메뉴 건너뛰기




Volumn 59, Issue , 2016, Pages 312-324

Multi-scale context for scene labeling via flexible segmentation graph

Author keywords

Classification; Feature extraction; Flexible segmentation graph; Multi scale context; Scene labeling; Semantic segmentation

Indexed keywords

CLASSIFICATION (OF INFORMATION); FEATURE EXTRACTION; HIERARCHICAL SYSTEMS; IMAGE PROCESSING; IMAGE SEGMENTATION; SEMANTICS;

EID: 84975686260     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.03.023     Document Type: Article
Times cited : (57)

References (61)
  • 1
    • 77956008428 scopus 로고    scopus 로고
    • Layered object detection for multi-class segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp
    • [1] Y. Yang, S. Hallman, D. Ramanan, C. Fowlkes, Layered object detection for multi-class segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3113–3120.
    • Yang, Y.1    Hallman, S.2    Ramanan, D.3    Fowlkes, C.4
  • 2
    • 84926429586 scopus 로고    scopus 로고
    • Discriminatively trained and-or graph models for object shape detection
    • [2] Lin, L., Wang, X., Yang, W., Lai, J., Discriminatively trained and-or graph models for object shape detection. IEEE Trans. Pattern Anal. Mach. Intell. 37:5 (2015), 959–972.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.5 , pp. 959-972
    • Lin, L.1    Wang, X.2    Yang, W.3    Lai, J.4
  • 4
    • 84933044434 scopus 로고    scopus 로고
    • Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence
    • [4] Wang, K., Lin, L., Lu, J., Li, C., Shi, K., Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans. Image Process. 24:10 (2015), 3019–3033.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.10 , pp. 3019-3033
    • Wang, K.1    Lin, L.2    Lu, J.3    Li, C.4    Shi, K.5
  • 5
    • 51949101047 scopus 로고    scopus 로고
    • Closing the loop in scene interpretation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp
    • [5] D. Hoiem, A. Efros, M. Hebert, Closing the loop in scene interpretation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
    • Hoiem, D.1    Efros, A.2    Hebert, M.3
  • 6
    • 84923877350 scopus 로고    scopus 로고
    • Adaptive scene category discovery with generative learning and compositional sampling
    • [6] Lin, L., Zhang, R., Duan, X., Adaptive scene category discovery with generative learning and compositional sampling. IEEE Trans. Circuits Syst. Video Technol. 25:2 (2015), 251–260.
    • (2015) IEEE Trans. Circuits Syst. Video Technol. , vol.25 , Issue.2 , pp. 251-260
    • Lin, L.1    Zhang, R.2    Duan, X.3
  • 8
    • 70450169911 scopus 로고    scopus 로고
    • Nonparametric scene parsing: label transfer via dense scene alignment, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp
    • [8] C. Liu, J. Yuen, A. Torralba, Nonparametric scene parsing: label transfer via dense scene alignment, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1972–1979.
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 10
    • 85027932133 scopus 로고    scopus 로고
    • Robust feature matching for remote sensing image registration via locally linear transforming
    • [10] Ma, J., Zhou, H., Zhao, J., Tian, J., Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53:12 (2015), 6469–6481.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.12 , pp. 6469-6481
    • Ma, J.1    Zhou, H.2    Zhao, J.3    Tian, J.4
  • 11
    • 85003781887 scopus 로고    scopus 로고
    • Non-rigid point set registration by preserving global and local structures
    • [11] Ma, J., Zhao, J., Yuille, A.L., Non-rigid point set registration by preserving global and local structures. IEEE Trans. Image Process. 25:1 (2016), 53–64.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.1 , pp. 53-64
    • Ma, J.1    Zhao, J.2    Yuille, A.L.3
  • 12
    • 84937133497 scopus 로고    scopus 로고
    • Integrating parametric and non-parametric models for scene labeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
    • [12] B. Shuai, G. Wang, Z. Zuo, B. Wang, L. Zhao, Integrating parametric and non-parametric models for scene labeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4249–4258.
