메뉴 건너뛰기




Volumn 59, Issue , 2016, Pages 188-198

Scene parsing using inference Embedded Deep Networks

Author keywords

Conditional Random Fields (CRFs); Convolutional Neural Networks (CNNs); Hybrid Features; Inference Embedded Deep Networks (IEDNs)

Indexed keywords

CONVOLUTION; NETWORK ARCHITECTURE; NEURAL NETWORKS;

EID: 84958191683     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.01.027     Document Type: Article
Times cited : (27)

References (62)
  • 1
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • [1] Shotton, J., Winn, J., Rother, C., Criminisi, A., Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81:1 (2009), 2–23.
    • (2009) Int. J. Comput. Vis. , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 3
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • CVPR 2009. IEEE, Miami, FL, USA, 2009, pp.
    • [3] J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE, Miami, FL, USA, 2009, pp. 1794–1801.
    • (2009) IEEE Conference on Computer Vision and Pattern Recognition , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 4
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • [4] Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 5
    • 84897583648 scopus 로고    scopus 로고
    • An object-oriented visual saliency detection framework based on sparse coding representations
    • [5] Han, J., He, S., Qian, X., Wang, D., Guo, L., Liu, T., An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Trans. Circuits Syst. Video Technol. 23:12 (2013), 2009–2021.
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , Issue.12 , pp. 2009-2021
    • Han, J.1    He, S.2    Qian, X.3    Wang, D.4    Guo, L.5    Liu, T.6
  • 6
    • 84902129918 scopus 로고    scopus 로고
    • Shift-invariant ring feature for 3d shape
    • [6] Bu, S., Han, P., Liu, Z., Li, K., Han, J., Shift-invariant ring feature for 3d shape. Vis. Comput. 30:6–8 (2014), 867–876.
    • (2014) Vis. Comput. , vol.30 , Issue.6-8 , pp. 867-876
    • Bu, S.1    Han, P.2    Liu, Z.3    Li, K.4    Han, J.5
  • 8
    • 84926429586 scopus 로고    scopus 로고
    • Discriminatively trained and-or graph models for object shape detection
    • [8] Lin, L., Wang, X., Yang, W., Lai, J.-H., Discriminatively trained and-or graph models for object shape detection. IEEE Trans. Pattern Anal. Mach. Intell. 37:5 (2015), 959–972.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.5 , pp. 959-972
    • Lin, L.1    Wang, X.2    Yang, W.3    Lai, J.-H.4
  • 9
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: a holistic representation of the spatial envelope
    • [9] Oliva, A., Torralba, A., Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42:3 (2001), 145–175.
    • (2001) Int. J. Comput. Vis. , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 10
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • CVPR 2005, vol. 1, IEEE, San Diego, California, USA, 2005, pp.
    • [10] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, IEEE, San Diego, California, USA, 2005, pp. 886–893.
    • (2005) IEEE Computer Society Conference on Computer Vision and Pattern Recognition , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 11
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • [11] Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60:2 (2004), 91–110.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 13
    • 84926497889 scopus 로고    scopus 로고
    • Learning computational models of video memorability from fmri brain imaging
    • [13] Han, J., Chen, C., Shao, L., Hu, X., Liu, T., Learning computational models of video memorability from fmri brain imaging. IEEE Trans. Cybern. 45:8 (2015), 1692–1703.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.8 , pp. 1692-1703
    • Han, J.1    Chen, C.2    Shao, L.3    Hu, X.4    Liu, T.5
  • 14
    • 84923658437 scopus 로고    scopus 로고
    • Two-stage learning to predict human eye fixations via sdaes
    • IEEE Trans. Cybern. 46 (2)
    • [14] J. Han, D. Zhang, S. Wen, L. Gao, T. Liu, X. Li, Two-stage learning to predict human eye fixations via sdaes, IEEE Trans. Cybern. 46 (2) (2016) 487–498. 10.1109/TCYB.2015.2404432.
    • (2016) , pp. 487-498.
    • Han, J.1    Zhang, D.2    Wen, S.3    Gao, L.4    Liu, T.5    Li, X.6
  • 15
    • 84890478042 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, Canada,
    • [15] Q.V. Le, Building high-level features using large scale unsupervised learning, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, Canada, 2013, pp. 8595–8598.
    • (2013) , pp. 8595-8598
    • Le, Q.V.1
  • 18
    • 84922175306 scopus 로고    scopus 로고
    • Decaf: a deep convolutional activation feature for generic visual recognition
    • arXiv preprint.
