, Y. Wu, J. Yuan, Mining actionlet ensemble for action recognition with depth cameras, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1290–1297.
-
(2012)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1290-1297
-
-
Wang, J.1
Liu, Z.2
Wu, Y.3
Yuan, J.4
-
15
-
-
84865033379
-
View invariant human action recognition using histograms of 3D joints,
-
[15] L. Xia, C.C. Chen, J. Aggarwal, View invariant human action recognition using histograms of 3D joints, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012, pp. 20–27.
-
(2012)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
, pp. 20-27
-
-
Xia, L.1
Chen, C.C.2
Aggarwal, J.3
-
16
-
-
84864999742
-
G3D: A gaming action dataset and real time action recognition evaluation framework,
-
[16] V. Bloom, D. Makris, V. Argyriou, G3D: A gaming action dataset and real time action recognition evaluation framework, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012, pp. 7–12.
-
(2012)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
, pp. 7-12
-
-
Bloom, V.1
Makris, D.2
Argyriou, V.3
-
17
-
-
84886806524
-
Dynamic feature selection for online action recognition,
-
[17] V. Bloom, V. Argyriou, D. Makris, Dynamic feature selection for online action recognition, in: Human Behavior Understanding, Lecture Notes in Computer Science, vol. 8212, 2013, pp. 64–76.
-
(2013)
Human Behavior Understanding, Lecture Notes in Computer Science
, vol.8212
, pp. 64-76
-
-
Bloom, V.1
Argyriou, V.2
Makris, D.3
-
18
-
-
84871359520
-
Human action recognition and retrieval using sole depth information,
-
[18] Y.C. Lin, M.C. Hu, W.H. Cheng, Y.H. Hsieh, H.M. Chen, Human action recognition and retrieval using sole depth information, in: Proceedings of the ACM International Conference on Multimedia, 2012, pp. 1053–1056.
-
(2012)
Proceedings of the ACM International Conference on Multimedia
, pp. 1053-1056
-
-
Lin, Y.C.1
Hu, M.C.2
Cheng, W.H.3
Hsieh, Y.H.4
Chen, H.M.5
-
19
-
-
33745891801
-
Actions as space-time shapes,
-
[19] M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. Basri, Actions as space-time shapes, in: Proceedings of the IEEE International Conference on Computer Vision, 2005, pp. 1395–1402.
-
(2005)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1395-1402
-
-
Blank, M.1
Gorelick, L.2
Shechtman, E.3
Irani, M.4
Basri, R.5
-
20
-
-
84994899777
-
-
[20] C. Zhang, Y. Tian, RGB-D camera-based daily living activity recognition, J. Comput. Vis. Image Process. 2 (4), 2012, 1–7.
-
RGB-D camera-based daily living activity recognition, J. Comput. Vis. Image Process. 2 (4), 2012, 1–7.
-
-
Zhang, C.1
Tian, Y.2
-
22
-
-
84880311243
-
Learning human activities and object affordances from RGB-D videos
-
[22] Koppula, H.S., Gupta, R., Saxena, A., Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32:8 (2013), 951–970.
-
(2013)
Int. J. Robot. Res.
, vol.32
, Issue.8
, pp. 951-970
-
-
Koppula, H.S.1
Gupta, R.2
Saxena, A.3
-
23
-
-
84884494272
-
A decision forest based feature selection framework for action recognition from RGB-depth cameras,
-
[23] F. Negin, F. Özdemir, C. B. Akgül, K. A. Yüksel, A. Erçil, A decision forest based feature selection framework for action recognition from RGB-depth cameras, in: Image Analysis and Recognition, Springer, Póvoa do Varzim, Portugal, 2013, pp. 648–657.
-
(2013)
Image Analysis and Recognition, Springer, Póvoa do Varzim, Portugal
, pp. 648-657
-
-
Negin, F.1
Özdemir, F.2
Akgül, C.B.3
Yüksel, K.A.4
Erçil, A.5
-
24
-
-
84898783696
-
Concurrent action detection with structural prediction,
-
[24] P. Wei, N. Zheng, Y. Zhao, S.-C. Zhu, Concurrent action detection with structural prediction, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3136–3143.
-
(2013)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 3136-3143
-
-
Wei, P.1
Zheng, N.2
Zhao, Y.3
Zhu, S.-C.4
-
25
-
-
84882242202
-
3D flow estimation for human action recognition from colored point clouds
-
[25] Munaro, M., Ballin, G., Michieletto, S., Menegatti, E., 3D flow estimation for human action recognition from colored point clouds. Biol. Inspired Cognit. Archit. 5 (2013), 42–51.
-
(2013)
Biol. Inspired Cognit. Archit.
, vol.5
, pp. 42-51
-
-
Munaro, M.1
Ballin, G.2
Michieletto, S.3
Menegatti, E.4
-
27
-
-
84884910745
-
Exploring the trade-off between accuracy and observational latency in action recognition
-
[27] Ellis, C., Masood, S.Z., Tappen, M.F., Laviola, J.J. Jr., Sukthankar, R., Exploring the trade-off between accuracy and observational latency in action recognition. Int. J. Comput. Vis. 101:3 (2013), 420–436.
-
(2013)
Int. J. Comput. Vis.