    • Shuai, B.1    Wang, G.2    Zuo, Z.3    Wang, B.4    Zhao, L.5
  • 13
    • 84911389151 scopus 로고    scopus 로고
    • Scene labeling using beam search under mutex constraints, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp
    • [13] A. Roy, S. Todorovic, Scene labeling using beam search under mutex constraints, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1178–1185.
    • Roy, A.1    Todorovic, S.2
  • 14
    • 84959193198 scopus 로고    scopus 로고
    • Deep hierarchical parsing for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
    • [14] A. Sharma, O. Tuzel, D.W. Jacobs, Deep hierarchical parsing for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 530–538.
    • Sharma, A.1    Tuzel, O.2    Jacobs, D.W.3
  • 15
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
    • [15] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–8.
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 16
    • 84887381281 scopus 로고    scopus 로고
    • Composite statistical inference for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp
    • [16] F. Li, J. Carreira, G. Lebanon, C. Sminchisescu, Composite statistical inference for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 4249–4258.
    • Li, F.1    Carreira, J.2    Lebanon, G.3    Sminchisescu, C.4
  • 19
    • 84959218681 scopus 로고    scopus 로고
    • Learning to segment under various forms of weak supervision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
    • [19] J. Xu, A.G. Schwing, R. Urtasun, Learning to segment under various forms of weak supervision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3781–3790.
    • Xu, J.1    Schwing, A.G.2    Urtasun, R.3
  • 20
    • 84911444024 scopus 로고    scopus 로고
    • The role of context for object detection and semantic segmentation in the wild, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp
    • [20] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, A. Yuille, The role of context for object detection and semantic segmentation in the wild, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1–8.
    • Mottaghi, R.1    Chen, X.2    Liu, X.3    Cho, N.-G.4    Lee, S.-W.5    Fidler, S.6    Urtasun, R.7    Yuille, A.8
  • 22
    • 84911380286 scopus 로고    scopus 로고
    • Context driven scene parsing with attention to rare classes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp
    • [22] J. Yang, B. Price, S. Cohen, M.-H. Yang, Context driven scene parsing with attention to rare classes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3294–3301.
    • Yang, J.1    Price, B.2    Cohen, S.3    Yang, M.-H.4
  • 23
    • 84875836624 scopus 로고    scopus 로고
    • Learning dynamic hybrid Markov random field for image labeling
    • [23] Zhou, Q., Zhu, J., Liu, W., Learning dynamic hybrid Markov random field for image labeling. IEEE Trans. Image Process. 22:6 (2013), 2219–2232.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.6 , pp. 2219-2232
    • Zhou, Q.1    Zhu, J.2    Liu, W.3
  • 25
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • [25] Geman, S., Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6:6 (1984), 721–741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 26
    • 78149288414 scopus 로고    scopus 로고
    • Stacked hierarchical labeling, in: Proceedings of the Europe Conference on Computer Vision, 2010, pp
    • [26] D. Munoz, J.A. Bagnell, M. Hebert, Stacked hierarchical labeling, in: Proceedings of the Europe Conference on Computer Vision, 2010, pp. 57–70.
    • Munoz, D.1    Bagnell, J.A.2    Hebert, M.3
  • 28
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: a robust approach toward feature space analysis
    • [28] Comaniciu, D., Meer, P., Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24:5 (2002), 603–619.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 29
  • 30
    • 77953228080 scopus 로고    scopus 로고
    • Context by region ancestry, in: Proceedings of the IEEE Conference on Computer Vision, 2009, pp
    • [30] J.J. Lim, P. Arbeláez, C. Gu, J. Malik, Context by region ancestry, in: Proceedings of the IEEE Conference on Computer Vision, 2009, pp. 1978–1985.
