메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2798-2805

Large-scale optimization of hierarchical features for saliency prediction in natural images

Author keywords

deep learning; hyperparameter optimization; saliency

Indexed keywords

BENCHMARKING; BIOMIMETICS; DEEP LEARNING; FORECASTING; PATTERN RECOGNITION;

EID: 84911369162     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.358     Document Type: Conference Paper
Times cited : (422)

References (34)
  • 2
  • 3
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In ICML, 2013.
    • (2013) ICML
    • Bergstra, J.1    Yamins, D.2    Cox, D.3
  • 4
    • 84866641899 scopus 로고    scopus 로고
    • Boosting bottom-up and top-down visual features for saliency estimation
    • A. Borji. Boosting bottom-up and top-down visual features for saliency estimation. In CVPR, 2012.
    • (2012) CVPR
    • Borji, A.1
  • 5
    • 84864039864 scopus 로고    scopus 로고
    • Saliency based on information maximization
    • N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS 18, pages 155-162. 2006.
    • (2006) NIPS , vol.18 , pp. 155-162
    • Bruce, N.1    Tsotsos, J.2
  • 6
    • 84878384522 scopus 로고    scopus 로고
    • Visual saliency estimation by non-linearly integrating features using region covariances
    • E. Erdem and A. Erdem. Visual saliency estimation by non-linearly integrating features using region covariances. Journal of vision, 13(4), 2013.
    • (2013) Journal of Vision , vol.13 , Issue.4
    • Erdem, E.1    Erdem, A.2
  • 7
    • 50649108122 scopus 로고    scopus 로고
    • Bottom-up saliency is a discriminant process
    • D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In ICCV, pages 1-6, 2007.
    • (2007) ICCV , pp. 1-6
    • Gao, D.1    Vasconcelos, N.2
  • 9
    • 84865331032 scopus 로고    scopus 로고
    • Context-aware saliency detection
    • S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. PAMI, 34(10):1915-1926, 2012.
    • (2012) PAMI , vol.34 , Issue.10 , pp. 1915-1926
    • Goferman, S.1    Zelnik-Manor, L.2    Tal, A.3
  • 10
    • 84864037603 scopus 로고    scopus 로고
    • Graph-based visual saliency
    • J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS 19, pages 545-552, 2007.
    • (2007) NIPS , vol.19 , pp. 545-552
    • Harel, J.1    Koch, C.2    Perona, P.3
  • 11
    • 81855172211 scopus 로고    scopus 로고
    • Image signature: Highlighting sparse salient regions
    • X. Hou, J. Harel, and C. Koch. Image signature: Highlighting sparse salient regions. PAMI, 34(1), 2012.
    • (2012) PAMI , vol.34 , Issue.1
    • Hou, X.1    Harel, J.2    Koch, C.3
  • 12
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, pages 1-8, 2007.
    • (2007) CVPR , pp. 1-8
    • Hou, X.1    Zhang, L.2
  • 13
    • 70449568029 scopus 로고    scopus 로고
    • Dynamic visual attention: Searching for coding length increments
    • X. Hou and L. Zhang. Dynamic visual attention: Searching for coding length increments. In NIPS, 2008.
    • (2008) NIPS
    • Hou, X.1    Zhang, L.2
  • 14
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE PAMI, 20(11):1254-1259, 1998.
    • (1998) IEEE PAMI , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 18
    • 77953205576 scopus 로고    scopus 로고
    • Learning to predict where humans look
    • T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to predict where humans look. In ICCV, pages 2106-2113, 2009.
    • (2009) ICCV , pp. 2106-2113
    • Judd, T.1    Ehinger, K.2    Durand, F.3    Torralba, A.4
  • 19
    • 84864044921 scopus 로고    scopus 로고
    • A nonparametric approach to bottom-up visual saliency
    • W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz. A Nonparametric Approach to Bottom-Up Visual Saliency. In NIPS, pages 689-696, 2007.
    • (2007) NIPS , pp. 689-696
    • Kienzle, W.1    Wichmann, F.A.2    Schölkopf, B.3    Franz, M.O.4
  • 20
