메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Fast and accurate deep network learning by exponential linear units (ELUs)

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ACTIVATION;

EID: 85083953568     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2083)

References (35)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S.-I. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 2
    • 84965180108 scopus 로고    scopus 로고
    • Rectified factor networks
    • Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds), Curran Associates, Inc
    • Clevert, D.-A., Unterthiner, T., Mayr, A., and Hochreiter, S. Rectified factor networks. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 28. Curran Associates, Inc., 2015.
    • (2015) Advances in Neural Information Processing Systems , vol.28
    • Clevert, D.-A.1    Unterthiner, T.2    Mayr, A.3    Hochreiter, S.4
  • 6
    • 84978059147 scopus 로고    scopus 로고
    • Fractional max-pooling
    • Graham, Benjamin. Fractional max-pooling. CoRR, abs/1412.6071, 2014. URL http://arxiv.org/abs/1412.6071.
    • (2014) CoRR
    • Graham, B.1
  • 7
    • 84994894307 scopus 로고    scopus 로고
    • Scaling up natural gradient by sparsely factorizing the inverse Fisher matrix
    • Proceedings of the 32nd International Conference on Machine Learning (ICML15)
    • Grosse, R. and Salakhudinov, R. Scaling up natural gradient by sparsely factorizing the inverse Fisher matrix. Journal of Machine Learning Research, 37:2304–2313, 2015. URL http://jmlr.org/proceedings/papers/v37/grosse15.pdf. Proceedings of the 32nd International Conference on Machine Learning (ICML15).
    • (2015) Journal of Machine Learning Research , vol.37 , pp. 2304-2313
    • Grosse, R.1    Salakhudinov, R.2
  • 10
    • 0033114102 scopus 로고    scopus 로고
    • Feature extraction through LOCOCODE
    • Hochreiter, S. and Schmidhuber, J. Feature extraction through LOCOCODE. Neural Computation, 11(3): 679–714, 1999.
    • (1999) Neural Computation , vol.11 , Issue.3 , pp. 679-714
    • Hochreiter, S.1    Schmidhuber, J.2
  • 12
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Proceedings of the 32nd International Conference on Machine Learning (ICML15)
    • Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Journal of Machine Learning Research, 37:448–456, 2015. URL http://jmlr.org/proceedings/papers/v37/ioffe15.pdf. Proceedings of the 32nd International Conference on Machine Learning (ICML15).
    • (2015) Journal of Machine Learning Research , vol.37 , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 13
    • 85021667706 scopus 로고    scopus 로고
    • PhD thesis, EECS Department, University of California, Berkeley, May
    • Jia, Yangqing. Learning Semantic Image Representations at a Large Scale. PhD thesis, EECS Department, University of California, Berkeley, May 2014. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html.
    • (2014) Learning Semantic Image Representations at A Large Scale
    • Jia, Y.1
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q. (eds), Curran Associates, Inc
    • Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., 2012.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 0000044667 scopus 로고
    • Eigenvalues of covariance matrices: Application to neural-network learning
    • LeCun, Y., Kanter, I., and Solla, S. A. Eigenvalues of covariance matrices: Application to neural-network learning. Physical Review Letters, 66(18):2396–2399, 1991.
    • (1991) Physical Review Letters , vol.66 , Issue.18 , pp. 2396-2399
    • LeCun, Y.1    Kanter, I.2    Solla, S.A.3
  • 19
    • 85162000799 scopus 로고    scopus 로고
    • Topmoumoute online natural gradient algorithm
    • Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T. (eds)
