-
1
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5 (2): 157-166, 1994.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
4
-
-
84898420173
-
The devil is in the details: An evaluation of recent feature encoding methods
-
K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: An evaluation of recent feature encoding methods. In BMVC, 2011.
-
(2011)
BMVC
-
-
Chatfield, K.1
Lempitsky, V.2
Vedaldi, A.3
Zisserman, A.4
-
5
-
-
77951298115
-
The pascal visual object classes (VOC) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The Pascal Visual Object Classes (VOC) Challenge. IJCV, pages 303-338, 2010.
-
(2010)
IJCV
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
6
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
7
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
8
-
-
79951563340
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Glorot, X.1
Bengio, Y.2
-
9
-
-
84892421248
-
-
arXiv: 1302. 4389
-
I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. ArXiv: 1302. 4389, 2013.
-
(2013)
Maxout Networks
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
10
-
-
84959197642
-
Convolutional neural networks at constrained time cost
-
K. He and J. Sun. Convolutional neural networks at constrained time cost. In CVPR, 2015.
-
(2015)
CVPR
-
-
He, K.1
Sun, J.2
-
11
-
-
85009918748
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
-
(2015)
ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84867720412
-
-
arXiv: 1207. 0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing coadaptation of feature detectors. ArXiv: 1207. 0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Coadaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
16
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
17
-
-
78649317568
-
Product quantization for nearest neighbor search
-
H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. TPAMI, 33, 2011.
-
(2011)
TPAMI
, vol.33
-
-
Jegou, H.1
Douze, M.2
Schmid, C.3
-
18
-
-
84865584175
-
Aggregating local image descriptors into compact codes
-
H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid. Aggregating local image descriptors into compact codes. TPAMI, 2012.
-
(2012)
TPAMI
-
-
Jegou, H.1
Perronnin, F.2
Douze, M.3
Sanchez, J.4
Perez, P.5
Schmid, C.6
-
19
-
-
85009867858
-
-
arXiv: 1408. 5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. ArXiv: 1408. 5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
21
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
22
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1989.
-
(1989)
Neural Computation
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
23
-
-
0001857994
-
Efficient backprop
-
Springer
-
Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural Networks: Tricks of the Trade, pages 9-50. Springer, 1998.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 9-50
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
24
-
-
84943645147
-
-
arXiv: 1409. 5185
-
C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. ArXiv: 1409. 5185, 2014.
-
(2014)
Deeplysupervised Nets
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
26
-
-
85009931853
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV. 2014.
-
(2014)
ECCV.
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
27
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
28
-
-
84930634427
-
On the number of linear regions of deep neural networks
-
G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Montúfar, G.1
Pascanu, R.2
Cho, K.3
Bengio, Y.4
-
29
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.E.2
-
30
-
-
34948815101
-
Fisher kernels on visual vocabularies for image categorization
-
F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
-
(2007)
CVPR
-
-
Perronnin, F.1
Dance, C.2
-
31
-
-
84893414160
-
Deep learning made easier by linear transformations in perceptrons
-
T. Raiko, H. Valpola, and Y. LeCun. Deep learning made easier by linear transformations in perceptrons. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Raiko, T.1
Valpola, H.2
LeCun, Y.3
-
32
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
34
-
-
85083953559
-
Fitnets: Hints for thin deep nets
-
A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.
-
(2015)
ICLR
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
35
-
-
85009885014
-
-
arXiv: 1409. 0575
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. ArXiv: 1409. 0575, 2014.
-
(2014)
Imagenet Large Scale Visual Recognition Challenge
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
38
-
-
0038231917
-
Centering neural network gradient factors
-
Springer
-
N. N. Schraudolph. Centering neural network gradient factors. In Neural Networks: Tricks of the Trade, pages 207-226. Springer, 1998.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 207-226
-
-
Schraudolph, N.N.1
-
39
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-Cun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
Le-Cun, Y.6
-
40
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
43
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
44
-
-
0025448712
-
Fast surface interpolation using hierarchical basis functions
-
R. Szeliski. Fast surface interpolation using hierarchical basis functions. TPAMI, 1990.
-
(1990)
TPAMI
-
-
Szeliski, R.1
-
45
-
-
77953983762
-
Locally adapted hierarchical basis preconditioning
-
R. Szeliski. Locally adapted hierarchical basis preconditioning. In SIGGRAPH, 2006.
-
(2006)
SIGGRAPH
-
-
Szeliski, R.1
-
46
-
-
85083953220
-
Pushing stochastic gradient towards second-order methods-backpropagation learning with transformations in nonlinearities
-
T. Vatanen, T. Raiko, H. Valpola, and Y. LeCun. Pushing stochastic gradient towards second-order methods-backpropagation learning with transformations in nonlinearities. In Neural Information Processing, 2013.
-
(2013)
Neural Information Processing
-
-
Vatanen, T.1
Raiko, T.2
Valpola, H.3
LeCun, Y.4
-
49
-
-
84937902251
-
Visualizing and understanding convolutional neural networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
|