, vol.101
, Issue.3
, pp. 420-436
-
-
Ellis, C.1
Masood, S.Z.2
Tappen, M.F.3
Laviola, J.J.4
Sukthankar, R.5
-
28
-
-
84890347265
-
Inverse dynamics for action recognition
-
[28] Mansur, A., Makihara, Y., Yagi, Y., Inverse dynamics for action recognition. IEEE Trans. Cybern. 43:4 (2013), 1226–1236.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.4
, pp. 1226-1236
-
-
Mansur, A.1
Makihara, Y.2
Yagi, Y.3
-
30
-
-
84882380908
-
RGB-depth feature for 3D human activity recognition
-
[30] Zhao, Y., Liu, Z., Cheng, H., RGB-depth feature for 3D human activity recognition. China Commun. 10:7 (2013), 93–103.
-
(2013)
China Commun.
, vol.10
, Issue.7
, pp. 93-103
-
-
Zhao, Y.1
Liu, Z.2
Cheng, H.3
-
31
-
-
84887029098
-
Recognition of human actions from RGB-D videos using a reject option,
-
[31] V. Carletti, P. Foggia, G. Percannella, A. Saggese, M. Vento, Recognition of human actions from RGB-D videos using a reject option, in: New Trends in Image Analysis and Processing, Lecture Notes in Computer Science, vol. 8158, 2013, pp. 436–445.
-
(2013)
New Trends in Image Analysis and Processing, Lecture Notes in Computer Science
, vol.8158
, pp. 436-445
-
-
Carletti, V.1
Foggia, P.2
Percannella, G.3
Saggese, A.4
Vento, M.5
-
32
-
-
84891627727
-
Pose-based human action recognition via sparse representation in dissimilarity space
-
Visual Understanding and Applications with RGB-D Cameras
-
[32] Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S., Pose-based human action recognition via sparse representation in dissimilarity space. J. Vis. Commun. Image Represent. 25:1 (2014), 12–23 Visual Understanding and Applications with RGB-D Cameras.
-
(2014)
J. Vis. Commun. Image Represent.
, vol.25
, Issue.1
, pp. 12-23
-
-
Theodorakopoulos, I.1
Kastaniotis, D.2
Economou, G.3
Fotopoulos, S.4
-
33
-
-
85027918183
-
-
[33] A. Liu, W. Nie, Y. Su, L. Ma, T. Hao, Z. Yang, Coupled hidden conditional random fields for RGB-D human action recognition, Signal Process, 112, 2015, 74–82.
-
Coupled hidden conditional random fields for RGB-D human action recognition, Signal Process, 112, 2015, 74–82.
-
-
Liu, A.1
Nie, W.2
Su, Y.3
Ma, L.4
Hao, T.5
Yang, Z.6
-
34
-
-
84906489572
-
Sequential max-margin event detectors,
-
[34] D. Huang, S. Yao, Y. Wang, F.D.L. Torre, Sequential max-margin event detectors, in: Computer Vision—ECCV 2014, Lecture Notes in Computer Science, vol. 8691, 2014, pp. 410–424.
-
(2014)
Computer Vision—ECCV 2014, Lecture Notes in Computer Science
, vol.8691
, pp. 410-424
-
-
Huang, D.1
Yao, S.2
Wang, Y.3
Torre, F.D.L.4
-
35
-
-
84911386198
-
Discriminative hierarchical modeling of spatio-temporally composable human activities,
-
[35] I. Lillo, A. Soto, J.C. Niebles, Discriminative hierarchical modeling of spatio-temporally composable human activities, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 812–819.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 812-819
-
-
Lillo, I.1
Soto, A.2
Niebles, J.C.3
-
36
-
-
84929626784
-
Discriminative orderlet mining for real-time recognition of human-object interaction,
-
[36] G. Yu, Z. Liu, J. Yuan, Discriminative orderlet mining for real-time recognition of human-object interaction, in: Computer Vision—ACCV 2014, Lecture Notes in Computer Science, vol. 9007, Springer, Singapore, Singapore, 2015, pp. 50–65.
-
(2015)
Computer Vision—ACCV 2014, Lecture Notes in Computer Science, vol. 9007, Springer, Singapore, Singapore
, pp. 50-65
-
-
Yu, G.1
Liu, Z.2
Yuan, J.3
-
37
-
-
84959198612
-
Watch-n-patch: Unsupervised understanding of actions and relations,
-
[37] C. Wu, J. Zhang, S. Savarese, A. Saxena, Watch-n-patch: Unsupervised understanding of actions and relations, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4362–4370.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4362-4370
-
-
Wu, C.1
Zhang, J.2
Savarese, S.3
Saxena, A.4
-
38
-
-
84959219372
-
Jointly learning heterogeneous features for RGB-D activity recognition,
-
[38] J.-F. Hu, W.-S. Zheng, J. Lai, J. Zhang, Jointly learning heterogeneous features for RGB-D activity recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5344–5352.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5344-5352
-
-
Hu, J.-F.1
Zheng, W.-S.2
Lai, J.3
Zhang, J.4
-
40
-
-
84867697201
-
Human daily action analysis with multi-view and color-depth data,
-
[40] Z. Cheng, L. Qin, Y. Ye, Q. Huang, Q. Tian, Human daily action analysis with multi-view and color-depth data, in: Computer Vision—ECCV 2012. Workshops and Demonstrations, Lecture Notes in Computer Science, vol. 7584, 2012, pp. 52–61.
-
(2012)
Computer Vision—ECCV 2012. Workshops and Demonstrations, Lecture Notes in Computer Science
, vol.7584
, pp. 52-61
-
-
Cheng, Z.1
Qin, L.2
Ye, Y.3
Huang, Q.4
Tian, Q.5
-
41
-
-
84874578327
-
A viewpoint-independent statistical method for fall detection,
-
[41] Z. Zhang, W. Liu, V. Metsis, V. Athitsos, A viewpoint-independent statistical method for fall detection, in: Proceedings of the International Conference on Pattern Recognition, IEEE, Tsukuba, 2012, pp. 3626–3630.
