-
1
-
-
77956008428
-
Layered object detection for multi-class segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp
-
[1] Y. Yang, S. Hallman, D. Ramanan, C. Fowlkes, Layered object detection for multi-class segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3113–3120.
-
-
-
Yang, Y.1
Hallman, S.2
Ramanan, D.3
Fowlkes, C.4
-
2
-
-
84926429586
-
Discriminatively trained and-or graph models for object shape detection
-
[2] Lin, L., Wang, X., Yang, W., Lai, J., Discriminatively trained and-or graph models for object shape detection. IEEE Trans. Pattern Anal. Mach. Intell. 37:5 (2015), 959–972.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.5
, pp. 959-972
-
-
Lin, L.1
Wang, X.2
Yang, W.3
Lai, J.4
-
3
-
-
84881160857
-
Selective search for object recognition
-
[3] Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W., Selective search for object recognition. Int. J. Comput. Vis. 104:2 (2013), 154–171.
-
(2013)
Int. J. Comput. Vis.
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.1
van de Sande, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
4
-
-
84933044434
-
Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence
-
[4] Wang, K., Lin, L., Lu, J., Li, C., Shi, K., Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans. Image Process. 24:10 (2015), 3019–3033.
-
(2015)
IEEE Trans. Image Process.
, vol.24
, Issue.10
, pp. 3019-3033
-
-
Wang, K.1
Lin, L.2
Lu, J.3
Li, C.4
Shi, K.5
-
5
-
-
51949101047
-
Closing the loop in scene interpretation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp
-
[5] D. Hoiem, A. Efros, M. Hebert, Closing the loop in scene interpretation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
-
-
-
Hoiem, D.1
Efros, A.2
Hebert, M.3
-
6
-
-
84923877350
-
Adaptive scene category discovery with generative learning and compositional sampling
-
[6] Lin, L., Zhang, R., Duan, X., Adaptive scene category discovery with generative learning and compositional sampling. IEEE Trans. Circuits Syst. Video Technol. 25:2 (2015), 251–260.
-
(2015)
IEEE Trans. Circuits Syst. Video Technol.
, vol.25
, Issue.2
, pp. 251-260
-
-
Lin, L.1
Zhang, R.2
Duan, X.3
-
7
-
-
84929516076
-
Ioda: an input/output deep architecture for image labeling
-
[7] Lerouge, J., Herault, R., Chatelain, C., Jardin, F., Modzelewski, R., Ioda: an input/output deep architecture for image labeling. Pattern Recognit. 48:9 (2015), 2847–2858.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.9
, pp. 2847-2858
-
-
Lerouge, J.1
Herault, R.2
Chatelain, C.3
Jardin, F.4
Modzelewski, R.5
-
8
-
-
70450169911
-
Nonparametric scene parsing: label transfer via dense scene alignment, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp
-
[8] C. Liu, J. Yuen, A. Torralba, Nonparametric scene parsing: label transfer via dense scene alignment, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1972–1979.
-
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
9
-
-
80054898486
-
Nonparametric scene parsing via label transfer
-
[9] Liu, C., Yuen, J., Torralba, A., Nonparametric scene parsing via label transfer. IEEE Trans. Pattern Anal. Mach. Intell. 33:12 (2011), 2368–2382.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.12
, pp. 2368-2382
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
10
-
-
85027932133
-
Robust feature matching for remote sensing image registration via locally linear transforming
-
[10] Ma, J., Zhou, H., Zhao, J., Tian, J., Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53:12 (2015), 6469–6481.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.12
, pp. 6469-6481
-
-
Ma, J.1
Zhou, H.2
Zhao, J.3
Tian, J.4
-
11
-
-
85003781887
-
Non-rigid point set registration by preserving global and local structures
-
[11] Ma, J., Zhao, J., Yuille, A.L., Non-rigid point set registration by preserving global and local structures. IEEE Trans. Image Process. 25:1 (2016), 53–64.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.1
, pp. 53-64
-
-
Ma, J.1
Zhao, J.2
Yuille, A.L.3
-
12
-
-
84937133497
-
Integrating parametric and non-parametric models for scene labeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
-
[12] B. Shuai, G. Wang, Z. Zuo, B. Wang, L. Zhao, Integrating parametric and non-parametric models for scene labeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4249–4258.
