메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1422-1430

Unsupervised visual representation learning by context prediction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 84973916088     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.167     Document Type: Conference Paper
Times cited : (3179)

References (56)
  • 1
    • 77049086558 scopus 로고    scopus 로고
    • On seeing stuff: The perception of materials by humans and machines
    • 2
    • E. H. Adelson. On seeing stuff: The perception of materials by humans and machines. In Photonics West 2001-Electronic Imaging, 2001. 2
    • (2001) Photonics West 2001-Electronic Imaging
    • Adelson, E.H.1
  • 2
    • 84973389608 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • 5, 6
    • P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In ECCV. 2014. 5, 6
    • (2014) ECCV
    • Agrawal, P.1    Girshick, R.2    Malik, J.3
  • 3
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • 1
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 2005. 1
    • (2005) JMLR
    • Ando, R.K.1    Zhang, T.2
  • 6
    • 70450192888 scopus 로고    scopus 로고
    • Geometric min-hashing: Finding a (thick) needle in a haystack
    • 3
    • O. Chum, M. Perdoch, and J. Matas. Geometric min-hashing: Finding a (thick) needle in a haystack. In CVPR, 2009. 3
    • (2009) CVPR
    • Chum, O.1    Perdoch, M.2    Matas, J.3
  • 7
    • 50649105215 scopus 로고    scopus 로고
    • Total recall: Automatic query expansion with a generative feature model for object retrieval
    • 6
    • O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In ICCV, 2007. 6
    • (2007) ICCV
    • Chum, O.1    Philbin, J.2    Sivic, J.3    Isard, M.4    Zisserman, A.5
  • 8
    • 84898774288 scopus 로고    scopus 로고
    • Segmentation driven object detection with Fisher vectors
    • 6
    • R. G. Cinbis, J. Verbeek, and C. Schmid. Segmentation driven object detection with Fisher vectors. In ICCV, 2013. 6
    • (2013) ICCV
    • Cinbis, R.G.1    Verbeek, J.2    Schmid, C.3
  • 9
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • 1, 2
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, 2008. 1, 2
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 11
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • 3
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013. 3
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 12
    • 84959227156 scopus 로고    scopus 로고
    • Context as supervisory signal: Discovering objects with predictable context
    • 2, 7, 8
    • C. Doersch, A. Gupta, and A. A. Efros. Context as supervisory signal: Discovering objects with predictable context. In ECCV. 2014. 2, 7, 8
    • (2014) ECCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 16
    • 84887388528 scopus 로고    scopus 로고
    • Clustering by composition-unsupervised discovery of image categories
    • 3
    • A. Faktor and M. Irani. clustering by composition-unsupervised discovery of image categories. In ECCV. 2012. 3
    • (2012) ECCV
    • Faktor, A.1    Irani, M.2
  • 17
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • 6
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. PAMI, 2010. 6
    • (2010) PAMI
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 18
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • 3
    • P. Földiák. Learning invariance from transformation sequences. Neural Computation, 1991. 3
    • (1991) Neural Computation
    • Földiák, P.1
  • 19
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1, 5, 6
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 5, 6
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 20
    • 33845575890 scopus 로고    scopus 로고
    • Unsupervised learning of categories from sets of partially matching image features
    • 3, 6
    • K. Grauman and T. Darrell. Unsupervised learning of categories from sets of partially matching image features. In CVPR, 2006. 3, 6
    • (2006) CVPR
    • Grauman, K.1    Darrell, T.2
  • 21
    • 77955989565 scopus 로고    scopus 로고
    • Image webs: Computing and exploiting connectivity in image collections
    • 3
    • K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, and L. J. Guibas. Image webs: Computing and exploiting connectivity in image collections. In CVPR, 2010. 3
    • (2010) CVPR
    • Heath, K.1    Gelfand, N.2    Ovsjanikov, M.3    Aanjaneya, M.4    Guibas, L.J.5
  • 26
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • 3
    • M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013. 3
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 27
    • 51949105707 scopus 로고    scopus 로고
    • Unsupervised modeling of object categories using link analysis techniques
    • 3
    • G. Kim, C. Faloutsos, and M. Hebert. Unsupervised modeling of object categories using link analysis techniques. In CVPR, 2008. 3
    • (2008) CVPR
    • Kim, G.1    Faloutsos, C.2    Hebert, M.3
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 3
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 3
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 30
    • 84862524901 scopus 로고    scopus 로고
    • The neural autoregressive distribution estimator
    • 2
    • H. Larochelle and I. Murray. The neural autoregressive distribution estimator. In AISTATS, 2011. 2
    • (2011) AISTATS
    • Larochelle, H.1    Murray, I.2
