메뉴 건너뛰기




Volumn 60, Issue , 2016, Pages 86-105

RGB-D-based action recognition datasets: A survey

Author keywords

Action recognition; Evaluation protocol; RGB D dataset

Indexed keywords

SOFTWARE ENGINEERING;

EID: 84994894914     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.05.019     Document Type: Article
Times cited : (254)

References (112)
  • 1
    • 84890553932 scopus 로고    scopus 로고
    • A survey on activity recognition and behavior understanding in video surveillance
    • [1] Vishwakarma, S., Agrawal, A., A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29:10 (2013), 983–1009.
    • (2013) Vis. Comput. , vol.29 , Issue.10 , pp. 983-1009
    • Vishwakarma, S.1    Agrawal, A.2
  • 2
    • 84921772594 scopus 로고    scopus 로고
    • Fuzzy human motion analysis: a review
    • [2] Lim, C.H., Vats, E., Chan, C.S., Fuzzy human motion analysis: a review. Pattern Recognit. 48:5 (2015), 1773–1796.
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1773-1796
    • Lim, C.H.1    Vats, E.2    Chan, C.S.3
  • 3
    • 0036522847 scopus 로고    scopus 로고
    • Recent developments in human motion analysis
    • [3] Wang, L., Hu, W., Tan, T., Recent developments in human motion analysis. Pattern Recognit. 36:3 (2003), 585–601.
    • (2003) Pattern Recognit. , vol.36 , Issue.3 , pp. 585-601
    • Wang, L.1    Hu, W.2    Tan, T.3
  • 4
    • 84902318725 scopus 로고    scopus 로고
    • A survey on still image based human action recognition
    • [4] Guo, G., Lai, A., A survey on still image based human action recognition. Pattern Recognit. 47:10 (2014), 3343–3361.
    • (2014) Pattern Recognit. , vol.47 , Issue.10 , pp. 3343-3361
    • Guo, G.1    Lai, A.2
  • 9
    • 84906782091 scopus 로고    scopus 로고
    • Human activity recognition from 3D data: a review
    • [9] Aggarwal, J., Xia, L., Human activity recognition from 3D data: a review. Pattern Recognit. Lett. 48 (2014), 70–80.
    • (2014) Pattern Recognit. Lett. , vol.48 , pp. 70-80
    • Aggarwal, J.1    Xia, L.2
  • 22
    • 84880311243 scopus 로고    scopus 로고
    • Learning human activities and object affordances from RGB-D videos
    • [22] Koppula, H.S., Gupta, R., Saxena, A., Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32:8 (2013), 951–970.
    • (2013) Int. J. Robot. Res. , vol.32 , Issue.8 , pp. 951-970
    • Koppula, H.S.1    Gupta, R.2    Saxena, A.3
  • 27
    • 84884910745 scopus 로고    scopus 로고
    • Exploring the trade-off between accuracy and observational latency in action recognition
    • [27] Ellis, C., Masood, S.Z., Tappen, M.F., Laviola, J.J. Jr., Sukthankar, R., Exploring the trade-off between accuracy and observational latency in action recognition. Int. J. Comput. Vis. 101:3 (2013), 420–436.
    • (2013) Int. J. Comput. Vis. , vol.101 , Issue.3 , pp. 420-436
    • Ellis, C.1    Masood, S.Z.2    Tappen, M.F.3    Laviola, J.J.4    Sukthankar, R.5
  • 28
    • 84890347265 scopus 로고    scopus 로고
    • Inverse dynamics for action recognition
    • [28] Mansur, A., Makihara, Y., Yagi, Y., Inverse dynamics for action recognition. IEEE Trans. Cybern. 43:4 (2013), 1226–1236.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.4 , pp. 1226-1236
    • Mansur, A.1    Makihara, Y.2    Yagi, Y.3
  • 30
    • 84882380908 scopus 로고    scopus 로고
    • RGB-depth feature for 3D human activity recognition
    • [30] Zhao, Y., Liu, Z., Cheng, H., RGB-depth feature for 3D human activity recognition. China Commun. 10:7 (2013), 93–103.
    • (2013) China Commun. , vol.10 , Issue.7 , pp. 93-103
    • Zhao, Y.1    Liu, Z.2    Cheng, H.3
  • 32
    • 84891627727 scopus 로고    scopus 로고
    • Pose-based human action recognition via sparse representation in dissimilarity space
    • Visual Understanding and Applications with RGB-D Cameras
    • [32] Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S., Pose-based human action recognition via sparse representation in dissimilarity space. J. Vis. Commun. Image Represent. 25:1 (2014), 12–23 Visual Understanding and Applications with RGB-D Cameras.
    • (2014) J. Vis. Commun. Image Represent. , vol.25 , Issue.1 , pp. 12-23
    • Theodorakopoulos, I.1    Kastaniotis, D.2    Economou, G.3    Fotopoulos, S.4
  • 44
    • 84908208346 scopus 로고    scopus 로고
    • Readingact RGB-D action dataset and human action recognition from local features