    • LeRoux, N., Manzagol, P.-A., and Bengio, Y. Topmoumoute online natural gradient algorithm. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T. (eds.), Advances in Neural Information Processing Systems 20 (NIPS), pp. 849–856, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 (NIPS) , pp. 849-856
    • LeRoux, N.1    Manzagol, P.-A.2    Bengio, Y.3
  • 20
    • 84908678178 scopus 로고    scopus 로고
    • Network in network
    • Lin, Min, Chen, Qiang, and Yan, Shuicheng. Network in network. CoRR, abs/1312.4400, 2013. URL http://arxiv.org/abs/1312.4400.
    • (2013) CoRR
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 23
    • 84987943069 scopus 로고    scopus 로고
    • DeepTox: Toxicity prediction using deep learning
    • Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci., 3(80), 2015. doi: 10.3389/fenvs.2015.00080. URL http://journal.frontiersin.org/article/10.3389/fenvs.2015.00080.
    • (2015) Front. Environ. Sci. , vol.3 , Issue.80
    • Mayr, A.1    Klambauer, G.2    Unterthiner, T.3    Hochreiter, S.4
  • 25
    • 85070998699 scopus 로고    scopus 로고
    • Riemannian metrics for neural networks I: Feedforward networks
    • Olivier, Y. Riemannian metrics for neural networks i: feedforward networks. CoRR, abs/1303.0818, 2013. URL http://arxiv.org/abs/1303.0818.
    • (2013) CoRR
    • Olivier, Y.1
  • 29
    • 0033561855 scopus 로고    scopus 로고
    • A fast, compact approximation of the exponential function
    • Schraudolph, Nicol N. A Fast, Compact Approximation of the Exponential Function. Neural Computation, 11: 853–862, 1999.
    • (1999) Neural Computation , vol.11 , pp. 853-862
    • Schraudolph, N.N.1
  • 30
    • 84962006941 scopus 로고    scopus 로고
    • Striving for simplicity: The all convolutional net
    • Springenberg, Jost Tobias, Dosovitskiy, Alexey, Brox, Thomas, and Riedmiller, Martin A. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014. URL http://arxiv.org/abs/1412.6806.
    • (2014) CoRR
    • Springenberg, J.T.1    Dosovitskiy, A.2    Brox, T.3    Riedmiller, M.A.4
  • 31
    • 84973388607 scopus 로고    scopus 로고
    • Training very deep networks
    • Srivastava, Rupesh Kumar, Greff, Klaus, and Schmidhuber, Jürgen. Training very deep networks. CoRR, abs/1507.06228, 2015. URL http://arxiv.org/abs/1507.06228.
    • (2015) CoRR
    • Srivastava, R.K.1    Greff, K.2    Schmidhuber, J.3
  • 32
    • 85070976738 scopus 로고    scopus 로고
    • Toxicity prediction using deep learning
    • Unterthiner, T., Mayr, A., Klambauer, G., and Hochreiter, S. Toxicity prediction using deep learning. CoRR, abs/1503.01445, 2015. URL http://arxiv.org/abs/1503.01445.
    • (2015) CoRR
    • Unterthiner, T.1    Mayr, A.2    Klambauer, G.3    Hochreiter, S.4
  • 33
    • 84867614640 scopus 로고    scopus 로고
    • Krylov subspace descent for deep learning
    • Vinyals, O. and Povey, D. Krylov subspace descent for deep learning. In AISTATS, 2012. URL http://arxiv.org/pdf/1111.4259v1. arXiv:1111.4259.
    • (2012) AISTATS
    • Vinyals, O.1    Povey, D.2
  • 34
    • 85013858782 scopus 로고    scopus 로고
    • Empirical evaluation of rectified activations in convolutional network
    • Xu, B., Wang, N., Chen, T., and Li, M. Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853, 2015. URL http://arxiv.org/abs/1505.00853.
    • (2015) CoRR
    • Xu, B.1    Wang, N.2    Chen, T.3    Li, M.4
  • 35
    • 0032533046 scopus 로고    scopus 로고
    • Complexity issues in natural gradient descent method for training multilayer perceptrons
    • Yang, H. H. and Amari, S.-I. Complexity issues in natural gradient descent method for training multilayer perceptrons. Neural Computation, 10(8), 1998.
    • (1998) Neural Computation , vol.10 , Issue.8
    • Yang, H.H.1    Amari, S.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.