-
-
-
Shuai, B.1
Wang, G.2
Zuo, Z.3
Wang, B.4
Zhao, L.5
-
13
-
-
84911389151
-
Scene labeling using beam search under mutex constraints, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp
-
[13] A. Roy, S. Todorovic, Scene labeling using beam search under mutex constraints, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1178–1185.
-
-
-
Roy, A.1
Todorovic, S.2
-
14
-
-
84959193198
-
Deep hierarchical parsing for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
-
[14] A. Sharma, O. Tuzel, D.W. Jacobs, Deep hierarchical parsing for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 530–538.
-
-
-
Sharma, A.1
Tuzel, O.2
Jacobs, D.W.3
-
15
-
-
84959205572
-
Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
-
[15] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–8.
-
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
16
-
-
84887381281
-
Composite statistical inference for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp
-
[16] F. Li, J. Carreira, G. Lebanon, C. Sminchisescu, Composite statistical inference for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 4249–4258.
-
-
-
Li, F.1
Carreira, J.2
Lebanon, G.3
Sminchisescu, C.4
-
17
-
-
84887360062
-
>Weakly-supervised dual clustering for image semantic segmentation
-
[17] Y. Liu, J. Liu, Z. Li, J. Tang, H. Lu, Weakly-supervised dual clustering for image semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2075–2082.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2075-2082
-
-
Liu, Y.1
Liu, J.2
Li, Z.3
Tang, J.4
Lu, H.5
-
18
-
-
56549121936
-
Combined top-down/bottom-up segmentation
-
[18] Borenstein, E., Ullman, S., Combined top-down/bottom-up segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 30:12 (2008), 2109–2125.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.12
, pp. 2109-2125
-
-
Borenstein, E.1
Ullman, S.2
-
19
-
-
84959218681
-
Learning to segment under various forms of weak supervision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp
-
[19] J. Xu, A.G. Schwing, R. Urtasun, Learning to segment under various forms of weak supervision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3781–3790.
-
-
-
Xu, J.1
Schwing, A.G.2
Urtasun, R.3
-
20
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp
-
[20] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, A. Yuille, The role of context for object detection and semantic segmentation in the wild, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1–8.
-
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
Yuille, A.8
-
21
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
[21] Farabet, C., Couprie, C., Najman, L., LeCun, Y., Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1915–1929.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
22
-
-
84911380286
-
Context driven scene parsing with attention to rare classes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp
-
[22] J. Yang, B. Price, S. Cohen, M.-H. Yang, Context driven scene parsing with attention to rare classes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3294–3301.
-
-
-
Yang, J.1
Price, B.2
Cohen, S.3
Yang, M.-H.4
-
23
-
-
84875836624
-
Learning dynamic hybrid Markov random field for image labeling
-
[23] Zhou, Q., Zhu, J., Liu, W., Learning dynamic hybrid Markov random field for image labeling. IEEE Trans. Image Process. 22:6 (2013), 2219–2232.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, Issue.6
, pp. 2219-2232
-
-
Zhou, Q.1
Zhu, J.2
Liu, W.3
-
24
-
-
0036538619
-
Shape matching and object recognition using shape contexts
-
[24] Belongie, S., Malik, J., Puzicha, J., Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24:24 (2002), 509–522.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.24
, pp. 509-522
-
-
Belongie, S.1
Malik, J.2
Puzicha, J.3
-
25
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
[25] Geman, S., Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6:6 (1984), 721–741.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
26
-
-
78149288414
-
Stacked hierarchical labeling, in: Proceedings of the Europe Conference on Computer Vision, 2010, pp
-
[26] D. Munoz, J.A. Bagnell, M. Hebert, Stacked hierarchical labeling, in: Proceedings of the Europe Conference on Computer Vision, 2010, pp. 57–70.