    • [18] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531.
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 19
    • 84912070759 scopus 로고    scopus 로고
    • Learning high-level feature by deep belief networks for 3-d model retrieval and recognition
    • [19] Bu, S., Liu, Z., Han, J., Wu, J., Ji, R., Learning high-level feature by deep belief networks for 3-d model retrieval and recognition. IEEE Trans. Multimed. 16:8 (2014), 2154–2167.
    • (2014) IEEE Trans. Multimed. , vol.16 , Issue.8 , pp. 2154-2167
    • Bu, S.1    Liu, Z.2    Han, J.3    Wu, J.4    Ji, R.5
  • 20
    • 84908374155 scopus 로고    scopus 로고
    • Local deep feature learning framework for 3d shape
    • [20] Bu, S., Han, P., Liu, Z., Han, J., Lin, H., Local deep feature learning framework for 3d shape. Comput. Graph. 46 (2015), 117–129.
    • (2015) Comput. Graph. , vol.46 , pp. 117-129
    • Bu, S.1    Han, P.2    Liu, Z.3    Han, J.4    Lin, H.5
  • 21
    • 84926497888 scopus 로고    scopus 로고
    • Background prior-based salient object detection via deep reconstruction residual
    • [21] Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F., Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25:8 (2015), 1309–1321.
    • (2015) IEEE Trans. Circuits Syst. Video Technol. , vol.25 , Issue.8 , pp. 1309-1321
    • Han, J.1    Zhang, D.2    Hu, X.3    Guo, L.4    Ren, J.5    Wu, F.6
  • 22
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • [22] Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J., Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53:6 (2015), 3325–3337.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 24
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition
    • localization and detection using convolutional networks, in: International Conference on Learning Representations (ICLR 2014), CBLS,.
    • [24] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: Integrated recognition, localization and detection using convolutional networks, in: International Conference on Learning Representations (ICLR 2014), CBLS, 2014.
    • (2014)
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 25
    • 84931572590 scopus 로고    scopus 로고
    • Deep feature learning with relative distance comparison for person re-identification
    • [25] Ding, S., Lin, L., Wang, G., Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48:10 (2015), 2993–3003.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 2993-3003
    • Ding, S.1    Lin, L.2    Wang, G.3    Chao, H.4
  • 26
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs, in: International Conference on Learning Representations
    • [26] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic image segmentation with deep convolutional nets and fully connected crfs, in: International Conference on Learning Representations, 2015.
    • (2015)
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 27
    • 34249753618 scopus 로고
    • Support-vector networks
    • [27] Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20:3 (1995), 273–297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 84871900799 scopus 로고    scopus 로고
    • A comprehensive foundation
    • [28] Haykin, S., Network, N., A comprehensive foundation. Neural Netw., 2, 2004.
    • (2004) Neural Netw. , vol.2
    • Haykin, S.1    Network, N.2
  • 30
    • 25444533246 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data
    • [30] J. Lafferty, A. McCallum, F.C. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, 2001.
    • (2001)
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.3
  • 32
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • [32] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 33
    • 84931055720 scopus 로고    scopus 로고
    • Learning compositional shape models of multiple distance metrics by information projection, IEEE Trans
    • Neural Netw. Learn. Syst.
    • [33] P. Luo, L. Lin, X. Liu, Learning compositional shape models of multiple distance metrics by information projection, IEEE Trans. Neural Netw. Learn. Syst. 10.1109/TNNLS.2015.2440430.
    • Luo, P.1    Lin, L.2    Liu, X.3
  • 34
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical crfs for object class image segmentation
    • in: 2009 IEEE 12th International Conference on Computer Vision, IEEE, Miami, FL, USA,
    • [34] C. Russell, P. Kohli, P.H. Torr, et al., Associative hierarchical crfs for object class image segmentation, in: 2009 IEEE 12th International Conference on Computer Vision, IEEE, Miami, FL, USA, 2009, pp. 739–746.
    • (2009) , pp. 739-746
    • Russell, C.1    Kohli, P.2    Torr, P.H.3
  • 36
    • 78149311874 scopus 로고    scopus 로고
