메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3646-3653

Transformation pursuit for image classification

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTIONAL NEURAL NETWORKS; IMAGE CLASSIFICATION; ITERATIVE METHODS;

EID: 84911429110     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.466     Document Type: Conference Paper
Times cited : (93)

References (34)
  • 2
  • 4
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C. Bishop. Training with noise is equivalent to Tikhonov regularization. In Neural computation, 1995.
    • (1995) Neural Computation
    • Bishop, C.1
  • 7
    • 84867129067 scopus 로고    scopus 로고
    • Marginalized de-noising autoencoders for domain adaptation
    • M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized de-noising autoencoders for domain adaptation. In ICML, 2012.
    • (2012) ICML
    • Chen, M.1    Xu, Z.2    Weinberger, K.3    Sha, F.4
  • 9
    • 0033711807 scopus 로고    scopus 로고
    • Distortion-invariant recognition via jittered queries
    • D. DeCoste and M. Burl. Distortion-invariant recognition via jittered queries. In CVPR, 2000.
    • (2000) CVPR
    • Decoste, D.1    Burl, M.2
  • 13
    • 84875881757 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE TPAMI, 2011.
    • (2011) IEEE TPAMI
    • Jegou, H.1    Douze, M.2    Schmid, C.3
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 16
    • 57849102080 scopus 로고    scopus 로고
    • Training invariant support vector machines using selective sampling
    • MIT Press
    • G Loosli, S. Canu, and L. Bottou. Training invariant support vector machines using selective sampling. In Large Scale Kernel Machines. MIT Press, 2007.
    • (2007) Large Scale Kernel Machines
    • Loosli, G.1    Canu, S.2    Bottou, L.3
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 20
    • 77955996388 scopus 로고    scopus 로고
    • Learning appearance in virtual scenarios for pedestrian detection
    • J. Marín, D. Vázquez, D. Gerónimo, and A. López. Learning appearance in virtual scenarios for pedestrian detection. In CVPR, 2010.
    • (2010) CVPR
    • Marín, J.1    Vázquez, D.2    Gerónimo, D.3    López, A.4
  • 21
    • 0032203371 scopus 로고    scopus 로고
    • Incorporating prior information in machine learning by creating virtual examples
    • P. Niyogi, F. Girosi, and T. Poggio. Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 1998.
    • (1998) Proceedings of the IEEE
    • Niyogi, P.1    Girosi, F.2    Poggio, T.3
  • 23
    • 84898816666 scopus 로고    scopus 로고
    • Predicting an object location using a global image representation
    • J. A. Rodriguez and D. Larlus. Predicting an object location using a global image representation. In ICCV, 2013.
    • (2013) ICCV
    • Rodriguez, J.A.1    Larlus, D.2
  • 24
    • 80052885179 scopus 로고    scopus 로고
    • High-dimensional signature compression for large-scale image classification
    • J. Sánchez and F. Perronnin. High-dimensional signature compression for large-scale image classification. In CVPR, 2011.
    • (2011) CVPR
    • Sánchez, J.1    Perronnin, F.2
  • 27
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • P. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In ICDAR, 2003.
    • (2003) ICDAR
    • Simard, P.1    Steinkraus, D.2    Platt, J.C.3
  • 28
    • 84867120801 scopus 로고    scopus 로고
    • Learning invariant representations with local transformations
    • K. Sohn and H. Lee. Learning invariant representations with local transformations. ICML, 2012.
    • (2012) ICML
    • Sohn, K.1    Lee, H.2
  • 31
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 33
    • 84897550107 scopus 로고    scopus 로고
    • Reg-ularization of neural networks using dropconnect
    • L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Reg-ularization of neural networks using dropconnect. In ICML, 2013.
    • (2013) ICML
    • Wan, L.1    Zeiler, M.2    Zhang, S.3    Lecun, Y.4    Fergus, R.5
  • 34
    • 84905828241 scopus 로고    scopus 로고
    • Effective training of a neural network character classifier for word recognition
    • L. Yaeger, R. Lyon, and B. Webb. Effective training of a neural network character classifier for word recognition. In NIPS, 1996.
    • (1996) NIPS
    • Yaeger, L.1    Lyon, R.2    Webb, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.