-
1
-
-
69349090197
-
Learning deep architectures for ai
-
January
-
Bengio, Y. Learning deep architectures for ai. Foundation and Trends in Machine Learning, 2(1):1-127, January 2009.
-
(2009)
Foundation and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
2
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y, Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training of deep networks. In NIPS, 2007.
-
(2007)
NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
3
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
4
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
Doersch, C, Gupta, A., and Efros, A. A. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
5
-
-
0043015539
-
Nonlinear principal component analysis based on principal curves and neural networks
-
Dong, D. and McAvoy, T. J. Nonlinear principal component analysis based on principal curves and neural networks. Computers & Chemical Engineering, 20(1):65-78, 1996.
-
(1996)
Computers & Chemical Engineering
, vol.20
, Issue.1
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
6
-
-
84986250533
-
Inverting visual representations with convolutional networks
-
Dosovitskiy, A. and Brox, T. Inverting visual representations with convolutional networks. CVPR, 2016.
-
(2016)
CVPR
-
-
Dosovitskiy, A.1
Brox, T.2
-
7
-
-
84961595279
-
Region-based convolutional networks for accurate object detection and segmentation
-
Girshick, R., Donahue, J., Darrell, T., and Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1):142-158, Jan 2016.
-
(2016)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.38
, Issue.1
, pp. 142-158
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
8
-
-
84898988737
-
Multi-prediction deep boltzmann machines
-
Goodfellow, I., Mirza, M., Courville, A., and Bengio, Y Multi-prediction deep boltzmann machines. In NIPS, 2013.
-
(2013)
NIPS
-
-
Goodfellow, I.1
Mirza, M.2
Courville, A.3
Bengio, Y.4
-
9
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
11
-
-
0041914606
-
Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
-
Hochreiter, S., Bengio, Y, Frasconi, P., and Schmidhuber, J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In A Field Guide to Dynamical Recurrent Networks. 2001.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
-
-
Hochreiter, S.1
Bengio, Y.2
Frasconi, P.3
Schmidhuber, J.4
-
12
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
13
-
-
84913555165
-
-
arXiv: 1408.5093
-
Jia, Y, Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for fast feature embedding. arXiv: 1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
56449110012
-
Classification using discriminative restricted boltzmann machines
-
Larochelle, H. and Bengio, Y. Classification using discriminative restricted boltzmann machines. In ICML, 2008.
-
(2008)
ICML
-
-
Larochelle, H.1
Bengio, Y.2
-
17
-
-
84930630277
-
Deep learning
-
LeCun, Y, Bengio, Y, and Hinton, G. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
18
-
-
85009928594
-
Deeply-supervised nets
-
Lee, C.-Y, Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. Deeply-supervised nets. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
19
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
20
-
-
84959213675
-
Understanding deep image representations by inverting them
-
Mahendran, A. and Vedaldi, A. Understanding deep image representations by inverting them. In CVPR, 2015.
-
(2015)
CVPR
-
-
Mahendran, A.1
Vedaldi, A.2
-
21
-
-
77953786041
-
Supervised dictionary learning
-
Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., and Bach, F. R. Supervised dictionary learning. In NIPS, 2009.
-
(2009)
NIPS
-
-
Mairal, J.1
Ponce, J.2
Sapiro, G.3
Zisserman, A.4
Bach, F.R.5
-
22
-
-
84965096524
-
Winner-take-all autoencoders
-
Makhzani, A. and Frey, B. J. Winner-take-all autoencoders. In NIPS, 2015.
-
(2015)
NIPS
-
-
Makhzani, A.1
Frey, B.J.2
-
23
-
-
79959353548
-
Stacked convolutional auto-encoders for hierarchical feature extraction
-
Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In international Conference on Artificial Neural Networks, 2011.
-
(2011)
International Conference on Artificial Neural Networks
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
Schmidhuber, J.4
-
24
-
-
84994446572
-
-
arXiv: 1506.02351
-
Pezeshki, M., Fan, L., Brakel, P., Courville, A., and Bengio, Y. Deconstructing the ladder network architecture. arXiv: 1506.02351, 2016.
-
(2016)
Deconstructing the Ladder Network Architecture
-
-
Pezeshki, M.1
Fan, L.2
Brakel, P.3
Courville, A.4
Bengio, Y.5
-
25
-
-
56449123056
-
Semi-supervised learning of compact document representations with deep networks
-
Ranzato, M. A. and Szummer, M. Semi-supervised learning of compact document representations with deep networks. In ICML, 2008.
-
(2008)
ICML
-
-
Ranzato, M.A.1
Szummer, M.2
-
26
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
Ranzato, M. A., Huang, F. J., Boureau, Y.-L., and LeCun, Y Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
-
(2007)
CVPR
-
-
Ranzato, M.A.1
Huang, F.J.2
Boureau, Y.-L.3
LeCun, Y.4
-
27
-
-
84965136229
-
Semi-supervised learning with ladder network
-
Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. Semi-supervised learning with ladder network. In NIPS, 2015.
