-
3
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In ICML, 2013.
-
(2013)
ICML
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.3
-
4
-
-
84866641899
-
Boosting bottom-up and top-down visual features for saliency estimation
-
A. Borji. Boosting bottom-up and top-down visual features for saliency estimation. In CVPR, 2012.
-
(2012)
CVPR
-
-
Borji, A.1
-
5
-
-
84864039864
-
Saliency based on information maximization
-
N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS 18, pages 155-162. 2006.
-
(2006)
NIPS
, vol.18
, pp. 155-162
-
-
Bruce, N.1
Tsotsos, J.2
-
6
-
-
84878384522
-
Visual saliency estimation by non-linearly integrating features using region covariances
-
E. Erdem and A. Erdem. Visual saliency estimation by non-linearly integrating features using region covariances. Journal of vision, 13(4), 2013.
-
(2013)
Journal of Vision
, vol.13
, Issue.4
-
-
Erdem, E.1
Erdem, A.2
-
7
-
-
50649108122
-
Bottom-up saliency is a discriminant process
-
D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In ICCV, pages 1-6, 2007.
-
(2007)
ICCV
, pp. 1-6
-
-
Gao, D.1
Vasconcelos, N.2
-
8
-
-
70549106590
-
Decorrelation and distinctiveness provide with human-like saliency
-
A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil. Decorrelation and distinctiveness provide with human-like saliency. In Advanced Concepts for Intelligent Vision Systems, pages 343-354, 2009.
-
(2009)
Advanced Concepts for Intelligent Vision Systems
, pp. 343-354
-
-
Garcia-Diaz, A.1
Fdez-Vidal, X.R.2
Pardo, X.M.3
Dosil, R.4
-
9
-
-
84865331032
-
Context-aware saliency detection
-
S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. PAMI, 34(10):1915-1926, 2012.
-
(2012)
PAMI
, vol.34
, Issue.10
, pp. 1915-1926
-
-
Goferman, S.1
Zelnik-Manor, L.2
Tal, A.3
-
10
-
-
84864037603
-
Graph-based visual saliency
-
J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS 19, pages 545-552, 2007.
-
(2007)
NIPS
, vol.19
, pp. 545-552
-
-
Harel, J.1
Koch, C.2
Perona, P.3
-
11
-
-
81855172211
-
Image signature: Highlighting sparse salient regions
-
X. Hou, J. Harel, and C. Koch. Image signature: Highlighting sparse salient regions. PAMI, 34(1), 2012.
-
(2012)
PAMI
, vol.34
, Issue.1
-
-
Hou, X.1
Harel, J.2
Koch, C.3
-
12
-
-
35148814949
-
Saliency detection: A spectral residual approach
-
X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, pages 1-8, 2007.
-
(2007)
CVPR
, pp. 1-8
-
-
Hou, X.1
Zhang, L.2
-
13
-
-
70449568029
-
Dynamic visual attention: Searching for coding length increments
-
X. Hou and L. Zhang. Dynamic visual attention: Searching for coding length increments. In NIPS, 2008.
-
(2008)
NIPS
-
-
Hou, X.1
Zhang, L.2
-
14
-
-
0032204063
-
A model of saliency-based visual attention for rapid scene analysis
-
L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE PAMI, 20(11):1254-1259, 1998.
-
(1998)
IEEE PAMI
, vol.20
, Issue.11
, pp. 1254-1259
-
-
Itti, L.1
Koch, C.2
Niebur, E.3
-
15
-
-
85013907532
-
-
Elsevier, San Diego, CA
-
L. Itti, G. Rees, and J. K. Tsotsos, editors. Neurobiology of Attention. Elsevier, San Diego, CA, 2005.
-
(2005)
Neurobiology of Attention
-
-
Itti, L.1
Rees, G.2
Tsotsos, J.K.3
-
18
-
-
77953205576
-
Learning to predict where humans look
-
T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to predict where humans look. In ICCV, pages 2106-2113, 2009.
-
(2009)
ICCV
, pp. 2106-2113
-
-
Judd, T.1
Ehinger, K.2
Durand, F.3
Torralba, A.4
-
19
-
-
84864044921
-
A nonparametric approach to bottom-up visual saliency
-
W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz. A Nonparametric Approach to Bottom-Up Visual Saliency. In NIPS, pages 689-696, 2007.