    • Depth Image Analysis
    • [44] Chen, L., Wei, H., Ferryman, J., Readingact RGB-D action dataset and human action recognition from local features. Pattern Recognit. Lett. 50 (2013), 159–169 Depth Image Analysis.
    • (2013) Pattern Recognit. Lett. , vol.50 , pp. 159-169
    • Chen, L.1    Wei, H.2    Ferryman, J.3
  • 49
    • 84929297797 scopus 로고    scopus 로고
    • Multipe/single-view human action recognition via part-induced multitask structural learning
    • [49] Liu, A., Su, Y., Jia, P., Gao, Z., Hao, T., Yang, Z., Multipe/single-view human action recognition via part-induced multitask structural learning. IEEE Trans. Cybern. 45:6 (2015), 1194–1208.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.6 , pp. 1194-1208
    • Liu, A.1    Su, Y.2    Jia, P.3    Gao, Z.4    Hao, T.5    Yang, Z.6
  • 50
    • 84902172570 scopus 로고    scopus 로고
    • Body surface context: a new robust feature for action recognition from depth videos
    • [50] Song, Y., Tang, J., Liu, F., Yan, S., Body surface context: a new robust feature for action recognition from depth videos. IEEE Trans. Circuits Syst. Video Technol. 24:6 (2014), 952–964.
    • (2014) IEEE Trans. Circuits Syst. Video Technol. , vol.24 , Issue.6 , pp. 952-964
    • Song, Y.1    Tang, J.2    Liu, F.3    Yan, S.4
  • 51
    • 84994825660 scopus 로고    scopus 로고
    • Histogram of oriented principal components for cross-view action recognition, arXiv preprint
    • arXiv:1409.6813
    • [51] H. Rahmani, A. Mahmood, D. Huynh, A. Mian, Histogram of oriented principal components for cross-view action recognition, arXiv preprint arXiv:1409.6813.
    • Rahmani, H.1    Mahmood, A.2    Huynh, D.3    Mian, A.4
  • 53
    • 84896106532 scopus 로고    scopus 로고
    • Efficient interaction recognition through positive action representation
    • [53] Hu, T., Zhu, X., Guo, W., Su, K., Efficient interaction recognition through positive action representation. Math. Probl. Eng. 2013 (2013), 1–13.
    • (2013) Math. Probl. Eng. , vol.2013 , pp. 1-13
    • Hu, T.1    Zhu, X.2    Guo, W.3    Su, K.4
  • 59
    • 84907224726 scopus 로고    scopus 로고
    • Human action recognition with video data: research and evaluation challenges
    • [59] Ramanathan, M., Yau, W.Y., Teoh, E.K., Human action recognition with video data: research and evaluation challenges. IEEE Trans. Human–Mach. Syst. 44:5 (2014), 650–663.
    • (2014) IEEE Trans. Human–Mach. Syst. , vol.44 , Issue.5 , pp. 650-663
    • Ramanathan, M.1    Yau, W.Y.2    Teoh, E.K.3
  • 60
    • 69549121743 scopus 로고    scopus 로고
    • Observing human-object interactions: using spatial and functional compatibility for recognition
    • [60] Gupta, A., Kembhavi, A., Davis, L.S., Observing human-object interactions: using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31:10 (2009), 1775–1789.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.10 , pp. 1775-1789
    • Gupta, A.1    Kembhavi, A.2    Davis, L.S.3
  • 64
    • 84919914603 scopus 로고    scopus 로고
    • Triviews: a general framework to use 3D depth data effectively for action recognition
    • [64] Chen, W., Guo, G., Triviews: a general framework to use 3D depth data effectively for action recognition. J. Vis. Commun. Image Represent. 26:0 (2015), 182–191.
    • (2015) J. Vis. Commun. Image Represent. , vol.26 , pp. 182-191
    • Chen, W.1    Guo, G.2
  • 65
    • 84927551270 scopus 로고    scopus 로고
    • Fusing multiple features for depth-based action recognition
    • 18:1–18:20
    • [65] Zhu, Y., Chen, W., Guo, G., Fusing multiple features for depth-based action recognition. ACM Trans. Intell. Syst. Technol., 6(2), 2015 18:1–18:20.
    • (2015) ACM Trans. Intell. Syst. Technol. , vol.6 , Issue.2
    • Zhu, Y.1    Chen, W.2    Guo, G.3
  • 67
    • 84898787235 scopus 로고    scopus 로고
    • Group sparsity and geometry constrained dictionary learning for action recognition from depth maps,
    • [67] J. Luo, W. Wang, H. Qi, Group sparsity and geometry constrained dictionary learning for action recognition from depth maps, in: Proceedings of the International Conference on Computer Vision, 2013, pp. 1809–1816.
    • (2013) Proceedings of the International Conference on Computer Vision , pp. 1809-1816
    • Luo, J.1    Wang, W.2    Qi, H.3
  • 68
    • 84908158515 scopus 로고    scopus 로고
