-
1
-
-
58149151266
-
Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
[1] Shotton, J., Winn, J., Rother, C., Criminisi, A., Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81:1 (2009), 2–23.
-
(2009)
Int. J. Comput. Vis.
, vol.81
, Issue.1
, pp. 2-23
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
2
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
[2] Farabet, C., Couprie, C., Najman, L., LeCun, Y., Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1915–1929.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
3
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
CVPR 2009. IEEE, Miami, FL, USA, 2009, pp.
-
[3] J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE, Miami, FL, USA, 2009, pp. 1794–1801.
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1794-1801
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.4
-
4
-
-
69349090197
-
Learning deep architectures for AI
-
[4] Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
5
-
-
84897583648
-
An object-oriented visual saliency detection framework based on sparse coding representations
-
[5] Han, J., He, S., Qian, X., Wang, D., Guo, L., Liu, T., An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Trans. Circuits Syst. Video Technol. 23:12 (2013), 2009–2021.
-
(2013)
IEEE Trans. Circuits Syst. Video Technol.
, vol.23
, Issue.12
, pp. 2009-2021
-
-
Han, J.1
He, S.2
Qian, X.3
Wang, D.4
Guo, L.5
Liu, T.6
-
6
-
-
84902129918
-
Shift-invariant ring feature for 3d shape
-
[6] Bu, S., Han, P., Liu, Z., Li, K., Han, J., Shift-invariant ring feature for 3d shape. Vis. Comput. 30:6–8 (2014), 867–876.
-
(2014)
Vis. Comput.
, vol.30
, Issue.6-8
, pp. 867-876
-
-
Bu, S.1
Han, P.2
Liu, Z.3
Li, K.4
Han, J.5
-
8
-
-
84926429586
-
Discriminatively trained and-or graph models for object shape detection
-
[8] Lin, L., Wang, X., Yang, W., Lai, J.-H., Discriminatively trained and-or graph models for object shape detection. IEEE Trans. Pattern Anal. Mach. Intell. 37:5 (2015), 959–972.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.5
, pp. 959-972
-
-
Lin, L.1
Wang, X.2
Yang, W.3
Lai, J.-H.4
-
9
-
-
0035328421
-
Modeling the shape of the scene: a holistic representation of the spatial envelope
-
[9] Oliva, A., Torralba, A., Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42:3 (2001), 145–175.
-
(2001)
Int. J. Comput. Vis.
, vol.42
, Issue.3
, pp. 145-175
-
-
Oliva, A.1
Torralba, A.2
-
10
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
CVPR 2005, vol. 1, IEEE, San Diego, California, USA, 2005, pp.
-
[10] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, IEEE, San Diego, California, USA, 2005, pp. 886–893.
-
(2005)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
11
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
[11] Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60:2 (2004), 91–110.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
12
-
-
43049174575
-
Speeded-up robust features (surf)
-
[12] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., Speeded-up robust features (surf). Comput. Vis. Image Understand. 110:3 (2008), 346–359.
-
(2008)
Comput. Vis. Image Understand.
, vol.110
, Issue.3
, pp. 346-359
-
-
Bay, H.1
Ess, A.2
Tuytelaars, T.3
Van Gool, L.4
-
13
-
-
84926497889
-
Learning computational models of video memorability from fmri brain imaging
-
[13] Han, J., Chen, C., Shao, L., Hu, X., Liu, T., Learning computational models of video memorability from fmri brain imaging. IEEE Trans. Cybern. 45:8 (2015), 1692–1703.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.8
, pp. 1692-1703
-
-
Han, J.1
Chen, C.2
Shao, L.3
Hu, X.4
Liu, T.5
-
14
-
-
84923658437
-
Two-stage learning to predict human eye fixations via sdaes
-
IEEE Trans. Cybern. 46 (2)
-
[14] J. Han, D. Zhang, S. Wen, L. Gao, T. Liu, X. Li, Two-stage learning to predict human eye fixations via sdaes, IEEE Trans. Cybern. 46 (2) (2016) 487–498. 10.1109/TCYB.2015.2404432.
-
(2016)
, pp. 487-498.
-
-
Han, J.1
Zhang, D.2
Wen, S.3
Gao, L.4
Liu, T.5
Li, X.6
-
15
-
-
84890478042
-
Building high-level features using large scale unsupervised learning
-
in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, Canada,
-
[15] Q.V. Le, Building high-level features using large scale unsupervised learning, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, Canada, 2013, pp. 8595–8598.
-
(2013)
, pp. 8595-8598
-
-
Le, Q.V.1
-
16
-
-
80052874098
-
Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
-
[16] Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng, Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, in: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Colorado Springs, USA, 2011, pp. 3361–3368.