-
(2012)
Proceedings of the International Conference on Pattern Recognition, IEEE, Tsukuba
, pp. 3626-3630
-
-
Zhang, Z.1
Liu, W.2
Metsis, V.3
Athitsos, V.4
-
42
-
-
84875595728
-
Berkeley MHAD: A comprehensive multimodal human action database,
-
[42] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, R. Bajcsy, Berkeley MHAD: A comprehensive multimodal human action database, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 2013, pp. 53–60.
-
(2013)
Proceedings of the IEEE Workshop on Applications of Computer Vision
, pp. 53-60
-
-
Ofli, F.1
Chaudhry, R.2
Kurillo, G.3
Vidal, R.4
Bajcsy, R.5
-
43
-
-
84894109094
-
Non-intrusive human activity monitoring in a smart home environment,
-
[43] S.M. Amiri, M.T. Pourazad, P. Nasiopoulos, V.C.M. Leung, Non-intrusive human activity monitoring in a smart home environment, in: Proceedings of the International Conference on e-Health Networking, Applications Services, 2013, pp. 606–610.
-
(2013)
Proceedings of the International Conference on e-Health Networking, Applications Services
, pp. 606-610
-
-
Amiri, S.M.1
Pourazad, M.T.2
Nasiopoulos, P.3
Leung, V.C.M.4
-
44
-
-
84908208346
-
Readingact RGB-D action dataset and human action recognition from local features
-
Depth Image Analysis
-
[44] Chen, L., Wei, H., Ferryman, J., Readingact RGB-D action dataset and human action recognition from local features. Pattern Recognit. Lett. 50 (2013), 159–169 Depth Image Analysis.
-
(2013)
Pattern Recognit. Lett.
, vol.50
, pp. 159-169
-
-
Chen, L.1
Wei, H.2
Ferryman, J.3
-
45
-
-
84898777476
-
Modeling 4D human-object interactions for event and object recognition,
-
[45] P. Wei, Y. Zhao, N. Zheng, S.C. Zhu, Modeling 4D human-object interactions for event and object recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3272–3279.
-
(2013)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 3272-3279
-
-
Wei, P.1
Zhao, Y.2
Zheng, N.3
Zhu, S.C.4
-
46
-
-
84911405305
-
Cross-view action modeling, learning and recognition,
-
[46] J. Wang, X. Nie, Y. Xia, Y. Wu, S. Zhu, Cross-view action modeling, learning and recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2649–2656.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2649-2656
-
-
Wang, J.1
Nie, X.2
Xia, Y.3
Wu, Y.4
Zhu, S.5
-
47
-
-
84906505277
-
HOPC: Histogram of oriented principal components of 3D pointclouds for action recognition,
-
[47] H. Rahmani, A. Mahmood, D. Q. Huynh, A. Mian, HOPC: Histogram of oriented principal components of 3D pointclouds for action recognition, in: Computer Vision, ECCV 2014, Lecture Notes in Computer Science, vol. 8690, 2014, pp. 742–757.
-
(2014)
Computer Vision, ECCV 2014, Lecture Notes in Computer Science
, vol.8690
, pp. 742-757
-
-
Rahmani, H.1
Mahmood, A.2
Huynh, D.Q.3
Mian, A.4
-
48
-
-
84919934839
-
Action classification with locality-constrained linear coding,
-
[48] H. Rahmani, A. Mahmood, D. Huynh, A. Mian, Action classification with locality-constrained linear coding, in: Proceedings of the International Conference on Pattern Recognition, 2014, pp. 3511–3516.
-
(2014)
Proceedings of the International Conference on Pattern Recognition
, pp. 3511-3516
-
-
Rahmani, H.1
Mahmood, A.2
Huynh, D.3
Mian, A.4
-
49
-
-
84929297797
-
Multipe/single-view human action recognition via part-induced multitask structural learning
-
[49] Liu, A., Su, Y., Jia, P., Gao, Z., Hao, T., Yang, Z., Multipe/single-view human action recognition via part-induced multitask structural learning. IEEE Trans. Cybern. 45:6 (2015), 1194–1208.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.6
, pp. 1194-1208
-
-
Liu, A.1
Su, Y.2
Jia, P.3
Gao, Z.4
Hao, T.5
Yang, Z.6
-
50
-
-
84902172570
-
Body surface context: a new robust feature for action recognition from depth videos
-
[50] Song, Y., Tang, J., Liu, F., Yan, S., Body surface context: a new robust feature for action recognition from depth videos. IEEE Trans. Circuits Syst. Video Technol. 24:6 (2014), 952–964.
-
(2014)
IEEE Trans. Circuits Syst. Video Technol.
, vol.24
, Issue.6
, pp. 952-964
-
-
Song, Y.1
Tang, J.2
Liu, F.3
Yan, S.4
-
51
-
-
84994825660
-
Histogram of oriented principal components for cross-view action recognition, arXiv preprint
-
arXiv:1409.6813
-
[51] H. Rahmani, A. Mahmood, D. Huynh, A. Mian, Histogram of oriented principal components for cross-view action recognition, arXiv preprint arXiv:1409.6813.
