메뉴 건너뛰기




Volumn 12, Issue 10, 2000, Pages 2451-2471

Learning to forget: Continual prediction with LSTM

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; NONLINEAR SYSTEM; SHORT TERM MEMORY;

EID: 0034293152     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015015     Document Type: Article
Times cited : (4218)

References (22)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 0039222571 scopus 로고    scopus 로고
    • Language identification from prosody without explicit features
    • Cummins, F., Gers, F., & Schmidhuber, J. (1999). Language identification from prosody without explicit features. In Proceedings of EUROSPEECH'99 (Vol. 1, pp. 371-374).
    • (1999) Proceedings of EUROSPEECH'99 , vol.1 , pp. 371-374
    • Cummins, F.1    Gers, F.2    Schmidhuber, J.3
  • 4
    • 85037760217 scopus 로고
    • Stochastic approximation and neural network learning
    • M. A. Arbib (Ed.), Cambridge, MA: MIT Press
    • Darken, C. (1995). Stochastic approximation and neural network learning. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 941-944). Cambridge, MA: MIT Press.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 941-944
    • Darken, C.1
  • 5
    • 0024875962 scopus 로고
    • Adaptive neural oscillator using continuous-time backpropagation learning
    • Doya, K., & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-time backpropagation learning. Neural Networks, 2(5), 375-385.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 375-385
    • Doya, K.1    Yoshizawa, S.2
  • 6
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation learning algorithm
    • R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
    • Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing systems, 3 (pp. 190-196). San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 190-196
    • Fahlman, S.E.1
  • 7
    • 0040406981 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Lugano, Switzerland: IDSIA
    • Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with LSTM (Tech. Rep. No. IDSIA-01-99). Lugano, Switzerland: IDSIA.
    • (1999) Tech. Rep. No. IDSIA-01-99
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 8
    • 0003575034 scopus 로고
    • Diploma thesis, Technische Universität München
    • Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Technische Universität München. Available online at www7. informatik.tu-muenchen.de/~hochreit.
    • (1991) Untersuchungen Zu Dynamischen Neuronalen Netzen
    • Hochreiter, S.1
  • 11
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • Lin, T., Horne, B. G., Tiño, P., & Giles, C. L. (1996). Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6), 1329-1338.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tiño, P.3    Giles, C.L.4
  • 12
    • 0008554931 scopus 로고
    • A focused backpropagation algorithm for temporal pattern processing
    • Mozer, M. C. (1989). A focused backpropagation algorithm for temporal pattern processing. Complex Systems, 3, 349-381.
    • (1989) Complex Systems , vol.3 , pp. 349-381
    • Mozer, M.C.1
  • 13
    • 0029375851 scopus 로고
    • Gradient calculation for dynamic recurrent neural networks: A survey
    • Pearlmutter, B. A. (1995). Gradient calculation for dynamic recurrent neural networks: A survey. IEEE Transactions on Neural Networks, 6(5), 1212-1228.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 14
    • 0003838146 scopus 로고
    • The utility driven dynamic error propagation network.
    • Cambridge: Cambridge University Engineering Department
    • Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation network. (Tech. Rep. No. CUED/F-INFENG/TR.1). Cambridge: Cambridge University Engineering Department.
    • (1987) Tech. Rep. No. CUED/F-INFENG/TR.1
    • Robinson, A.J.1    Fallside, F.2
  • 15
    • 0001623105 scopus 로고
    • The neural bucket brigade: A local learning algorithm for dynamic feedforward and recurrent networks
    • Schmidhuber, J. (1989). The neural bucket brigade: A local learning algorithm for dynamic feedforward and recurrent networks. Connection Science, 1(4), 403-412.
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 403-412
    • Schmidhuber, J.1
  • 16
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation, 4(2), 243-248.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 243-248
    • Schmidhuber, J.1
  • 17
    • 0033561855 scopus 로고    scopus 로고
    • A fast, compact approximation of the exponential function
    • Schraudolph, N. (1999). A fast, compact approximation of the exponential function. Neural Computation, 11(4), 853-862.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 853-862
    • Schraudolph, N.1
  • 18
    • 0001274675 scopus 로고
    • Learning sequential structures with the real-time recurrent learning algorithm
    • Smith, A. W., & Zipser, D. (1989). Learning sequential structures with the real-time recurrent learning algorithm. International Journal of Neural Systems, 1(2), 125-131.
    • (1989) International Journal of Neural Systems , vol.1 , Issue.2 , pp. 125-131
    • Smith, A.W.1    Zipser, D.2
  • 19
    • 84935413199 scopus 로고
    • Modular construction of time-delay neural networks for speech recognition
    • Waibel, A. (1989). Modular construction of time-delay neural networks for speech recognition. Neural Computation, 1(1), 39-46.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 39-46
    • Waibel, A.1
  • 20
    • 0000903748 scopus 로고
    • Generalisation of backpropagation with application to a recurrent gas market model
    • Werbos, P. J. (1988). Generalisation of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 339-356.
    • (1988) Neural Networks , vol.1 , pp. 339-356
    • Werbos, P.J.1
  • 21
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation, 2(4), 490-501.
    • (1990) Neural Computation , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 22
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Y. Chauvin & D. E. Rumelhart (Eds.), Hillsdale, NJ: Erlbaum
    • Williams, R. J., & Zipser, D. (1992). Gradient-based learning algorithms for recurrent networks and their computational complexity. In Y. Chauvin & D. E. Rumelhart (Eds.), Back-propagation: Theory, architectures and applications. Hillsdale, NJ: Erlbaum.
    • (1992) Back-propagation: Theory, Architectures and Applications
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.