메뉴 건너뛰기




Volumn 2, Issue , 2016, Pages 939-957

Augmenting supervised neural networks with unsupervised objectives for large-scale image classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTER VISION; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; UNSUPERVISED LEARNING;

EID: 84998996019     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (56)

References (48)
  • 1
  • 4
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • Doersch, C, Gupta, A., and Efros, A. A. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
    • (2015) ICCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 5
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • Dong, D. and McAvoy, T. J. Nonlinear principal component analysis based on principal curves and neural networks. Computers & Chemical Engineering, 20(1):65-78, 1996.
    • (1996) Computers & Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 6
    • 84986250533 scopus 로고    scopus 로고
    • Inverting visual representations with convolutional networks
    • Dosovitskiy, A. and Brox, T. Inverting visual representations with convolutional networks. CVPR, 2016.
    • (2016) CVPR
    • Dosovitskiy, A.1    Brox, T.2
  • 9
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 12
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted boltzmann machines
    • Larochelle, H. and Bengio, Y. Classification using discriminative restricted boltzmann machines. In ICML, 2008.
    • (2008) ICML
    • Larochelle, H.1    Bengio, Y.2
  • 17
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y, Bengio, Y, and Hinton, G. Deep learning. Nature, 521(7553):436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 19
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 20
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • Mahendran, A. and Vedaldi, A. Understanding deep image representations by inverting them. In CVPR, 2015.
    • (2015) CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 22
    • 84965096524 scopus 로고    scopus 로고
    • Winner-take-all autoencoders
    • Makhzani, A. and Frey, B. J. Winner-take-all autoencoders. In NIPS, 2015.
    • (2015) NIPS
    • Makhzani, A.1    Frey, B.J.2
  • 25
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • Ranzato, M. A. and Szummer, M. Semi-supervised learning of compact document representations with deep networks. In ICML, 2008.
    • (2008) ICML
    • Ranzato, M.A.1    Szummer, M.2
  • 26
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Ranzato, M. A., Huang, F. J., Boureau, Y.-L., and LeCun, Y Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Ranzato, M.A.1    Huang, F.J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 29
    • 7244238594 scopus 로고    scopus 로고
    • Nonlinear PCA: A new hierarchical approach
    • Scholz, M. and Vigário, R. Nonlinear pca: a new hierarchical approach. In ESANN, 2002.
    • (2002) ESANN
    • Scholz, M.1    Vigário, R.2
  • 30
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 31
    • 84897565124 scopus 로고    scopus 로고
    • Learning and selecting features jointly with point-wise gated Boltzmann machines
    • Sohn, K., Zhou, G., Lee, C, and Lee, H. Learning and selecting features jointly with point-wise gated Boltzmann machines. In ICML, 2013.
    • (2013) ICML
    • Sohn, K.1    Zhou, G.2    Lee, C.3    Lee, H.4
  • 32
    • 84998645243 scopus 로고
    • Rule-injection hints as a means of improving network performance and learning time
    • Suddarth, S. and Kergosien, Y. Rule-injection hints as a means of improving network performance and learning time. Neural Networks, 412:120-129, 1990.
    • (1990) Neural Networks , vol.412 , pp. 120-129
    • Suddarth, S.1    Kergosien, Y.2
  • 37
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Vincent, R, Larochelle, H., Bengio, Y, and Manzagol, P-A. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, R.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 38
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • December
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y, and Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11:3371-3408, December 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 40
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • Wang, X. and Gupta, A. Unsupervised learning of visual representations using videos. In ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 41
    • 77955995785 scopus 로고    scopus 로고
    • Supervised translationinvariant sparse coding
    • Yang, J., Yu, K., and Huang, T. Supervised translationinvariant sparse coding. In CVPR, 2010.
    • (2010) CVPR
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 42
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 44
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • Zeiler, M., Taylor, G., and Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011.
    • (2011) ICCV
    • Zeiler, M.1    Taylor, G.2    Fergus, R.3
  • 46
    • 84986250533 scopus 로고    scopus 로고
    • Inverting visual representations with convolutional networks
    • Dosovitskiy, A. and Brox, T. Inverting visual representations with convolutional networks. CVPR, 2016.
    • (2016) CVPR
    • Dosovitskiy, A.1    Brox, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.