-
-
-
Rahmani, H.1
Mahmood, A.2
Huynh, D.3
Mian, A.4
-
52
-
-
84865015840
-
Two-person interaction detection using body-pose features and multiple instance learning,
-
[52] K. Yun, J.H.D.C.T.L. Berg, D. Samaras, Two-person interaction detection using body-pose features and multiple instance learning, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012, pp. 28–35.
-
(2012)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
, pp. 28-35
-
-
Yun, K.1
Berg, J.H.D.C.T.L.2
Samaras, D.3
-
53
-
-
84896106532
-
Efficient interaction recognition through positive action representation
-
[53] Hu, T., Zhu, X., Guo, W., Su, K., Efficient interaction recognition through positive action representation. Math. Probl. Eng. 2013 (2013), 1–13.
-
(2013)
Math. Probl. Eng.
, vol.2013
, pp. 1-13
-
-
Hu, T.1
Zhu, X.2
Guo, W.3
Su, K.4
-
54
-
-
84906312774
-
Evaluation of video activity localizations integrating quality and quantity measurements
-
[54] Wolf, C., Lombardi, E., Mille, J., Celiktutan, O., Jiu, M., Dogan, E., Eren, G., Baccouche, M., Dellandréa, E., Bichot, C.E., Garcia, C., Sankur, B., Evaluation of video activity localizations integrating quality and quantity measurements. Comput. Vis. Image Understand. 127 (2014), 14–30.
-
(2014)
Comput. Vis. Image Understand.
, vol.127
, pp. 14-30
-
-
Wolf, C.1
Lombardi, E.2
Mille, J.3
Celiktutan, O.4
Jiu, M.5
Dogan, E.6
Eren, G.7
Baccouche, M.8
Dellandréa, E.9
Bichot, C.E.10
Garcia, C.11
Sankur, B.12
-
55
-
-
84925308820
-
-
[55] V. Bloom, V. ArgyrV., D. Makris, G3Di: A gaming interaction dataset with a real time detection and evaluation framework, in: Computer Vision-ECCV 2014 Workshops, Lecture Notes in Computer Science, vol. 8925, 2014, pp. 698–712.
-
V. ArgyrV., D. Makris, G3Di: A gaming interaction dataset with a real time detection and evaluation framework, in: Computer Vision-ECCV 2014 Workshops, Lecture Notes in Computer Science, vol. 8925, 2014, pp. 698–712.
-
-
Bloom, V.1
-
56
-
-
84913584483
-
3D human activity recognition with reconfigurable convolutional neural networks,
-
[56] K. Wang, X. Wang, L. Lin, M. Wang, W. Zuo, 3D human activity recognition with reconfigurable convolutional neural networks, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 97–106.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 97-106
-
-
Wang, K.1
Wang, X.2
Lin, L.3
Wang, M.4
Zuo, W.5
-
57
-
-
84962874762
-
-
[57] N. Xu, A. Liu, W. Nie, Y. Wong, F. Li, Y. Su, Multi-modal & multi-view & interactive benchmark dataset for human action recognition, in: Proceedings of the ACM International Conference on Multimedia, 2015.
-
Multi-modal & multi-view & interactive benchmark dataset for human action recognition, in: Proceedings of the ACM International Conference on Multimedia, 2015.
-
-
Xu, N.1
Liu, A.2
Nie, W.3
Wong, Y.4
Li, F.5
Su, Y.6
-
58
-
-
84921777270
-
-
[58] C. van Gemeren, R.T. Tan, R. Poppe, R.C. Veltkamp, Dyadic interaction detection from pose and flow, in: Human Behavior Understanding, Lecture Notes in Computer Science, vol. 8749, 2014, pp. 101–115.
-
C. van Gemeren, R.T. Tan, R. Poppe, R.C. Veltkamp, Dyadic interaction detection from pose and flow, in: Human Behavior Understanding, Lecture Notes in Computer Science, vol. 8749, 2014, pp. 101–115.
-
-
-
59
-
-
84907224726
-
Human action recognition with video data: research and evaluation challenges
-
[59] Ramanathan, M., Yau, W.Y., Teoh, E.K., Human action recognition with video data: research and evaluation challenges. IEEE Trans. Human–Mach. Syst. 44:5 (2014), 650–663.
-
(2014)
IEEE Trans. Human–Mach. Syst.
, vol.44
, Issue.5
, pp. 650-663
-
-
Ramanathan, M.1
Yau, W.Y.2
Teoh, E.K.3
-
60
-
-
69549121743
-
Observing human-object interactions: using spatial and functional compatibility for recognition
-
[60] Gupta, A., Kembhavi, A., Davis, L.S., Observing human-object interactions: using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31:10 (2009), 1775–1789.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.10
, pp. 1775-1789
-
-
Gupta, A.1
Kembhavi, A.2
Davis, L.S.3
-
62
-
-
84962878607
-
Convnets-based action recognition from depth maps through virtual cameras and pseudocoloring,
-
[62] P. Wang, W. Li, Z. Gao, C. Tang, J. Zhang, P. Ogunbona, Convnets-based action recognition from depth maps through virtual cameras and pseudocoloring, in: Proceedings of the ACM Conference on Multimedia Conference, ACM, Brisbane, Australia, 2015, pp. 1119–1122.
-
(2015)
Proceedings of the ACM Conference on Multimedia Conference, ACM, Brisbane, Australia
, pp. 1119-1122
-
-
Wang, P.1
Li, W.2
Gao, Z.3
Tang, C.4
Zhang, J.5
Ogunbona, P.6
-
63
-
-
84994854160
-
-
[63] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, P. O. Ogunbona, Action recognition from depth maps using deep convolutional neural networks, IEEE Trans. Human-Mach. Syst, PP(99), 2015, 1–12.