-
-
-
Munoz, D.1
Bagnell, J.A.2
Hebert, M.3
-
27
-
-
84871806574
-
Tree-structured CRF models for interactive image labeling
-
[27] Mensink, T., Verbeek, J., Csurka, G., Tree-structured CRF models for interactive image labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35:2 (2013), 476–489.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.2
, pp. 476-489
-
-
Mensink, T.1
Verbeek, J.2
Csurka, G.3
-
28
-
-
0036565814
-
Mean shift: a robust approach toward feature space analysis
-
[28] Comaniciu, D., Meer, P., Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24:5 (2002), 603–619.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.5
, pp. 603-619
-
-
Comaniciu, D.1
Meer, P.2
-
29
-
-
9644254228
-
Efficient graph-based image segmentation
-
[29] Felzenszwalb, P.F., Huttenlocher, D.P., Efficient graph-based image segmentation. Int. J. Comput. Vis. 59:2 (2004), 167–181.
-
(2004)
Int. J. Comput. Vis.
, vol.59
, Issue.2
, pp. 167-181
-
-
Felzenszwalb, P.F.1
Huttenlocher, D.P.2
-
30
-
-
77953228080
-
Context by region ancestry, in: Proceedings of the IEEE Conference on Computer Vision, 2009, pp
-
[30] J.J. Lim, P. Arbeláez, C. Gu, J. Malik, Context by region ancestry, in: Proceedings of the IEEE Conference on Computer Vision, 2009, pp. 1978–1985.
-
-
-
Lim, J.J.1
Arbeláez, P.2
Gu, C.3
Malik, J.4
-
31
-
-
56749164584
-
Object recognition by integrating multiple image segmentations, in: Proceedings of the Europe Conference on Computer Vision, 2008, pp
-
[31] C. Pantofaru, C. Schmid, M. Hebert, Object recognition by integrating multiple image segmentations, in: Proceedings of the Europe Conference on Computer Vision, 2008, pp. 481–494.
-
-
-
Pantofaru, C.1
Schmid, C.2
Hebert, M.3
-
32
-
-
84863068312
-
Image labeling by multiple segmentation, in: Proceedings of the IEEE Conference on Image Processing, 2011, pp
-
[32] Q. Zhou, C. Yan, Y. Zhu, X. Bai, W. Liu, Image labeling by multiple segmentation, in: Proceedings of the IEEE Conference on Image Processing, 2011, pp. 3129–3132.
-
-
-
Zhou, Q.1
Yan, C.2
Zhu, Y.3
Bai, X.4
Liu, W.5
-
33
-
-
77956051102
-
Auto-context and its application to high-level vision tasks and 3d brain image segmentation
-
[33] Tu, Z.W., Bai, X., Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32:10 (2010), 1744–1757.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.10
, pp. 1744-1757
-
-
Tu, Z.W.1
Bai, X.2
-
34
-
-
33646590894
-
Discriminative random fields
-
[34] Kumar, S., Hebert, M., Discriminative random fields. Int. J. Comput. Vis. 68:2 (2006), 179–201.
-
(2006)
Int. J. Comput. Vis.
, vol.68
, Issue.2
, pp. 179-201
-
-
Kumar, S.1
Hebert, M.2
-
35
-
-
58149151266
-
TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
[35] Shotton, J., Winn, J.M., Rother, C., Criminisi, A., TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81:1 (2009), 2–23.
-
(2009)
Int. J. Comput. Vis.
, vol.81
, Issue.1
, pp. 2-23
-
-
Shotton, J.1
Winn, J.M.2
Rother, C.3
Criminisi, A.4
-
36
-
-
51949110976
-
Object categorization using co-occurrence, location and appearance, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp
-
[36] C. Galleguillos, A. Rabinovich, S. Belongie, Object categorization using co-occurrence, location and appearance, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
-
-
-
Galleguillos, C.1
Rabinovich, A.2
Belongie, S.3
-
37
-
-
52449123642
-
Multi-class segmentation with relative location prior
-
[37] Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D., Multi-class segmentation with relative location prior. Int. J. Comput. Vis. 80:3 (2008), 1239–1253.
-
(2008)
Int. J. Comput. Vis.