    • Lim, J.J.1    Arbeláez, P.2    Gu, C.3    Malik, J.4
  • 31
    • 56749164584 scopus 로고    scopus 로고
    • Object recognition by integrating multiple image segmentations, in: Proceedings of the Europe Conference on Computer Vision, 2008, pp
    • [31] C. Pantofaru, C. Schmid, M. Hebert, Object recognition by integrating multiple image segmentations, in: Proceedings of the Europe Conference on Computer Vision, 2008, pp. 481–494.
    • Pantofaru, C.1    Schmid, C.2    Hebert, M.3
  • 32
    • 84863068312 scopus 로고    scopus 로고
    • Image labeling by multiple segmentation, in: Proceedings of the IEEE Conference on Image Processing, 2011, pp
    • [32] Q. Zhou, C. Yan, Y. Zhu, X. Bai, W. Liu, Image labeling by multiple segmentation, in: Proceedings of the IEEE Conference on Image Processing, 2011, pp. 3129–3132.
    • Zhou, Q.1    Yan, C.2    Zhu, Y.3    Bai, X.4    Liu, W.5
  • 33
    • 77956051102 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks and 3d brain image segmentation
    • [33] Tu, Z.W., Bai, X., Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32:10 (2010), 1744–1757.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.10 , pp. 1744-1757
    • Tu, Z.W.1    Bai, X.2
  • 34
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • [34] Kumar, S., Hebert, M., Discriminative random fields. Int. J. Comput. Vis. 68:2 (2006), 179–201.
    • (2006) Int. J. Comput. Vis. , vol.68 , Issue.2 , pp. 179-201
    • Kumar, S.1    Hebert, M.2
  • 35
    • 58149151266 scopus 로고    scopus 로고
    • TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • [35] Shotton, J., Winn, J.M., Rother, C., Criminisi, A., TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81:1 (2009), 2–23.
    • (2009) Int. J. Comput. Vis. , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.M.2    Rother, C.3    Criminisi, A.4
  • 36
    • 51949110976 scopus 로고    scopus 로고
    • Object categorization using co-occurrence, location and appearance, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp
    • [36] C. Galleguillos, A. Rabinovich, S. Belongie, Object categorization using co-occurrence, location and appearance, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
    • Galleguillos, C.1    Rabinovich, A.2    Belongie, S.3
  • 37
    • 52449123642 scopus 로고    scopus 로고
    • Multi-class segmentation with relative location prior
    • [37] Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D., Multi-class segmentation with relative location prior. Int. J. Comput. Vis. 80:3 (2008), 1239–1253.
    • (2008) Int. J. Comput. Vis. , vol.80 , Issue.3 , pp. 1239-1253
    • Gould, S.1    Rodgers, J.2    Cohen, D.3    Elidan, G.4    Koller, D.5
  • 41
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: joint object detection, scene classification and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp
    • [41] J. Yao, S. Fidler, R. Urtasun, Describing the scene as a whole: joint object detection, scene classification and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 702–709.
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 43
    • 85162448582 scopus 로고    scopus 로고
    • Pylon model for semantic segmentation, in: Proceedings of the Conference on Neural Information Processing Systems, 2011
    • [43] V. Lempitsky, A. Vedaldi, A. Zisserman, Pylon model for semantic segmentation, in: Proceedings of the Conference on Neural Information Processing Systems, 2011.
    • Lempitsky, V.1    Vedaldi, A.2    Zisserman, A.3
  • 44
    • 84860666470 scopus 로고    scopus 로고
    • Learning reconfigurable scene representation by tangram model, in: Proceedings of the IEEE Workshop on the Applications of Computer Vision, 2012, pp
    • [44] J. Zhu, T. Wu, J. Zhu, X. Yang, W. Zhang, Learning reconfigurable scene representation by tangram model, in: Proceedings of the IEEE Workshop on the Applications of Computer Vision, 2012, pp. 449–456.
    • Zhu, J.1    Wu, T.2    Zhu, J.3    Yang, X.4    Zhang, W.5
  • 46
    • 84986603336 scopus 로고    scopus 로고