-
Action recognition from depth maps using deep convolutional neural networks, IEEE Trans. Human-Mach. Syst, PP(99), 2015, 1–12.
-
-
Wang, P.1
Li, W.2
Gao, Z.3
Zhang, J.4
Tang, C.5
Ogunbona, P.O.6
-
64
-
-
84919914603
-
Triviews: a general framework to use 3D depth data effectively for action recognition
-
[64] Chen, W., Guo, G., Triviews: a general framework to use 3D depth data effectively for action recognition. J. Vis. Commun. Image Represent. 26:0 (2015), 182–191.
-
(2015)
J. Vis. Commun. Image Represent.
, vol.26
, pp. 182-191
-
-
Chen, W.1
Guo, G.2
-
65
-
-
84927551270
-
Fusing multiple features for depth-based action recognition
-
18:1–18:20
-
[65] Zhu, Y., Chen, W., Guo, G., Fusing multiple features for depth-based action recognition. ACM Trans. Intell. Syst. Technol., 6(2), 2015 18:1–18:20.
-
(2015)
ACM Trans. Intell. Syst. Technol.
, vol.6
, Issue.2
-
-
Zhu, Y.1
Chen, W.2
Guo, G.3
-
66
-
-
84911363420
-
Range-sample depth feature for action recognition,
-
[66] C. Lu, J. Jia, C. K. Tang, Range-sample depth feature for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 772–779.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 772-779
-
-
Lu, C.1
Jia, J.2
Tang, C.K.3
-
67
-
-
84898787235
-
Group sparsity and geometry constrained dictionary learning for action recognition from depth maps,
-
[67] J. Luo, W. Wang, H. Qi, Group sparsity and geometry constrained dictionary learning for action recognition from depth maps, in: Proceedings of the International Conference on Computer Vision, 2013, pp. 1809–1816.
-
(2013)
Proceedings of the International Conference on Computer Vision
, pp. 1809-1816
-
-
Luo, J.1
Wang, W.2
Qi, H.3
-
68
-
-
84908158515
-
Spatio-temporal feature extraction and representation for RGB-D human action recognition
-
depth Image Analysis
-
[68] Luo, J., Wang, W., Qi, H., Spatio-temporal feature extraction and representation for RGB-D human action recognition. Pattern Recognit. Lett. 50 (2014), 139–148 depth Image Analysis.
-
(2014)
Pattern Recognit. Lett.
, vol.50
, pp. 139-148
-
-
Luo, J.1
Wang, W.2
Qi, H.3
-
69
-
-
84923886781
-
-
[69] S.-S. Cho, A-Reum Lee, H.-I. Suk, J.-S. Park, S.-W. Lee, Volumetric spatial feature representation for view-invariant human action recognition using a depth camera, Opt. Eng. 54 (3), 2015, 033102.
-
A-Reum Lee, H.-I. Suk, J.-S. Park, S.-W. Lee, Volumetric spatial feature representation for view-invariant human action recognition using a depth camera, Opt. Eng. 54 (3), 2015, 033102.
-
-
Cho, S.-S.1
-
70
-
-
84962436354
-
Temporal-order preserving dynamic quantization for human action recognition from multimodal sensor streams,
-
[70] J. Ye, K. Li, G.-J. Qi, K. A. Hua, Temporal-order preserving dynamic quantization for human action recognition from multimodal sensor streams, in: Proceedings of the International Conference on Multimedia Retrieval, ACM, Shanghai, China, 2015, pp. 99–106.
-
(2015)
Proceedings of the International Conference on Multimedia Retrieval, ACM, Shanghai, China
, pp. 99-106
-
-
Ye, J.1
Li, K.2
Qi, G.-J.3
Hua, K.A.4
-
71
-
-
84919941028
-
Grassmannian representation of motion depth for 3D human gesture and action recognition,
-
[71] R. Slama, H. Wannous, M. Daoudi, Grassmannian representation of motion depth for 3D human gesture and action recognition, in: Proceedings of the International Conference on Pattern Recognition, 2014, pp. 3499–3504.
-
(2014)
Proceedings of the International Conference on Pattern Recognition
, pp. 3499-3504
-
-
Slama, R.1
Wannous, H.2
Daoudi, M.3
-
73
-
-
84901267217
-
Evaluating spatiotemporal interest point features for depth-based action recognition
-
[73] Zhu, Y., Chen, W., Guo, G., Evaluating spatiotemporal interest point features for depth-based action recognition. Image Vis. Comput. 32:8 (2014), 453–464.
-
(2014)
Image Vis. Comput.
, vol.32
, Issue.8
, pp. 453-464
-
-
Zhu, Y.1
Chen, W.2
Guo, G.3
-
74
-
-
84893792171
-
An efficient part-based approach to action recognition from RGB-D video with bow-pyramid representation,
-
[74] J.S. Tsai, Y.P. Hsu, C. Liu, L.C. Fu, An efficient part-based approach to action recognition from RGB-D video with bow-pyramid representation, in: Proceedings of the International Conference on Intelligent Robots and Systems, 2013, pp. 2234–2239.
-
(2013)
Proceedings of the International Conference on Intelligent Robots and Systems
, pp. 2234-2239
-
-
Tsai, J.S.1
Hsu, Y.P.2
Liu, C.3
Fu, L.C.4
-
75
-
-
85099669409
-
Pose adaptive motion feature pooling for human action analysis
-
[75] Ni, B., Moulin, P., Yan, S., Pose adaptive motion feature pooling for human action analysis. Int. J. Comput. Vis., 2014, 1–20.
