메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Bird species categorization using pose normalized deep convolutional nets

Author keywords

[No Author keywords available]

Indexed keywords

BIRDS; CLUSTERING ALGORITHMS; COMPUTER VISION; CONVOLUTION; GRAPHIC METHODS;

EID: 84919741208     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (422)

References (51)
  • 1
    • 84887340679 scopus 로고    scopus 로고
    • Efficient object detection and segmentation for fine-grained recognition
    • Anelia Angelova and Shenghuo Zhu. Efficient object detection and segmentation for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Angelova, A.1    Zhu, S.2
  • 3
    • 0003916202 scopus 로고    scopus 로고
    • Shape context: A new descriptor for shape matching and object recognition
    • Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape context: A new descriptor for shape matching and object recognition. In NIPS, volume 2, page 3, 2000.
    • (2000) NIPS , vol.2 , pp. 3
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 4
    • 80052896727 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • Tamara L Berg, Alexander C Berg, and Jonathan Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV. 2010.
    • (2010) ECCV
    • Berg, T.L.1    Berg, C.2    Shih, J.3
  • 5
    • 84887356895 scopus 로고    scopus 로고
    • POOF: Part-based one-vs-one features for finegrained categorization, face verification, and attribute estimation
    • Thomas Berg and Peter N Belhumeur. POOF: Part-based one-vs-one features for finegrained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 7
    • 85162018819 scopus 로고    scopus 로고
    • Kernel descriptors for visual recognition
    • Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Kernel descriptors for visual recognition. In NIPS, 2010.
    • (2010) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 9
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • Lubomir Bourdev and Jitendra Malik. Poselets: Body part detectors trained using 3D human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 11
    • 84887346435 scopus 로고    scopus 로고
    • Efficient large-scale structured learning
    • Steve Branson, Oscar Beijbom, and Serge Belongie. Efficient large-scale structured learning. In CVPR, 2013.
    • (2013) CVPR
    • Branson, S.1    Beijbom, O.2    Belongie, S.3
  • 12
    • 84900864212 scopus 로고    scopus 로고
    • The ignorant led by the blind: A hybrid human-machine vision system for fine-grained categorization
    • Steve Branson, Grant Van Horn, Catherine Wah, Pietro Perona, and Serge Belongie. The ignorant led by the blind: A hybrid human-machine vision system for fine-grained categorization. IJCV, 2014.
    • (2014) IJCV
    • Branson, S.1    Van Horn, G.2    Wah, C.3    Perona, P.4    Belongie, S.5
  • 13
    • 84900847694 scopus 로고    scopus 로고
    • Bicos: A bi-level cosegmentation method
    • Yuning Chai, Victor Lempitsky, and Andrew Zisserman. Bicos: A bi-level cosegmentation method. In ICCV, 2011.
    • (2011) ICCV
    • Chai, Y.1    Lempitsky, V.2    Zisserman, A.3
  • 15
    • 84898771336 scopus 로고    scopus 로고
    • Symbiotic segmentation and part localization for fine-grained categorization
    • Yuning Chai, Victor Lempitsky, and Andrew Zisserman. Symbiotic segmentation and part localization for fine-grained categorization. In ICCV, 2013.
    • (2013) ICCV
    • Chai, Y.1    Lempitsky, V.2    Zisserman, A.3
  • 16
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 18
    • 0018031445 scopus 로고
    • A dual-based procedure for uncapacitated facility location
    • Donald Erlenkotter. A dual-based procedure for uncapacitated facility location. Operations Research, 1978.
    • (1978) Operations Research
    • Erlenkotter, D.1
  • 23
    • 34250227246 scopus 로고
    • Heuristics for the fixed cost median problem
    • Dorit S Hochbaum. Heuristics for the fixed cost median problem. Mathematical programming, 1982.
    • (1982) Mathematical Programming
    • Hochbaum, D.S.1
  • 25
    • 3142755912 scopus 로고    scopus 로고
    • Greedy facility location algorithms analyzed using dual fitting with factorrevealing lp
    • Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazirani. Greedy facility location algorithms analyzed using dual fitting with factorrevealing lp. JACM, 2003.
    • (2003) JACM
    • Jain, K.1    Mahdian, M.2    Markakis, E.3    Saberi, A.4    Vazirani, V.V.5
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 29
  • 30
    • 78149485390 scopus 로고    scopus 로고
    • Haar random forest features and svm spatial matching kernel for stonefly species identification
    • Natalia Larios, Bilge Soran, Linda G Shapiro, G Martínez-Muñoz, Junyuan Lin, and Thomas G Dietterich. Haar random forest features and svm spatial matching kernel for stonefly species identification. In ICPR, 2010.
    • (2010) ICPR
    • Larios, N.1    Soran, B.2    Shapiro, L.G.3    Martínez-Muñoz, G.4    Lin, J.5    Dietterich, T.G.6
  • 31
    • 33745854718 scopus 로고    scopus 로고
    • A maximum entropy framework for part-based texture and object recognition
    • S. Lazebnik, C. Schmid, and J. Ponce. A maximum entropy framework for part-based texture and object recognition. In ICCV, 2005.
    • (2005) ICCV
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 32
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. Handbook of brain theory, 1995.
    • (1995) Handbook of Brain Theory
    • Lecun, Y.1    Bengio, Y.2
  • 33
    • 84887374480 scopus 로고    scopus 로고
    • Dog breed classification using part localization
    • Jiongxin Liu, Angjoo Kanazawa, David Jacobs, and Peter Belhumeur. Dog breed classification using part localization. ECCV, 2012.
    • (2012) ECCV
    • Liu, J.1    Kanazawa, A.2    Jacobs, D.3    Belhumeur, P.4
  • 35
    • 78149346655 scopus 로고    scopus 로고
    • Dictionary-free categorization of very similar objects
    • G. Martínez-Muñoz et al. Dictionary-free categorization of very similar objects. In CVPR, 2009.
    • (2009) CVPR
    • Martínez-Muñoz, G.1
  • 36
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • M-E Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In CVPR, 2006.
    • (2006) CVPR
    • Nilsback, M.-E.1    Zisserman, A.2
  • 37
  • 40
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale image classification. In ECCV. 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 43
    • 84856635994 scopus 로고    scopus 로고
    • Multiclass recognition and part localization with humans in the loop
    • C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and part localization with humans in the loop. In ICCV, 2011.
    • (2011) ICCV
    • Wah, C.1    Branson, S.2    Perona, P.3    Belongie, S.4
  • 46
    • 84877743496 scopus 로고    scopus 로고
    • Unsupervised template learning for fine-grained object recognition
    • Shulin Yang, Liefeng Bo, Jue Wang, and Linda G Shapiro. Unsupervised template learning for fine-grained object recognition. In NIPS, 2012.
    • (2012) NIPS
    • Yang, S.1    Bo, L.2    Wang, J.3    Shapiro, L.G.4
  • 47
    • 84900845219 scopus 로고    scopus 로고
    • Combining randomization and discrimination for FGVC
    • Bangpeng Yao, Aditya Khosla, and Li Fei-Fei. Combining randomization and discrimination for FGVC. In CVPR, 2011.
    • (2011) CVPR
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3
  • 48
    • 84900863364 scopus 로고    scopus 로고
    • A codebook and annotation-free approach for FGVC
    • Bangpeng Yao, Gray Bradski, and Li Fei-Fei. A codebook and annotation-free approach for FGVC. In CVPR, 2012.
    • (2012) CVPR
    • Yao, B.1    Bradski, G.2    Fei-Fei, L.3
  • 50
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for sub-category recognition
    • Ning Zhang, Ryan Farrell, and Trever Darrell. Pose pooling kernels for sub-category recognition. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, N.1    Farrell, R.2    Darrell, T.3
  • 51
    • 84898819241 scopus 로고    scopus 로고
    • Deformable part descriptors for fine-grained recognition and attribute prediction
    • Ning Zhang, Ryan Farrell, Forrest Iandola, and Trevor Darrell. Deformable part descriptors for fine-grained recognition and attribute prediction. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, N.1    Farrell, R.2    Iandola, F.3    Darrell, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.