-
(2011)
2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Colorado Springs, USA
, pp. 3361-3368
-
-
Le, Q.V.1
Zou, W.Y.2
Yeung, S.Y.3
Ng, A.Y.4
-
17
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
[17] H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Canada, 2009, pp. 609–616.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Canada
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
18
-
-
84922175306
-
Decaf: a deep convolutional activation feature for generic visual recognition
-
arXiv preprint.
-
[18] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531.
-
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
19
-
-
84912070759
-
Learning high-level feature by deep belief networks for 3-d model retrieval and recognition
-
[19] Bu, S., Liu, Z., Han, J., Wu, J., Ji, R., Learning high-level feature by deep belief networks for 3-d model retrieval and recognition. IEEE Trans. Multimed. 16:8 (2014), 2154–2167.
-
(2014)
IEEE Trans. Multimed.
, vol.16
, Issue.8
, pp. 2154-2167
-
-
Bu, S.1
Liu, Z.2
Han, J.3
Wu, J.4
Ji, R.5
-
20
-
-
84908374155
-
Local deep feature learning framework for 3d shape
-
[20] Bu, S., Han, P., Liu, Z., Han, J., Lin, H., Local deep feature learning framework for 3d shape. Comput. Graph. 46 (2015), 117–129.
-
(2015)
Comput. Graph.
, vol.46
, pp. 117-129
-
-
Bu, S.1
Han, P.2
Liu, Z.3
Han, J.4
Lin, H.5
-
21
-
-
84926497888
-
Background prior-based salient object detection via deep reconstruction residual
-
[21] Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F., Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25:8 (2015), 1309–1321.
-
(2015)
IEEE Trans. Circuits Syst. Video Technol.
, vol.25
, Issue.8
, pp. 1309-1321
-
-
Han, J.1
Zhang, D.2
Hu, X.3
Guo, L.4
Ren, J.5
Wu, F.6
-
22
-
-
85028166694
-
Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
-
[22] Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J., Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53:6 (2015), 3325–3337.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.6
, pp. 3325-3337
-
-
Han, J.1
Zhang, D.2
Cheng, G.3
Guo, L.4
Ren, J.5
-
23
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
[23] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
85083951635
-
Overfeat: Integrated recognition
-
localization and detection using convolutional networks, in: International Conference on Learning Representations (ICLR 2014), CBLS,.
-
[24] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: Integrated recognition, localization and detection using convolutional networks, in: International Conference on Learning Representations (ICLR 2014), CBLS, 2014.
-
(2014)
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
25
-
-
84931572590
-
Deep feature learning with relative distance comparison for person re-identification
-
[25] Ding, S., Lin, L., Wang, G., Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48:10 (2015), 2993–3003.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.10
, pp. 2993-3003
-
-
Ding, S.1
Lin, L.2
Wang, G.3
Chao, H.4
-
26
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs, in: International Conference on Learning Representations
-
[26] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic image segmentation with deep convolutional nets and fully connected crfs, in: International Conference on Learning Representations, 2015.
-
(2015)
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
27
-
-
34249753618
-
Support-vector networks
-
[27] Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20:3 (1995), 273–297.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
29
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
[29] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: Computer Vision–ECCV 2014, Springer, Zurich, Switzerland, 2014, pp. 818–833.
-
(2014)
Computer Vision–ECCV 2014, Springer, Zurich, Switzerland
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
30
-
-
25444533246
-
Conditional random fields: probabilistic models for segmenting and labeling sequence data
-
[30] J. Lafferty, A. McCallum, F.C. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, 2001.
-
(2001)
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.C.3
-
31
-
-
84887349828
-
Augmenting crfs with Boltzmann machine shape priors for image labeling
-
[31] A. Kae, K. Sohn, H. Lee, E. Learned-Miller, Augmenting crfs with Boltzmann machine shape priors for image labeling, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 2019–2026.
-
(2013)
2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
, pp. 2019-2026
-
-
Kae, A.1
Sohn, K.2
Lee, H.3
Learned-Miller, E.4
-
32
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
[32] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
33
-
-
84931055720
-
Learning compositional shape models of multiple distance metrics by information projection, IEEE Trans
-
Neural Netw. Learn. Syst.
-
[33] P. Luo, L. Lin, X. Liu, Learning compositional shape models of multiple distance metrics by information projection, IEEE Trans. Neural Netw. Learn. Syst. 10.1109/TNNLS.2015.2440430.