-
(2007)
NIPS
, pp. 689-696
-
-
Kienzle, W.1
Wichmann, F.A.2
Schölkopf, B.3
Franz, M.O.4
-
20
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS 25, pages 1106-1114, 2012.
-
(2012)
NIPS
, vol.25
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
22
-
-
84866723453
-
Learning attention map from images
-
Y. Lu, W. Zhang, C. Jin, and S. Xue. Learning attention map from images. In CVPR, pages 1067-1074, 2012.
-
(2012)
CVPR
, pp. 1067-1074
-
-
Lu, Y.1
Zhang, W.2
Jin, C.3
Xue, S.4
-
23
-
-
20544446875
-
Components of bottom-up gaze allocation in natural images
-
R. J. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images. Vision research, 45(18):2397-2416, 2005.
-
(2005)
Vision Research
, vol.45
, Issue.18
, pp. 2397-2416
-
-
Peters, R.J.1
Iyer, A.2
Itti, L.3
Koch, C.4
-
24
-
-
79958697382
-
Beyond simple features: A large-scale feature search approach to unconstrained face recognition
-
N. Pinto and D. D. Cox. Beyond Simple Features: A Large-Scale Feature Search Approach to Unconstrained Face Recognition. IEEE Automated Face and Gesture Recognition, 2011.
-
(2011)
IEEE Automated Face and Gesture Recognition
-
-
Pinto, N.1
Cox, D.D.2
-
25
-
-
73449129720
-
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
-
N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol, 2009.
-
(2009)
PLoS Comput Biol
-
-
Pinto, N.1
Doukhan, D.2
Dicarlo, J.J.3
Cox, D.D.4
-
26
-
-
78149289949
-
An eye fixation database for saliency detection in images
-
S. Ramanathan, H. Katti, N. Sebe, M. Kankanhalli, and T.-S. Chua. An eye fixation database for saliency detection in images. In ECCV, pages 30-43, 2010.
-
(2010)
ECCV
, pp. 30-43
-
-
Ramanathan, S.1
Katti, H.2
Sebe, N.3
Kankanhalli, M.4
Chua, T.-S.5
-
28
-
-
84867891493
-
Quaternion-based spectral saliency detection for eye fixation prediction
-
B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction. In ECCV, pages 116-129, 2012.
-
(2012)
ECCV
, pp. 116-129
-
-
Schauerte, B.1
Stiefelhagen, R.2
-
30
-
-
79957511932
-
Fast and efficient saliency detection using sparse sampling and kernel density estimation
-
H. R. Tavakoli, E. Rahtu, and J. Heikkilä. Fast and efficient saliency detection using sparse sampling and kernel density estimation. In Image Analysis, pages 666-675. 2011.
-
(2011)
Image Analysis
, pp. 666-675
-
-
Tavakoli, H.R.1
Rahtu, E.2
Heikkilä, J.3
-
31
-
-
0018878142
-
A feature-integration theory of attention
-
A. M. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive psychology, 12(1):97-136, 1980.
-
(1980)
Cognitive Psychology
, vol.12
, Issue.1
, pp. 97-136
-
-
Treisman, A.M.1
Gelade, G.2
-
32
-
-
67650302087
-
Quantifying center bias of observers in free viewing of dynamic natural scenes
-
P. Tseng, R. Carmi, I. Cameron, D. Munoz, and L. Itti. Quantifying center bias of observers in free viewing of dynamic natural scenes. Journal of Vision, 9(7), 2009.
-
(2009)
Journal of Vision
, vol.9
, Issue.7
-
-
Tseng, P.1
Carmi, R.2
Cameron, I.3
Munoz, D.4
Itti, L.5
-
33
-
-
58149506125
-
SUN: A Bayesian framework for saliency using natural statistics
-
L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7):1-20, 12 2008.
-
(2008)
Journal of Vision
, vol.8
, Issue.7
, pp. 1-20
-
-
Zhang, L.1
Tong, M.H.2
Marks, T.K.3
Shan, H.4
Cottrell, G.W.5
-
34
-
-
79957836414
-
Learning a saliency map using fixated locations in natural scenes
-
Q. Zhao and C. Koch. Learning a saliency map using fixated locations in natural scenes. Journal of Vision, 11(3), 2011.
-
(2011)
Journal of Vision
, vol.11
, Issue.3
-
-
Zhao, Q.1
Koch, C.2
|