, vol.80
, Issue.3
, pp. 1239-1253
-
-
Gould, S.1
Rodgers, J.2
Cohen, D.3
Elidan, G.4
Koller, D.5
-
38
-
-
84887357627
-
Discriminative re-ranking of diverse segmentations
-
[38] P. Yadollahpour, D. Batra, G. Shakhnarovich, Discriminative re-ranking of diverse segmentations, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1923–1930.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1923-1930
-
-
Yadollahpour, P.1
Batra, D.2
Shakhnarovich, G.3
-
39
-
-
78149356342
-
What, where and how many? Combining object detectors and CRFs
-
[39] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, P. Torr, What, where and how many? Combining object detectors and CRFs, in: Proceedings of the Europe Conference on Computer Vision, 2010, pp. 424–437.
-
(2010)
Proceedings of the Europe Conference on Computer Vision
, pp. 424-437
-
-
Ladicky, L.1
Sturgess, P.2
Alahari, K.3
Russell, C.4
Torr, P.5
-
40
-
-
84858716911
-
Region-based segmentation and object detection
-
[40] S. Gould, T. Gao, D. Koller, Region-based segmentation and object detection, in: Proceedings of the Conference on Neural Information Processing Systems, 2009, pp. 655–663.
-
(2009)
Proceedings of the Conference on Neural Information Processing Systems
, pp. 655-663
-
-
Gould, S.1
Gao, T.2
Koller, D.3
-
41
-
-
84866687133
-
Describing the scene as a whole: joint object detection, scene classification and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp
-
[41] J. Yao, S. Fidler, R. Urtasun, Describing the scene as a whole: joint object detection, scene classification and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 702–709.
-
-
-
Yao, J.1
Fidler, S.2
Urtasun, R.3
-
42
-
-
84901834943
-
Associative hierarchical random fields
-
[42] Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S., Associative hierarchical random fields. IEEE Trans. Pattern Anal. Mach. Intell. 36:6 (2014), 1056–1077.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.6
, pp. 1056-1077
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.S.4
-
43
-
-
85162448582
-
Pylon model for semantic segmentation, in: Proceedings of the Conference on Neural Information Processing Systems, 2011
-
[43] V. Lempitsky, A. Vedaldi, A. Zisserman, Pylon model for semantic segmentation, in: Proceedings of the Conference on Neural Information Processing Systems, 2011.
-
-
-
Lempitsky, V.1
Vedaldi, A.2
Zisserman, A.3
-
44
-
-
84860666470
-
Learning reconfigurable scene representation by tangram model, in: Proceedings of the IEEE Workshop on the Applications of Computer Vision, 2012, pp
-
[44] J. Zhu, T. Wu, J. Zhu, X. Yang, W. Zhang, Learning reconfigurable scene representation by tangram model, in: Proceedings of the IEEE Workshop on the Applications of Computer Vision, 2012, pp. 449–456.
-
-
-
Zhu, J.1
Wu, T.2
Zhu, J.3
Yang, X.4
Zhang, W.5
-
45
-
-
84055217859
-
Recursive segmentation and recognition templates for image parsing
-
[45] Zhu, L., Chen, Y., Lin, Y., Lin, C., Yuille, A., Recursive segmentation and recognition templates for image parsing. IEEE Trans. Pattern Anal. Mach. Intell. 34:2 (2012), 359–371.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.2
, pp. 359-371
-
-
Zhu, L.1
Chen, Y.2
Lin, Y.3
Lin, C.4
Yuille, A.5
-
46
-
-
84986603336
-
Joint calibration for semantic segmentation, arXiv preprint
-
arXiv:1507.01581
-
[46] H. Caesar, J. Uijlings, V. Ferrari, Joint calibration for semantic segmentation, arXiv preprint arXiv:1507.01581.
-
-
-
Caesar, H.1
Uijlings, J.2
Ferrari, V.3
-
47
-
-
84931577575
-
CRF learning with CNN features for image segmentation
-
[47] Liu, F., Lin, G., Shen, C., CRF learning with CNN features for image segmentation. Pattern Recognit. 48:10 (2015), 2983–2992.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.10
, pp. 2983-2992
-
-
Liu, F.1
Lin, G.2
Shen, C.3
-
48
-
-
84961639809
-
Human–machine CRFs for identifying bottlenecks in scene understanding
-
[48] Mottaghi, R., Fidler, S., Yuille, A., Urtasun, R., Parikh, D., Human–machine CRFs for identifying bottlenecks in scene understanding. Trans. Pattern Anal. Mach. Intell. IEEE Trans. Pattern Anal. Mach. Intell. 38:1 (2016), 74–87.