-
-
-
Luo, P.1
Lin, L.2
Liu, X.3
-
34
-
-
77953225585
-
Associative hierarchical crfs for object class image segmentation
-
in: 2009 IEEE 12th International Conference on Computer Vision, IEEE, Miami, FL, USA,
-
[34] C. Russell, P. Kohli, P.H. Torr, et al., Associative hierarchical crfs for object class image segmentation, in: 2009 IEEE 12th International Conference on Computer Vision, IEEE, Miami, FL, USA, 2009, pp. 739–746.
-
(2009)
, pp. 739-746
-
-
Russell, C.1
Kohli, P.2
Torr, P.H.3
-
35
-
-
77953205895
-
Decomposing a scene into geometric and semantically consistent regions
-
[35] S. Gould, R. Fulton, D. Koller, Decomposing a scene into geometric and semantically consistent regions, in: 2009 IEEE 12th International Conference on Computer Vision, IEEE, Kyoto, Japan, 2009, pp. 1–8.
-
(2009)
2009 IEEE 12th International Conference on Computer Vision, IEEE, Kyoto, Japan
, pp. 1-8
-
-
Gould, S.1
Fulton, R.2
Koller, D.3
-
36
-
-
78149311874
-
Superparsing: scalable nonparametric image parsing with superpixels
-
in: Computer Vision–ECCV 2010, Springer, Crete, Greece,
-
[36] J. Tighe, S. Lazebnik, Superparsing: scalable nonparametric image parsing with superpixels, in: Computer Vision–ECCV 2010, Springer, Crete, Greece, 2010, pp. 352–365.
-
(2010)
, pp. 352-365
-
-
Tighe, J.1
Lazebnik, S.2
-
37
-
-
84933044434
-
Pisa: pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence
-
[37] Wang, K., Lin, L., Lu, J., Li, C., Shi, K., Pisa: pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans. Image Process. 24:10 (2015), 3019–3033.
-
(2015)
IEEE Trans. Image Process.
, vol.24
, Issue.10
, pp. 3019-3033
-
-
Wang, K.1
Lin, L.2
Lu, J.3
Li, C.4
Shi, K.5
-
39
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
[39] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, Ohio, 2014, pp. 580–587.
-
(2014)
2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, Ohio
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
40
-
-
80053438267
-
Parsing natural scenes and natural language with recursive neural networks
-
[40] R. Socher, C.C. Lin, C. Manning, A.Y. Ng, Parsing natural scenes and natural language with recursive neural networks, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 129–136.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 129-136
-
-
Socher, R.1
Lin, C.C.2
Manning, C.3
Ng, A.Y.4
-
41
-
-
84955243125
-
Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification, arXiv preprint
-
[41] H. Li, R. Zhao, X. Wang, Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification, arXiv preprint arXiv:1412.4526.
-
-
-
Li, H.1
Zhao, R.2
Wang, X.3
-
42
-
-
84937134364
-
Conditional random fields as recurrent neural networks, arXiv preprint
-
[42] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P. Torr, Conditional random fields as recurrent neural networks, arXiv preprint arXiv:1502.03240.
-
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
-
43
-
-
84961893158
-
Efficient piecewise training of deep structured models for semantic segmentation
-
arXiv preprint.
-
[43] G. Lin, C. Shen, I. Reid, et al., Efficient piecewise training of deep structured models for semantic segmentation, arXiv preprint arXiv:1504.01013.
-
-
-
Lin, G.1
Shen, C.2
Reid, I.3
-
44
-
-
85045112560
-
Combining the best of graphical models and convnets for semantic segmentation, arXiv preprint
-
[44] M. Cogswell, X. Lin, S. Purushwalkam, D. Batra, Combining the best of graphical models and convnets for semantic segmentation, arXiv preprint arXiv:1412.4313.
-
-
-
Cogswell, M.1
Lin, X.2
Purushwalkam, S.3
Batra, D.4
-
45
-
-
84931577575
-
Crf learning with cnn features for image segmentation, Pattern Recognit
-
48 (10)
-
[45] F. Liu, G. Lin, C. Shen, Crf learning with cnn features for image segmentation, Pattern Recognit. 48 (10) (2015) 2983-2992. 10.1016/j.patcog.2015.04.019.