-
(2014)
Int. J. Comput. Vis.
, pp. 1-20
-
-
Ni, B.1
Moulin, P.2
Yan, S.3
-
77
-
-
84929629425
-
Efficient pose-based action recognition,
-
[77] A. Eweiwi, M. Cheema, C. Bauckhage, J. Gall, Efficient pose-based action recognition, in: Computer Vision – ACCV 2014, Lecture Notes in Computer Science, vol. 9007, Springer, Singapore, Singapore, 2015, pp. 428–443.
-
(2015)
Computer Vision – ACCV 2014, Lecture Notes in Computer Science, vol. 9007, Springer, Singapore, Singapore
, pp. 428-443
-
-
Eweiwi, A.1
Cheema, M.2
Bauckhage, C.3
Gall, J.4
-
79
-
-
84896061825
-
Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations,
-
[79] M.E. Hussein, M. Torki, M.A. Gowayyed, M. El-Saban, Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 2466–2472.
-
(2013)
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
, pp. 2466-2472
-
-
Hussein, M.E.1
Torki, M.2
Gowayyed, M.A.3
El-Saban, M.4
-
80
-
-
84929645924
-
Enhanced sequence matching for action recognition from 3D skeletal data,
-
[80] H.-J. Jung, K.-S. Hong, Enhanced sequence matching for action recognition from 3D skeletal data, in: Computer Vision – ACCV 2014, Lecture Notes in Computer Science, vol. 9007, Springer, Singapore, Singapore, 2015, pp. 226–240.
-
(2015)
Computer Vision – ACCV 2014, Lecture Notes in Computer Science, vol. 9007, Springer, Singapore, Singapore
, pp. 226-240
-
-
Jung, H.-J.1
Hong, K.-S.2
-
81
-
-
84929643248
-
Qualitative and quantitative spatio-temporal relations in daily living activity recognition,
-
[81] J. Tayyub, A. Tavanai, Y. Gatsoulis, A. Cohn, D. Hogg, Qualitative and quantitative spatio-temporal relations in daily living activity recognition, in: Computer Vision – ACCV 2014, Lecture Notes in Computer Science, vol. 9007, 2015, pp. 115–130.
-
(2015)
Computer Vision – ACCV 2014, Lecture Notes in Computer Science
, vol.9007
, pp. 115-130
-
-
Tayyub, J.1
Tavanai, A.2
Gatsoulis, Y.3
Cohn, A.4
Hogg, D.5
-
82
-
-
84994835652
-
-
[82] A. Taha, H.H. Zayed, M. Khalifa, E.-S.M. El-Horbaty, Skeleton-based human activity recognition for video surveillance, Int. J. Sci. Eng. Res. 6 (1), 2015, 993-1004.
-
Skeleton-based human activity recognition for video surveillance, Int. J. Sci. Eng. Res. 6 (1), 2015, 993-1004.
-
-
Taha, A.1
Zayed, H.H.2
Khalifa, M.3
El-Horbaty, E.-S.M.4
-
83
-
-
84926464781
-
Learning spatio-temporal structure from RGB-D videos for human activity detection and anticipation,
-
[83] H.S. Koppula, A. Saxena, Learning spatio-temporal structure from RGB-D videos for human activity detection and anticipation, in: Proceedings of the International Conference on Machine Learning, vol. 28, 2013, pp. 792–800.
-
(2013)
Proceedings of the International Conference on Machine Learning
, vol.28
, pp. 792-800
-
-
Koppula, H.S.1
Saxena, A.2
-
84
-
-
84893049119
-
Hidden Markov model on a unit hypersphere space for gesture trajectory recognition
-
[84] Beh, J., Han, D.K., Durasiwami, R., Ko, H., Hidden Markov model on a unit hypersphere space for gesture trajectory recognition. Pattern Recognit. Lett. 36 (2014), 144–153.
-
(2014)
Pattern Recognit. Lett.
, vol.36
, pp. 144-153
-
-
Beh, J.1
Han, D.K.2
Durasiwami, R.3
Ko, H.4
-
85
-
-
84893325138
-
Robust action recognition based on a hierarchical model,
-
[85] X. Jiang, F. Zhong, Q. Peng, X. Qin, Robust action recognition based on a hierarchical model, in: Proceedings International Conference on Cyberworlds, IEEE, Yokohama, 2013, pp. 191–198.
-
(2013)
Proceedings International Conference on Cyberworlds, IEEE, Yokohama
, pp. 191-198
-
-
Jiang, X.1
Zhong, F.2
Peng, Q.3
Qin, X.4
-
86
-
-
84898773205
-
The moving pose: An efficient 3D kinematics descriptor for low-latency action recognition and detection,
-
[86] M. Zanfir, M. Leordeanu, C. Sminchisescu, The moving pose: An efficient 3D kinematics descriptor for low-latency action recognition and detection, in: Proceedings IEEE International Conference on Computer Vision, 2013, pp. 2752–2759.
-
(2013)
Proceedings IEEE International Conference on Computer Vision
, pp. 2752-2759
-
-
Zanfir, M.1
Leordeanu, M.2
Sminchisescu, C.3
-
87
-
-
84951985479
-
-
[87] S. Nie, Z. Wang, Q. Ji, A generative restricted boltzmann machine based method for high-dimensional motion data modeling, Comput. Vis. Image Understand, 136, 2015, 14-22.