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS 25, pages 1106-1114, 2012.
    • (2012) NIPS , vol.25 , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 22
    • 84866723453 scopus 로고    scopus 로고
    • Learning attention map from images
    • Y. Lu, W. Zhang, C. Jin, and S. Xue. Learning attention map from images. In CVPR, pages 1067-1074, 2012.
    • (2012) CVPR , pp. 1067-1074
    • Lu, Y.1    Zhang, W.2    Jin, C.3    Xue, S.4
  • 23
    • 20544446875 scopus 로고    scopus 로고
    • Components of bottom-up gaze allocation in natural images
    • R. J. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images. Vision research, 45(18):2397-2416, 2005.
    • (2005) Vision Research , vol.45 , Issue.18 , pp. 2397-2416
    • Peters, R.J.1    Iyer, A.2    Itti, L.3    Koch, C.4
  • 24
    • 79958697382 scopus 로고    scopus 로고
    • Beyond simple features: A large-scale feature search approach to unconstrained face recognition
    • N. Pinto and D. D. Cox. Beyond Simple Features: A Large-Scale Feature Search Approach to Unconstrained Face Recognition. IEEE Automated Face and Gesture Recognition, 2011.
    • (2011) IEEE Automated Face and Gesture Recognition
    • Pinto, N.1    Cox, D.D.2
  • 25
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol, 2009.
    • (2009) PLoS Comput Biol
    • Pinto, N.1    Doukhan, D.2    Dicarlo, J.J.3    Cox, D.D.4
  • 26
    • 78149289949 scopus 로고    scopus 로고
    • An eye fixation database for saliency detection in images
    • S. Ramanathan, H. Katti, N. Sebe, M. Kankanhalli, and T.-S. Chua. An eye fixation database for saliency detection in images. In ECCV, pages 30-43, 2010.
    • (2010) ECCV , pp. 30-43
    • Ramanathan, S.1    Katti, H.2    Sebe, N.3    Kankanhalli, M.4    Chua, T.-S.5
  • 28
    • 84867891493 scopus 로고    scopus 로고
    • Quaternion-based spectral saliency detection for eye fixation prediction
    • B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction. In ECCV, pages 116-129, 2012.
    • (2012) ECCV , pp. 116-129
    • Schauerte, B.1    Stiefelhagen, R.2
  • 30
    • 79957511932 scopus 로고    scopus 로고
    • Fast and efficient saliency detection using sparse sampling and kernel density estimation
    • H. R. Tavakoli, E. Rahtu, and J. Heikkilä. Fast and efficient saliency detection using sparse sampling and kernel density estimation. In Image Analysis, pages 666-675. 2011.
    • (2011) Image Analysis , pp. 666-675
    • Tavakoli, H.R.1    Rahtu, E.2    Heikkilä, J.3
  • 31
    • 0018878142 scopus 로고
    • A feature-integration theory of attention
    • A. M. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive psychology, 12(1):97-136, 1980.
    • (1980) Cognitive Psychology , vol.12 , Issue.1 , pp. 97-136
    • Treisman, A.M.1    Gelade, G.2
  • 32
    • 67650302087 scopus 로고    scopus 로고
    • Quantifying center bias of observers in free viewing of dynamic natural scenes
    • P. Tseng, R. Carmi, I. Cameron, D. Munoz, and L. Itti. Quantifying center bias of observers in free viewing of dynamic natural scenes. Journal of Vision, 9(7), 2009.
    • (2009) Journal of Vision , vol.9 , Issue.7
    • Tseng, P.1    Carmi, R.2    Cameron, I.3    Munoz, D.4    Itti, L.5
  • 33
    • 58149506125 scopus 로고    scopus 로고
    • SUN: A Bayesian framework for saliency using natural statistics
    • L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7):1-20, 12 2008.
    • (2008) Journal of Vision , vol.8 , Issue.7 , pp. 1-20
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 34
    • 79957836414 scopus 로고    scopus 로고
    • Learning a saliency map using fixated locations in natural scenes
    • Q. Zhao and C. Koch. Learning a saliency map using fixated locations in natural scenes. Journal of Vision, 11(3), 2011.
    • (2011) Journal of Vision , vol.11 , Issue.3
    • Zhao, Q.1    Koch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.