    • Spatio-temporal feature extraction and representation for RGB-D human action recognition
    • depth Image Analysis
    • [68] Luo, J., Wang, W., Qi, H., Spatio-temporal feature extraction and representation for RGB-D human action recognition. Pattern Recognit. Lett. 50 (2014), 139–148 depth Image Analysis.
    • (2014) Pattern Recognit. Lett. , vol.50 , pp. 139-148
    • Luo, J.1    Wang, W.2    Qi, H.3
  • 73
    • 84901267217 scopus 로고    scopus 로고
    • Evaluating spatiotemporal interest point features for depth-based action recognition
    • [73] Zhu, Y., Chen, W., Guo, G., Evaluating spatiotemporal interest point features for depth-based action recognition. Image Vis. Comput. 32:8 (2014), 453–464.
    • (2014) Image Vis. Comput. , vol.32 , Issue.8 , pp. 453-464
    • Zhu, Y.1    Chen, W.2    Guo, G.3
  • 75
    • 85099669409 scopus 로고    scopus 로고
    • Pose adaptive motion feature pooling for human action analysis
    • [75] Ni, B., Moulin, P., Yan, S., Pose adaptive motion feature pooling for human action analysis. Int. J. Comput. Vis., 2014, 1–20.
    • (2014) Int. J. Comput. Vis. , pp. 1-20
    • Ni, B.1    Moulin, P.2    Yan, S.3
  • 83
    • 84926464781 scopus 로고    scopus 로고
    • Learning spatio-temporal structure from RGB-D videos for human activity detection and anticipation,
    • [83] H.S. Koppula, A. Saxena, Learning spatio-temporal structure from RGB-D videos for human activity detection and anticipation, in: Proceedings of the International Conference on Machine Learning, vol. 28, 2013, pp. 792–800.
    • (2013) Proceedings of the International Conference on Machine Learning , vol.28 , pp. 792-800
    • Koppula, H.S.1    Saxena, A.2
  • 84
    • 84893049119 scopus 로고    scopus 로고
    • Hidden Markov model on a unit hypersphere space for gesture trajectory recognition
    • [84] Beh, J., Han, D.K., Durasiwami, R., Ko, H., Hidden Markov model on a unit hypersphere space for gesture trajectory recognition. Pattern Recognit. Lett. 36 (2014), 144–153.
    • (2014) Pattern Recognit. Lett. , vol.36 , pp. 144-153
    • Beh, J.1    Han, D.K.2    Durasiwami, R.3    Ko, H.4
  • 89
    • 84919491390 scopus 로고    scopus 로고
    • Multi-perspective and multi-modality joint representation and recognition model for 3D action recognition
    • [89] Gao, Z., Zhang, H., Xu, G., Xue, Y., Multi-perspective and multi-modality joint representation and recognition model for 3D action recognition. Neurocomputing 151:Part 2 (2015), 554–564.
    • (2015) Neurocomputing , vol.151 , pp. 554-564
    • Gao, Z.1    Zhang, H.2    Xu, G.3    Xue, Y.4
  • 91
    • 84895177463 scopus 로고    scopus 로고
    • Fast exact hyper-graph matching with dynamic programming for spatio-temporal data
    • [91] Çeliktutan, O., Wolf, C., Sankur, B., Lombardi, E., Fast exact hyper-graph matching with dynamic programming for spatio-temporal data. J. Math. Imaging Vis. 51:1 (2015), 1–21.
    • (2015) J. Math. Imaging Vis. , vol.51 , Issue.1 , pp. 1-21
    • Çeliktutan, O.1    Wolf, C.2    Sankur, B.3    Lombardi, E.4
  • 98
    • 85027917405 scopus 로고    scopus 로고
    • Improving human action recognition using fusion of depth camera and inertial sensors
    • [98] Chen, C., Jafari, R., Kehtarnavaz, N., Improving human action recognition using fusion of depth camera and inertial sensors. IEEE Trans. Human–Mach. Syst. 45:1 (2015), 51–61.
    • (2015) IEEE Trans. Human–Mach. Syst. , vol.45 , Issue.1 , pp. 51-61
    • Chen, C.1    Jafari, R.2    Kehtarnavaz, N.3
  • 102
    • 84908063169 scopus 로고    scopus 로고
    • Describing trajectory of surface patch for human action recognition on RGB and depth videos
    • [102] Song, Y., Liu, S., Tang, J., Describing trajectory of surface patch for human action recognition on RGB and depth videos. Signal Process. Lett. 22:4 (2015), 426–429.
    • (2015) Signal Process. Lett. , vol.22 , Issue.4 , pp. 426-429
    • Song, Y.1    Liu, S.2    Tang, J.3
  • 112
    • 84924514239 scopus 로고    scopus 로고
    • Evaluating Learning Algorithms: A Classification Perspective
    • Cambridge University Press New York
    • [112] Japkowicz, N., Shah, M., Evaluating Learning Algorithms: A Classification Perspective. 2014, Cambridge University Press, New York.
    • (2014)
    • Japkowicz, N.1    Shah, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.