-
A generative restricted boltzmann machine based method for high-dimensional motion data modeling, Comput. Vis. Image Understand, 136, 2015, 14-22.
-
-
Nie, S.1
Wang, Z.2
Ji, Q.3
-
88
-
-
84919934276
-
Clustered spatio-temporal manifolds for online action recognition,
-
[88] V. Bloom, D. Makris, V. Argyriou, Clustered spatio-temporal manifolds for online action recognition, in: Proceedings of the International Conference on Pattern Recognition, IEEE, Stockholm, 2014, pp. 3963–3968.
-
(2014)
Proceedings of the International Conference on Pattern Recognition, IEEE, Stockholm
, pp. 3963-3968
-
-
Bloom, V.1
Makris, D.2
Argyriou, V.3
-
89
-
-
84919491390
-
Multi-perspective and multi-modality joint representation and recognition model for 3D action recognition
-
[89] Gao, Z., Zhang, H., Xu, G., Xue, Y., Multi-perspective and multi-modality joint representation and recognition model for 3D action recognition. Neurocomputing 151:Part 2 (2015), 554–564.
-
(2015)
Neurocomputing
, vol.151
, pp. 554-564
-
-
Gao, Z.1
Zhang, H.2
Xu, G.3
Xue, Y.4
-
90
-
-
84887134847
-
-
[90] O. Çeliktutan, C.B. Akgul, C. Wolf, B. Sankur, Graph-based analysis of physical exercise actions, in: Proceedings of the ACM International Workshop on Multimedia Indexing and Information Retrieval for Healthcare, 2013, pp. 23–32.
-
O. Çeliktutan, C.B. Akgul, C. Wolf, B. Sankur, Graph-based analysis of physical exercise actions, in: Proceedings of the ACM International Workshop on Multimedia Indexing and Information Retrieval for Healthcare, 2013, pp. 23–32.
-
-
-
91
-
-
84895177463
-
Fast exact hyper-graph matching with dynamic programming for spatio-temporal data
-
[91] Çeliktutan, O., Wolf, C., Sankur, B., Lombardi, E., Fast exact hyper-graph matching with dynamic programming for spatio-temporal data. J. Math. Imaging Vis. 51:1 (2015), 1–21.
-
(2015)
J. Math. Imaging Vis.
, vol.51
, Issue.1
, pp. 1-21
-
-
Çeliktutan, O.1
Wolf, C.2
Sankur, B.3
Lombardi, E.4
-
92
-
-
84939476152
-
Recognition of human actions using edit distance on aclet strings,
-
[92] L. Brun, P. Foggia, A. Saggese, M. Vento, Recognition of human actions using edit distance on aclet strings, in: Proceedings of the International Conference on Computer Vision Theory and Applications, 2015, pp. 97–103.
-
(2015)
Proceedings of the International Conference on Computer Vision Theory and Applications
, pp. 97-103
-
-
Brun, L.1
Foggia, P.2
Saggese, A.3
Vento, M.4
-
93
-
-
84909953054
-
Exploiting the deep learning paradigm for recognizing human actions,
-
[93] P. Foggia, A. Saggese, N.S.M. Vento, Exploiting the deep learning paradigm for recognizing human actions, in: Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, 2014, pp. 93–98.
-
(2014)
Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance
, pp. 93-98
-
-
Foggia, P.1
Saggese, A.2
Vento, N.S.M.3
-
94
-
-
84944916547
-
Modeling transition patterns between events for temporal human action segmentation and classification,
-
[94] Y. Kim, J. Chen, M.-C. Chang, X. Wang, E. Provost, S. Lyu, Modeling transition patterns between events for temporal human action segmentation and classification, in: Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on, 2015, pp. 1–8.
-
(2015)
Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on
, pp. 1-8
-
-
Kim, Y.1
Chen, J.2
Chang, M.-C.3
Wang, X.4
Provost, E.5
Lyu, S.6
-
95
-
-
84884947071
-
Bio-inspired dynamic 3D discriminative skeletal features for human action recognition,
-
[95] R. Chaudhry, F. Ofli, G. Kurillo, R. Bajcsy, R. Vidal, Bio-inspired dynamic 3D discriminative skeletal features for human action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 471–478.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 471-478
-
-
Chaudhry, R.1
Ofli, F.2
Kurillo, G.3
Bajcsy, R.4
Vidal, R.5
-
96
-
-
84959217041
-
Hierarchical recurrent neural network for skeleton based action recognition,
-
[96] Y. Du, W. Wang, L. Wang, Hierarchical recurrent neural network for skeleton based action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1110–1118.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1110-1118
-
-
Du, Y.1
Wang, W.2
Wang, L.3
-
97
-
-
84946686872
-
Human action recognition based on mocap information using convolution neural networks,
-
[97] E.P. Ijjina, C.K. Mohan, Human action recognition based on mocap information using convolution neural networks, in: Proceedings of the International Conference on Machine Learning and Applications, IEEE, Detroit, MI, 2014, pp. 159–164.
-
(2014)
Proceedings of the International Conference on Machine Learning and Applications, IEEE, Detroit, MI
, pp. 159-164
-
-
Ijjina, E.P.1
Mohan, C.K.2
-
98
-
-
85027917405
-
Improving human action recognition using fusion of depth camera and inertial sensors
-
[98] Chen, C., Jafari, R., Kehtarnavaz, N., Improving human action recognition using fusion of depth camera and inertial sensors. IEEE Trans. Human–Mach. Syst. 45:1 (2015), 51–61.
-
(2015)
IEEE Trans. Human–Mach. Syst.