-
(2015)
NIPS
-
-
Rasmus, A.1
Valpola, H.2
Honkala, M.3
Berglund, M.4
Raiko, T.5
-
29
-
-
7244238594
-
Nonlinear PCA: A new hierarchical approach
-
Scholz, M. and Vigário, R. Nonlinear pca: a new hierarchical approach. In ESANN, 2002.
-
(2002)
ESANN
-
-
Scholz, M.1
Vigário, R.2
-
30
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
31
-
-
84897565124
-
Learning and selecting features jointly with point-wise gated Boltzmann machines
-
Sohn, K., Zhou, G., Lee, C, and Lee, H. Learning and selecting features jointly with point-wise gated Boltzmann machines. In ICML, 2013.
-
(2013)
ICML
-
-
Sohn, K.1
Zhou, G.2
Lee, C.3
Lee, H.4
-
32
-
-
84998645243
-
Rule-injection hints as a means of improving network performance and learning time
-
Suddarth, S. and Kergosien, Y. Rule-injection hints as a means of improving network performance and learning time. Neural Networks, 412:120-129, 1990.
-
(1990)
Neural Networks
, vol.412
, pp. 120-129
-
-
Suddarth, S.1
Kergosien, Y.2
-
33
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C, Liu, W., Jia, Y, Sermanet, R, Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, R.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
34
-
-
84986296808
-
-
Szegedy, C, Vanhoucke, V, Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the inception architecture for computer vision. 2016.
-
(2016)
Rethinking the Inception Architecture for Computer Vision
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
35
-
-
54749092170
-
80 million tiny images: A large data set for nonparametric object and scene recognition
-
Nov.
-
Torralba, A., Fergus, R., and Freeman, W. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11):1958-1970, Nov. 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.11
, pp. 1958-1970
-
-
Torralba, A.1
Fergus, R.2
Freeman, W.3
-
37
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent, R, Larochelle, H., Bengio, Y, and Manzagol, P-A. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, R.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
38
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
December
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y, and Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11:3371-3408, December 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
39
-
-
84990051874
-
-
arXiv. l505.02496
-
Wang, L., Lee, C.-Y., Tu, Z., and Lazebnik, S. Training deeper convolutional networks with deep supervision. arXiv. l505.02496, 2015.
-
(2015)
Training Deeper Convolutional Networks with Deep Supervision
-
-
Wang, L.1
Lee, C.-Y.2
Tu, Z.3
Lazebnik, S.4
-
40
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
Wang, X. and Gupta, A. Unsupervised learning of visual representations using videos. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
41
-
-
77955995785
-
Supervised translationinvariant sparse coding
-
Yang, J., Yu, K., and Huang, T. Supervised translationinvariant sparse coding. In CVPR, 2010.
-
(2010)
CVPR
-
-
Yang, J.1
Yu, K.2
Huang, T.3
-
42
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
43
-
-
77956001004
-
Deconvolutional networks
-
Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. Deconvolutional networks. CVPR, 2010.
-
(2010)
CVPR
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
44
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
Zeiler, M., Taylor, G., and Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011.
-
(2011)
ICCV
-
-
Zeiler, M.1
Taylor, G.2
Fergus, R.3
-
45
-
-
84965095288
-
-
arXiv: 1506.02351
-
Zhao, J., Mathieu, M., Goroshin, R., and Lecun, Y. Stacked what-where auto-encoders. arXiv: 1506.02351, 2015.
-
(2015)
Stacked What-where auto-encoders
-
-
Zhao, J.1
Mathieu, M.2
Goroshin, R.3
Lecun, Y.4
-
46
-
-
84986250533
-
Inverting visual representations with convolutional networks
-
Dosovitskiy, A. and Brox, T. Inverting visual representations with convolutional networks. CVPR, 2016.
-
(2016)
CVPR
-
-
Dosovitskiy, A.1
Brox, T.2
-
47
-
-
84994446572
-
-
arXiv: 1506.02351
-
Pezeshki, M., Fan, L., Brakel, P., Courville, A., and Bengio, Y. Deconstructing the ladder network architecture. arXiv: 1506.02351, 2016.
-
(2016)
Deconstructing the Ladder Network Architecture
-
-
Pezeshki, M.1
Fan, L.2
Brakel, P.3
Courville, A.4
Bengio, Y.5
-
48
-
-
84965136229
-
Semi-supervised learning with ladder network
-
Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. Semi-supervised learning with ladder network. In NIPS, 2015.
-
(2015)
NIPS
-
-
Rasmus, A.1
Valpola, H.2
Honkala, M.3
Berglund, M.4
Raiko, T.5
|