    • Joint calibration for semantic segmentation, arXiv preprint
    • arXiv:1507.01581
    • [46] H. Caesar, J. Uijlings, V. Ferrari, Joint calibration for semantic segmentation, arXiv preprint arXiv:1507.01581.
    • Caesar, H.1    Uijlings, J.2    Ferrari, V.3
  • 47
    • 84931577575 scopus 로고    scopus 로고
    • CRF learning with CNN features for image segmentation
    • [47] Liu, F., Lin, G., Shen, C., CRF learning with CNN features for image segmentation. Pattern Recognit. 48:10 (2015), 2983–2992.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 2983-2992
    • Liu, F.1    Lin, G.2    Shen, C.3
  • 50
    • 0030383412 scopus 로고    scopus 로고
    • Geodesic saliency of watershed contours and hierarchical segmentation
    • [50] Najman, L., Schmitt, M., Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18:12 (1996), 1163–1173.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.12 , pp. 1163-1173
    • Najman, L.1    Schmitt, M.2
  • 52
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • [52] Friedman, J., Hastie, T., Tibshirani, R., Additive logistic regression: a statistical view of boosting. Ann. Stat. 28:2 (2000), 337–407.
    • (2000) Ann. Stat. , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 54
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: a comprehensive study
    • [54] Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C., Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73:2 (2007), 213–238.
    • (2007) Int. J. Comput. Vis. , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszałek, M.2    Lazebnik, S.3    Schmid, C.4
  • 55
    • 77956006912 scopus 로고    scopus 로고
    • Exploiting hierarchical context on a large database of object categories, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp
    • [55] M.J. Choi, J.J. Lim, A. Torralba, A.S. Willsky, Exploiting hierarchical context on a large database of object categories, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 129–136.
    • Choi, M.J.1    Lim, J.J.2    Torralba, A.3    Willsky, A.S.4
  • 56
    • 36548999696 scopus 로고    scopus 로고
    • The role of context in object recognition
    • [56] Oliva, A., Torralba, A., The role of context in object recognition. Trends Cogn. Sci. 11:12 (2007), 520–527.
    • (2007) Trends Cogn. Sci. , vol.11 , Issue.12 , pp. 520-527
    • Oliva, A.1    Torralba, A.2
  • 57
    • 38349066535 scopus 로고    scopus 로고
    • Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmarks, in: Proceedings of the Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2007
    • [57] B. Yao, X. Yang, S.C. Zhu, Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmarks, in: Proceedings of the Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2007.
    • Yao, B.1    Yang, X.2    Zhu, S.C.3
  • 59
    • 84897465786 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with gaussian edge potentials, in: Proceedings of the Conference on Neural Information Processing Systems, 2011, pp
    • [59] P. Krahenbuhl, V. Koltun, Efficient inference in fully connected CRFs with gaussian edge potentials, in: Proceedings of the Conference on Neural Information Processing Systems, 2011, pp. 109–117.
    • Krahenbuhl, P.1    Koltun, V.2
  • 60
    • 84964023332 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs, arXiv preprint
    • arXiv:1412.7062
    • [60] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic image segmentation with deep convolutional nets and fully connected CRFs, arXiv preprint arXiv:1412.7062.
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 61
    • 84973861983 scopus 로고    scopus 로고
    • Conditional random fields as recurrent neural networks, in: Proceedings of the IEEE Conference on Computer Vision, 2015, pp
    • [61] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P. H. S. Torr, Conditional random fields as recurrent neural networks, in: Proceedings of the IEEE Conference on Computer Vision, 2015, pp. 1529–1537.
    • Zheng, S.1    Jayasumana, S.2    Romera-Paredes, B.3    Vineet, V.4    Su, Z.5    Du, D.6    Huang, C.7    Torr, P.H.S.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.