메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 437-446

Deformable part models are convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; DEFORMATION; GRAPHIC METHODS; INFERENCE ENGINES; MARKOV PROCESSES; NEURAL NETWORKS; OBJECT RECOGNITION;

EID: 84959195179     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298641     Document Type: Conference Paper
Times cited : (352)

References (46)
  • 1
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 2
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature pooling in visual recognition. In ICML, 2010
    • (2010) ICML
    • Boureau, Y.-L.1    Ponce, J.2    LeCun, Y.3
  • 3
    • 84919741208 scopus 로고    scopus 로고
    • Bird species categorization using pose normalized deep convolutional nets
    • S. Branson, G. V. Horn, S. Belongie, and P. Perona. Bird species categorization using pose normalized deep convolutional nets. In BMVC, 2014
    • (2014) BMVC
    • Branson, S.1    Horn, G.V.2    Belongie, S.3    Perona, P.4
  • 4
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • D. E. Christian Szegedy, Alexander Toshev. Deep neural networks for object detection. In NIPS, 2013
    • (2013) NIPS
    • Christian Szegedy, D.E.1    Toshev, A.2
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 7
    • 84884933815 scopus 로고    scopus 로고
    • Exact acceleration of linear object detectors
    • C. Dubout and F. Fleuret. Exact acceleration of linear object detectors. In ECCV, 2012
    • (2012) ECCV
    • Dubout, C.1    Fleuret, F.2
  • 11
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 2005
    • (2005) IJCV
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 15
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 1980
    • (1980) Biological Cybernetics
    • Fukushima, K.1
  • 16
    • 84913561844 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • abs/1311. 2524
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/1311. 2524, 2013
    • (2013) CoRR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 17
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 21
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML, 2010
    • (2010) ICML
    • Gregor, K.1    LeCun, Y.2
  • 23
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 25
    • 84866666373 scopus 로고    scopus 로고
    • Beyond spatial pyramids: Receptive field learning for pooled image features
    • Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids: Receptive field learning for pooled image features. In CVPR, 2012
    • (2012) CVPR
    • Jia, Y.1    Huang, C.2    Darrell, T.3
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 29
    • 84887354170 scopus 로고    scopus 로고
    • Sketch tokens: A learned mid-level representation for contour and object detection
    • J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013
    • (2013) CVPR
    • Lim, J.J.1    Zitnick, C.L.2    Dollár, P.3
  • 31
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In ICCV, 2013
    • (2013) ICCV
    • Ouyang, W.1    Wang, X.2
  • 32
    • 84887351971 scopus 로고    scopus 로고
    • Histograms of sparse codes for object detection
    • X. Ren and D. Ramanan. Histograms of sparse codes for object detection. In CVPR, 2013
    • (2013) CVPR
    • Ren, X.1    Ramanan, D.2
  • 35
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. In ICLR, 2014
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 38
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS (to appear), 2014
    • (2014) NIPS (To Appear
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 42
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013
    • (2013) ICCV
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 43
    • 84911424781 scopus 로고    scopus 로고
    • Learning hierarchical poselets for human parsing
    • Y. Wang, D. Tran, and Z. Liao. Learning hierarchical poselets for human parsing. In CVPR. IEEE, 2011
    • (2011) CVPR. IEEE
    • Wang, Y.1    Tran, D.2    Liao, Z.3
  • 44
    • 84911420008 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures-of-parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures-of-parts. TPAMI, 2012
    • (2012) TPAMI
    • Yang, Y.1    Ramanan, D.2
  • 45
    • 84956617559 scopus 로고    scopus 로고
    • Partbased R-CNNs for fine-grained category detection
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased R-CNNs for fine-grained category detection. In ECCV, 2014
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.