    • Superparsing: scalable nonparametric image parsing with superpixels
    • in: Computer Vision–ECCV 2010, Springer, Crete, Greece,
    • [36] J. Tighe, S. Lazebnik, Superparsing: scalable nonparametric image parsing with superpixels, in: Computer Vision–ECCV 2010, Springer, Crete, Greece, 2010, pp. 352–365.
    • (2010) , pp. 352-365
    • Tighe, J.1    Lazebnik, S.2
  • 37
    • 84933044434 scopus 로고    scopus 로고
    • Pisa: pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence
    • [37] Wang, K., Lin, L., Lu, J., Li, C., Shi, K., Pisa: pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans. Image Process. 24:10 (2015), 3019–3033.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.10 , pp. 3019-3033
    • Wang, K.1    Lin, L.2    Lu, J.3    Li, C.4    Shi, K.5
  • 41
    • 84955243125 scopus 로고    scopus 로고
    • Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification, arXiv preprint
    • [41] H. Li, R. Zhao, X. Wang, Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification, arXiv preprint arXiv:1412.4526.
    • Li, H.1    Zhao, R.2    Wang, X.3
  • 43
    • 84961893158 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • arXiv preprint.
    • [43] G. Lin, C. Shen, I. Reid, et al., Efficient piecewise training of deep structured models for semantic segmentation, arXiv preprint arXiv:1504.01013.
    • Lin, G.1    Shen, C.2    Reid, I.3
  • 44
    • 85045112560 scopus 로고    scopus 로고
    • Combining the best of graphical models and convnets for semantic segmentation, arXiv preprint
    • [44] M. Cogswell, X. Lin, S. Purushwalkam, D. Batra, Combining the best of graphical models and convnets for semantic segmentation, arXiv preprint arXiv:1412.4313.
    • Cogswell, M.1    Lin, X.2    Purushwalkam, S.3    Batra, D.4
  • 45
    • 84931577575 scopus 로고    scopus 로고
    • Crf learning with cnn features for image segmentation, Pattern Recognit
    • 48 (10)
    • [45] F. Liu, G. Lin, C. Shen, Crf learning with cnn features for image segmentation, Pattern Recognit. 48 (10) (2015) 2983-2992. 10.1016/j.patcog.2015.04.019.
    • (2015) , pp. 2983-2992
    • Liu, F.1    Lin, G.2    Shen, C.3
  • 49
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • [49] Boykov, Y., Kolmogorov, V., An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26:9 (2004), 1124–1137.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 51
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • [51] Hinton, G.E., Training products of experts by minimizing contrastive divergence. Neural Comput. 14:8 (2002), 1771–1800.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 52
    • 70450169911 scopus 로고    scopus 로고
    • Nonparametric scene parsing: label transfer via dense scene alignment, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009
    • CVPR 2009. IEEE, Miami, FL, USA,
    • [52] C. Liu, J. Yuen, A. Torralba, Nonparametric scene parsing: label transfer via dense scene alignment, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE, Miami, FL, USA, 2009, pp. 1972–1979.
    • (2009) , pp. 1972-1979
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 55
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling, in: in International Conference on Machine Learning (ICML)
    • [55] P.H.O. Pinheiro, R. Collobert, P.H.O. Pinheiro, R. Collobert, Recurrent convolutional neural networks for scene labeling, in: in International Conference on Machine Learning (ICML), 2014.
    • (2014)
    • Pinheiro, P.H.O.1    Collobert, R.2    Pinheiro, P.H.O.3    Collobert, R.4
  • 56
    • 84951876358 scopus 로고    scopus 로고
    • Matconvnet – convolutional neural networks for matlab
    • CoRR abs/1412.4564.
    • [56] A. Vedaldi, K. Lenc, Matconvnet – convolutional neural networks for matlab, CoRR abs/1412.4564.
    • Vedaldi, A.1    Lenc, K.2
  • 61
    • 84959207702 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015
    • CVPR 2015. IEEE, Boston, USA
    • [61] M. Mostajabi, P. Yadollahpour, G. Shakhnarovich, Feedforward semantic segmentation with zoom-out features, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015. CVPR 2015. IEEE, Boston, USA, 2015, pp. 3376-3385.
    • (2015) , pp. 3376-3385
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 62
    • 85041932110 scopus 로고    scopus 로고
    • Weakly- and semi-supervised learning of a dcnn for semantic image segmentation
    • arXiv preprint.
    • [62] G. Papandreou, L.-C. Chen, K. Murphy, A.L. Yuille, Weakly- and semi-supervised learning of a dcnn for semantic image segmentation, arXiv preprint arXiv:1502.02734.
    • Papandreou, G.1    Chen, L.-C.2    Murphy, K.3    Yuille, A.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.