-
(2016)
Trans. Pattern Anal. Mach. Intell. IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.1
, pp. 74-87
-
-
Mottaghi, R.1
Fidler, S.2
Yuille, A.3
Urtasun, R.4
Parikh, D.5
-
49
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
[49] Arbelaez, P., Maire, M., Fowlkes, C., Malik, J., Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33:5 (2011), 898–916.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
50
-
-
0030383412
-
Geodesic saliency of watershed contours and hierarchical segmentation
-
[50] Najman, L., Schmitt, M., Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18:12 (1996), 1163–1173.
-
(1996)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.18
, Issue.12
, pp. 1163-1173
-
-
Najman, L.1
Schmitt, M.2
-
51
-
-
0034244751
-
Normalized cuts and image segmentation
-
[51] Shi, J., Malik, J., Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22:8 (2000), 888–905.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
52
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
[52] Friedman, J., Hastie, T., Tibshirani, R., Additive logistic regression: a statistical view of boosting. Ann. Stat. 28:2 (2000), 337–407.
-
(2000)
Ann. Stat.
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
53
-
-
0041876117
-
Matching words and pictures
-
[53] Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D.M., Jordan, M.I., Matching words and pictures. J. Mach. Learn. Res. 3 (2003), 1107–1135.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1107-1135
-
-
Barnard, K.1
Duygulu, P.2
Forsyth, D.3
De Freitas, N.4
Blei, D.M.5
Jordan, M.I.6
-
54
-
-
33846580425
-
Local features and kernels for classification of texture and object categories: a comprehensive study
-
[54] Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C., Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73:2 (2007), 213–238.
-
(2007)
Int. J. Comput. Vis.
, vol.73
, Issue.2
, pp. 213-238
-
-
Zhang, J.1
Marszałek, M.2
Lazebnik, S.3
Schmid, C.4
-
55
-
-
77956006912
-
Exploiting hierarchical context on a large database of object categories, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp
-
[55] M.J. Choi, J.J. Lim, A. Torralba, A.S. Willsky, Exploiting hierarchical context on a large database of object categories, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 129–136.
-
-
-
Choi, M.J.1
Lim, J.J.2
Torralba, A.3
Willsky, A.S.4
-
56
-
-
36548999696
-
The role of context in object recognition
-
[56] Oliva, A., Torralba, A., The role of context in object recognition. Trends Cogn. Sci. 11:12 (2007), 520–527.
-
(2007)
Trends Cogn. Sci.
, vol.11
, Issue.12
, pp. 520-527
-
-
Oliva, A.1
Torralba, A.2
-
57
-
-
38349066535
-
Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmarks, in: Proceedings of the Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2007
-
[57] B. Yao, X. Yang, S.C. Zhu, Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmarks, in: Proceedings of the Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2007.
-
-
-
Yao, B.1
Yang, X.2
Zhu, S.C.3
-
58
-
-
77951298115
-
The pascal visual object classes (VOC) challenge
-
[58] Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A., The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88:2 (2010), 303–338.
-
(2010)
Int. J. Comput. Vis.
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
59
-
-
84897465786
-
Efficient inference in fully connected CRFs with gaussian edge potentials, in: Proceedings of the Conference on Neural Information Processing Systems, 2011, pp
-
[59] P. Krahenbuhl, V. Koltun, Efficient inference in fully connected CRFs with gaussian edge potentials, in: Proceedings of the Conference on Neural Information Processing Systems, 2011, pp. 109–117.
-
-
-
Krahenbuhl, P.1
Koltun, V.2
-
60
-
-
84964023332
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs, arXiv preprint
-
arXiv:1412.7062
-
[60] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic image segmentation with deep convolutional nets and fully connected CRFs, arXiv preprint arXiv:1412.7062.
-
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
61
-
-
84973861983
-
Conditional random fields as recurrent neural networks, in: Proceedings of the IEEE Conference on Computer Vision, 2015, pp
-
[61] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P. H. S. Torr, Conditional random fields as recurrent neural networks, in: Proceedings of the IEEE Conference on Computer Vision, 2015, pp. 1529–1537.
-
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.S.8
|