-
2
-
-
84945900998
-
Best practices for convolutional neural networks applied to visual document analysis
-
P. Simard, D. Steinkraus, and J. Platt. Best practices for convolutional neural networks applied to visual document analysis. In ICDAR, 2003.
-
(2003)
ICDAR
-
-
Simard, P.1
Steinkraus, D.2
Platt, J.3
-
3
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, 2004.
-
(2004)
CVPR
-
-
Lecun, Y.1
Huang, F.J.2
Bottou, L.3
-
4
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
R. Collobert and J.Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, 2008.
-
(2008)
ICML
-
-
Collobert, R.1
Weston, J.2
-
5
-
-
51949106645
-
Self-taught learning: Transfer learning from unlabeled data
-
Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007.
-
(2007)
ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
8
-
-
80052893029
-
Topographic independent component analysis as a model of V1 organization and receptive fields
-
A. Hyvarinen and P. Hoyer. Topographic independent component analysis as a model of V1 organization and receptive fields. Neural Computation, 2001.
-
(2001)
Neural Computation
-
-
Hyvarinen, A.1
Hoyer, P.2
-
10
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, U. Toronto, 2009.
-
(2009)
Technical Report, U. Toronto
-
-
Krizhevsky, A.1
-
11
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
12
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
M.A. Ranzato K. Jarrett, K. Kavukcuoglu and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
-
(2009)
ICCV
-
-
Ranzato, M.A.1
Jarrett, K.2
Kavukcuoglu, K.3
Lecun, Y.4
-
13
-
-
85048545369
-
Measuring invariances in deep networks
-
I. Goodfellow, Q.V. Le, A. Saxe, H. Lee, and A.Y. Ng. Measuring invariances in deep networks. In NIPS, 2010.
-
(2010)
NIPS
-
-
Goodfellow, I.1
Le, Q.V.2
Saxe, A.3
Lee, H.4
Ng, A.Y.5
-
14
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996.
-
(1996)
Nature
-
-
Olshausen, B.1
Field, D.2
-
16
-
-
22044434800
-
Estimation of non-normalized statistical models using score matching
-
A. Hyvarinen. Estimation of non-normalized statistical models using score matching. JMLR, 2005.
-
(2005)
JMLR
-
-
Hyvarinen, A.1
-
19
-
-
78149306047
-
3D object recognition with deep belief nets
-
V. Nair and G. Hinton. 3D object recognition with deep belief nets. In NIPS, 2009.
-
(2009)
NIPS
-
-
Nair, V.1
Hinton, G.2
-
21
-
-
84862293074
-
Efficient learning of Deep Boltzmann Machines
-
R. Salakhutdinov and H. Larochelle. Efficient learning of Deep Boltzmann Machines. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Salakhutdinov, R.1
Larochelle, H.2
-
22
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
23
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006.
-
(2006)
Science
-
-
Hinton, G.1
Salakhutdinov, R.2
-
24
-
-
77955989954
-
Modeling pixel means and covariances using factorized third-order boltzmann machines
-
M. Ranzato and G. Hinton. Modeling pixel means and covariances using factorized third-order boltzmann machines. In CVPR, 2010.
-
(2010)
CVPR
-
-
Ranzato, M.1
Hinton, G.2
-
25
-
-
77956510751
-
Improved local coordinate coding using local tangents
-
K. Yu and T. Zhang. Improved local coordinate coding using local tangents. In ICML, 2010.
-
(2010)
ICML
-
-
Yu, K.1
Zhang, T.2
-
27
-
-
84893557505
-
On random weights and unsupervised feature learning
-
A. Saxe, M. Bhand, Z. Chen, P. W. Koh, B. Suresh, and A. Y. Ng. On random weights and unsupervised feature learning. In Workshop: Deep Learning and Unsupervised Feature Learning (NIPS), 2010.
-
(2010)
Workshop: Deep Learning and Unsupervised Feature Learning (NIPS)
-
-
Saxe, A.1
Bhand, M.2
Chen, Z.3
Koh, P.W.4
Suresh, B.5
Ng, A.Y.6
-
29
-
-
27244444336
-
Slow feature analysis yields a rich repertoire of complex cell properties
-
P. Berkes and L.Wiskott. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 2005.
-
(2005)
Journal of Vision
-
-
Berkes, P.1
Wiskott, L.2
|