, vol.45
, Issue.1
, pp. 51-61
-
-
Chen, C.1
Jafari, R.2
Kehtarnavaz, N.3
-
99
-
-
84909953520
-
HAck: A system for the recognition of human actions by kernels of visual strings,
-
[99] L. Brun, G. Percannella, A. Saggese, M. Vento, HAck: A system for the recognition of human actions by kernels of visual strings, in: Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, 2014, pp. 142–147.
-
(2014)
Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance
, pp. 142-147
-
-
Brun, L.1
Percannella, G.2
Saggese, A.3
Vento, M.4
-
100
-
-
84919883499
-
-
[100] A.R. Lee, H. I. Suk, S.W. Lee, View-invariant 3D action recognition using spatiotemporal self-similarities from depth camera, in: Proceedings of the International Conference on Pattern Recognition, 2014, pp. 501–505.
-
S.W. Lee, View-invariant 3D action recognition using spatiotemporal self-similarities from depth camera, in: Proceedings of the International Conference on Pattern Recognition, 2014, pp. 501–505.
-
-
Lee, A.R.1
Suk, H.I.2
-
102
-
-
84908063169
-
Describing trajectory of surface patch for human action recognition on RGB and depth videos
-
[102] Song, Y., Liu, S., Tang, J., Describing trajectory of surface patch for human action recognition on RGB and depth videos. Signal Process. Lett. 22:4 (2015), 426–429.
-
(2015)
Signal Process. Lett.
, vol.22
, Issue.4
, pp. 426-429
-
-
Song, Y.1
Liu, S.2
Tang, J.3
-
103
-
-
84983146164
-
A similarity measure for analyzing human activities using human-object interaction context,
-
[103] S. Amiri, M. Pourazad, P. Nasiopoulos, V. Leung, A similarity measure for analyzing human activities using human-object interaction context, in: Proceedings of the IEEE International Conference on Image Processing, 2014, pp. 2368–2372.
-
(2014)
Proceedings of the IEEE International Conference on Image Processing
, pp. 2368-2372
-
-
Amiri, S.1
Pourazad, M.2
Nasiopoulos, P.3
Leung, V.4
-
104
-
-
84899570695
-
Human action recognition using meta learning for RGB and depth information,
-
[104] S.M. Amiri, M.T. Pourazad, P. Nasiopoulos, V.C.M. Leung, Human action recognition using meta learning for RGB and depth information, in: Proceedings of the International Conference on Computing, Networking and Communications, 2014, pp. 363–367.
-
(2014)
Proceedings of the International Conference on Computing, Networking and Communications
, pp. 363-367
-
-
Amiri, S.M.1
Pourazad, M.T.2
Nasiopoulos, P.3
Leung, V.C.M.4
-
105
-
-
84960103483
-
Approximate maxent inverse optmal control and its application for mental simulation of human interactions,
-
[105] D. Huang, A.M. Farahmand, K.M. Kitani, J.A. Bagnell, Approximate maxent inverse optmal control and its application for mental simulation of human interactions, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
-
(2015)
Proceedings of the AAAI Conference on Artificial Intelligence
-
-
Huang, D.1
Farahmand, A.M.2
Kitani, K.M.3
Bagnell, J.A.4
-
106
-
-
84867863926
-
-
[106] K.M. Kitani, B.D. Ziebart, J.A. Bagnell, M. Hebert, Activity forecasting, in: Computer Vision - ECCV 2012, Lecture Notes in Computer Science, vol. 7575, 2012, pp. 201–214.
-
Activity forecasting, in: Computer Vision - ECCV 2012, Lecture Notes in Computer Science, vol. 7575, 2012, pp. 201–214.
-
-
Kitani, K.M.1
Ziebart, B.D.2
Bagnell, J.A.3
Hebert, M.4
-
107
-
-
84881515103
-
Integrating multi-stage depth-induced contextual information for human action recognition and localization,
-
[107] B. Ni, Y. Pei, Z. Liang, L. Lin, P. Moulin, Integrating multi-stage depth-induced contextual information for human action recognition and localization, in: Proceedings of the IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, 2013, pp. 1–8.
-
(2013)
Proceedings of the IEEE International Conference and Workshops on Automatic Face and Gesture Recognition
, pp. 1-8
-
-
Ni, B.1
Pei, Y.2
Liang, Z.3
Lin, L.4
Moulin, P.5
-
108
-
-
84959216468
-
-
[108] F.C. Heilbron, V. Escorcia, B. Ghanem, J. Carlos Niebles, Activitynet: A large-scale video benchmark for human activity understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 961–970.
-
J. Carlos Niebles, Activitynet: A large-scale video benchmark for human activity understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 961–970.
-
-
Heilbron, F.C.1
Escorcia, V.2
Ghanem, B.3
-
109
-
-
84911364368
-
Large-scale video classification with convolutional neural networks,
-
[109] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-scale video classification with convolutional neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
110
-
-
77955989314
-
Cross-dataset action detection,
-
[110] L. Cao, Z. Liu, T. Huang, Cross-dataset action detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 1998–2005.
-
(2010)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1998-2005
-
-
Cao, L.1
Liu, Z.2
Huang, T.3
-
112
-
-
84924514239
-
Evaluating Learning Algorithms: A Classification Perspective
-
Cambridge University Press New York
-
[112] Japkowicz, N., Shah, M., Evaluating Learning Algorithms: A Classification Perspective. 2014, Cambridge University Press, New York.
-
(2014)
-
-
Japkowicz, N.1
Shah, M.2
|