-
(2015)
, pp. 2983-2992
-
-
Liu, F.1
Lin, G.2
Shen, C.3
-
46
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
[46] J.J. Tompson, A. Jain, Y. LeCun, C. Bregler, Joint training of a convolutional network and a graphical model for human pose estimation, in: Advances in Neural Information Processing Systems, 2014, pp. 1799–1807.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 1799-1807
-
-
Tompson, J.J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
47
-
-
84866657764
-
Slic superpixels compared to state-of-the-art superpixel methods
-
[47] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S., Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34:11 (2012), 2274–2282.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.11
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Susstrunk, S.6
-
48
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
[48] Boykov, Y., Veksler, O., Zabih, R., Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23:11 (2001), 1222–1239.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
49
-
-
4344598245
-
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
-
[49] Boykov, Y., Kolmogorov, V., An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26:9 (2004), 1124–1137.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.9
, pp. 1124-1137
-
-
Boykov, Y.1
Kolmogorov, V.2
-
51
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
[51] Hinton, G.E., Training products of experts by minimizing contrastive divergence. Neural Comput. 14:8 (2002), 1771–1800.
-
(2002)
Neural Comput.
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
52
-
-
70450169911
-
Nonparametric scene parsing: label transfer via dense scene alignment, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009
-
CVPR 2009. IEEE, Miami, FL, USA,
-
[52] C. Liu, J. Yuen, A. Torralba, Nonparametric scene parsing: label transfer via dense scene alignment, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE, Miami, FL, USA, 2009, pp. 1972–1979.
-
(2009)
, pp. 1972-1979
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
53
-
-
84866674722
-
Nonparametric image parsing using adaptive neighbor sets
-
[53] D. Eigen, R. Fergus, Nonparametric image parsing using adaptive neighbor sets, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2012, pp. 2799–2806.
-
(2012)
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
, pp. 2799-2806
-
-
Eigen, D.1
Fergus, R.2
-
54
-
-
84887364799
-
Nonparametric scene parsing with adaptive feature relevance and semantic context
-
[54] G. Singh, J. Kosecka, Nonparametric scene parsing with adaptive feature relevance and semantic context, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, Ohio, USA, 2013, pp. 3151–3157.
-
(2013)
2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, Ohio, USA
, pp. 3151-3157
-
-
Singh, G.1
Kosecka, J.2
-
55
-
-
84919790220
-
Recurrent convolutional neural networks for scene labeling, in: in International Conference on Machine Learning (ICML)
-
[55] P.H.O. Pinheiro, R. Collobert, P.H.O. Pinheiro, R. Collobert, Recurrent convolutional neural networks for scene labeling, in: in International Conference on Machine Learning (ICML), 2014.
-
(2014)
-
-
Pinheiro, P.H.O.1
Collobert, R.2
Pinheiro, P.H.O.3
Collobert, R.4
-
56
-
-
84951876358
-
Matconvnet – convolutional neural networks for matlab
-
CoRR abs/1412.4564.
-
[56] A. Vedaldi, K. Lenc, Matconvnet – convolutional neural networks for matlab, CoRR abs/1412.4564.
-
-
-
Vedaldi, A.1
Lenc, K.2
-
57
-
-
80054898486
-
Nonparametric scene parsing via label transfer
-
[57] Liu, C., Yuen, J., Torralba, A., Nonparametric scene parsing via label transfer. IEEE Trans. Pattern Anal. Mach. Intell. 33:12 (2011), 2368–2382.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.12
, pp. 2368-2382
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
58
-
-
84921069139
-
The pascal visual object classes challenge: a retrospective
-
[58] Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A., The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111:1 (2015), 98–136.
-
(2015)
Int. J. Comput. Vis.
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Van Gool, L.3
Williams, C.K.I.4
Winn, J.5
Zisserman, A.6
-
59
-
-
84856686500
-
Semantic contours from inverse detectors
-
[59] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, J. Malik, Semantic contours from inverse detectors, in: 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, Barcelona, Spain, 2011, pp. 991–998.
-
(2011)
2011 IEEE International Conference on Computer Vision (ICCV), IEEE, Barcelona, Spain
, pp. 991-998
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
60
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
[60] Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A., The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88:2 (2010), 303–338.
-
(2010)
Int. J. Comput. Vis.
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
61
-
-
84959207702
-
Feedforward semantic segmentation with zoom-out features, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015
-
CVPR 2015. IEEE, Boston, USA
-
[61] M. Mostajabi, P. Yadollahpour, G. Shakhnarovich, Feedforward semantic segmentation with zoom-out features, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015. CVPR 2015. IEEE, Boston, USA, 2015, pp. 3376-3385.
-
(2015)
, pp. 3376-3385
-
-
Mostajabi, M.1
Yadollahpour, P.2
Shakhnarovich, G.3
-
62
-
-
85041932110
-
Weakly- and semi-supervised learning of a dcnn for semantic image segmentation
-
arXiv preprint.
-
[62] G. Papandreou, L.-C. Chen, K. Murphy, A.L. Yuille, Weakly- and semi-supervised learning of a dcnn for semantic image segmentation, arXiv preprint arXiv:1502.02734.
-
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
|