  • 31
    • 84890478042 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • 2
    • Q. V. Le. Building high-level features using large scale unsupervised learning. In ICASSP, 2013. 2
    • (2013) ICASSP
    • Le, Q.V.1
  • 32
    • 85147175076 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • 2
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In NIPS, 2006. 2
    • (2006) NIPS
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 33
    • 68849114784 scopus 로고    scopus 로고
    • Foreground focus: Unsupervised learning from partially matching images
    • 3
    • Y. J. Lee and K. Grauman. Foreground focus: Unsupervised learning from partially matching images. IJCV, 2009. 3
    • (2009) IJCV
    • Lee, Y.J.1    Grauman, K.2
  • 34
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale internet images
    • 3
    • Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, 2013. 3
    • (2013) CVPR
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 36
    • 84858736606 scopus 로고    scopus 로고
    • Beyond categories: The visual memex model for reasoning about object relationships
    • 2
    • T. Malisiewicz and A. Efros. Beyond categories: The visual memex model for reasoning about object relationships. In NIPS, 2009. 2
    • (2009) NIPS
    • Malisiewicz, T.1    Efros, A.2
  • 37
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • 1, 2
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013. 1, 2
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 38
    • 80053344834 scopus 로고    scopus 로고
    • A discriminative language model with pseudo-negative samples
    • 1, 2
    • D. Okanohara and J. Tsujii. A discriminative language model with pseudo-negative samples. In ACL, 2007. 1, 2
    • (2007) ACL
    • Okanohara, D.1    Tsujii, J.2
  • 39
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • 2
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996. 2
    • (1996) Nature
    • Olshausen, B.A.1    Field, D.J.2
  • 40
    • 84860632234 scopus 로고    scopus 로고
    • From a set of shapes to object discovery
    • 3
    • N. Payet and S. Todorovic. From a set of shapes to object discovery. In ECCV. 2010. 3
    • (2010) ECCV
    • Payet, N.1    Todorovic, S.2
  • 41
    • 70349152349 scopus 로고    scopus 로고
    • World-scale mining of objects and events from community photo collections
    • 3, 6
    • T. Quack, B. Leibe, and L. Van Gool. World-scale mining of objects and events from community photo collections. In CIVR, 2008. 3, 6
    • (2008) CIVR
    • Quack, T.1    Leibe, B.2    Van Gool, L.3
  • 42
    • 84959250728 scopus 로고    scopus 로고
    • Dataset fingerprints: Exploring image collections through data mining
    • 3, 6
    • K. Rematas, B. Fernando, F. Dellaert, and T. Tuytelaars. Dataset fingerprints: Exploring image collections through data mining. In CVPR, 2015. 3, 6
    • (2015) CVPR
    • Rematas, K.1    Fernando, B.2    Dellaert, F.3    Tuytelaars, T.4
  • 43
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • 2
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML, 2014. 2
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 44
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • 2, 6
    • B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006. 2, 6
    • (2006) CVPR
    • Russell, B.C.1    Freeman, W.T.2    Efros, A.A.3    Sivic, J.4    Zisserman, A.5
  • 46
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 6
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, 2014. 6
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 47
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • 3, 6, 7
    • S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012. 3, 6, 7
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.A.3
  • 49
    • 84898806407 scopus 로고    scopus 로고
    • Learning discriminative part detectors for image classification and cosegmentation
    • 3
    • J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013. 3
    • (2013) ICCV
    • Sun, J.1    Ponce, J.2
  • 50
    • 84965111399 scopus 로고    scopus 로고
    • Generative image modeling using spatial lstms
    • 2
    • L. Theis and M. Bethge. Generative image modeling using spatial lstms. In NIPS, 2015. 2
    • (2015) NIPS
    • Theis, L.1    Bethge, M.2
  • 52
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • 6, 7
    • A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, 2011. 6, 7
    • (2011) CVPR
    • Torralba, A.1    Efros, A.A.2
  • 53
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • 2
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008. 2
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 54
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • 3
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015. 3
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 55
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • 6
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013. 6
    • (2013) ICCV
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 56
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis:unsupervised learning of invariances
    • 3
    • L. Wiskott and T. J. Sejnowski. Slow feature analysis:unsupervised learning of invariances. Neural Computation, 2002. 3
    • (2002) Neural Computation
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.