-
1
-
-
84897544737
-
Theano: New features and speed improvements
-
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., and Goodfellow., I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.
-
(2012)
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.J.5
Bergeron, A.6
Bouchard, N.7
Bengio, Y.8
-
3
-
-
84882266451
-
Better mixing via deep representations
-
Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013). Better mixing via deep representations. In ICML'13.
-
(2013)
ICML'13
-
-
Bengio, Y.1
Mesnil, G.2
Dauphin, Y.3
Rifai, S.4
-
4
-
-
84919906761
-
Deep generative stochastic networks trainable by backprop
-
Bengio, Y., Thibodeau-Laufer, E., and Yosinski, J. (2014a). Deep generative stochastic networks trainable by backprop. In ICML'14.
-
(2014)
ICML'14
-
-
Bengio, Y.1
Thibodeau-Laufer, E.2
Yosinski, J.3
-
5
-
-
84919906761
-
Deep generative stochastic networks trainable by backprop
-
Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014b). Deep generative stochastic networks trainable by backprop. In Proceedings of the 30th International Conference on Machine Learning (ICML'14).
-
(2014)
Proceedings of the 30th International Conference on Machine Learning (ICML'14)
-
-
Bengio, Y.1
Thibodeau-Laufer, E.2
Alain, G.3
Yosinski, J.4
-
6
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy). Oral Presentation.
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy). Oral Presentation
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
7
-
-
79959650504
-
Quickly generating representative samples from an RBM-derived process
-
Breuleux, O., Bengio, Y., and Vincent, P. (2011). Quickly generating representative samples from an RBM-derived process. Neural Computation, 23(8), 2053-2073.
-
(2011)
Neural Computation
, vol.23
, Issue.8
, pp. 2053-2073
-
-
Breuleux, O.1
Bengio, Y.2
Vincent, P.3
-
9
-
-
84897543523
-
Maxout networks
-
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013a). Maxout networks. In ICML'2013.
-
(2013)
ICML'2013
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
10
-
-
84898988737
-
Multi-prediction deep boltzmann machines
-
Goodfellow, I. J., Mirza, M., Courville, A., and Bengio, Y. (2013b). Multi-prediction deep Boltzmann machines. In NIPS'2013.
-
(2013)
NIPS'2013
-
-
Goodfellow, I.J.1
Mirza, M.2
Courville, A.3
Bengio, Y.4
-
11
-
-
84893401626
-
-
arXiv preprint arXiv:1308.4214
-
Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu, R., Bergstra, J., Bastien, F., and Bengio, Y. (2013c). Pylearn2: a machine learning research library. arXiv preprint arXiv:1308.4214.
-
(2013)
Pylearn2: A Machine Learning Research Library
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Lamblin, P.3
Dumoulin, V.4
Mirza, M.5
Pascanu, R.6
Bergstra, J.7
Bastien, F.8
Bengio, Y.9
-
12
-
-
84919796355
-
Deep autoregressive networks
-
Gregor, K., Danihelka, I., Mnih, A., Blundell, C., and Wierstra, D. (2014). Deep autoregressive networks. In ICML'2014.
-
(2014)
ICML'2014
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blundell, C.4
Wierstra, D.5
-
14
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
Hinton, G., Deng, L., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B. (2012a). Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29(6), 82-97.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Dahl, G.E.3
Mohamed, A.4
Jaitly, N.5
Senior, A.6
Vanhoucke, V.7
Nguyen, P.8
Sainath, T.9
Kingsbury, B.10
-
15
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1558-1161.
-
(1995)
Science
, vol.268
, pp. 1558-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
16
-
-
84867720412
-
-
Technical report, arXiv:1207.0580
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012b). Improving neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
17
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? In Proc. International Conference on Computer Vision (ICCV'09), pages 2146-2153. IEEE.
-
(2009)
Proc. International Conference on Computer Vision (ICCV'09)
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
20
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In NIPS'2012.
-
(2012)
NIPS'2012
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
23
-
-
84919908080
-
-
Technical report, arXiv:1401.4082
-
Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. Technical report, arXiv:1401.4082.
-
(2014)
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
24
-
-
84867136416
-
A generative process for sampling contractive auto-encoders
-
Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A generative process for sampling contractive auto-encoders. In ICML'12.
-
(2012)
ICML'12
-
-
Rifai, S.1
Bengio, Y.2
Dauphin, Y.3
Vincent, P.4
-
26
-
-
0040422903
-
Learning factorial codes by predictability minimization
-
Schmidhuber, J. (1992). Learning factorial codes by predictability minimization. Neural Computation, 4(6), 863-879.
-
(1992)
Neural Computation
, vol.4
, Issue.6
, pp. 863-879
-
-
Schmidhuber, J.1
-
27
-
-
84867851372
-
-
Technical Report UTML TR 2010-001, U. Toronto
-
Susskind, J., Anderson, A., and Hinton, G. E. (2010). The Toronto face dataset. Technical Report UTML TR 2010-001, U. Toronto.
-
(2010)
The Toronto Face Dataset
-
-
Susskind, J.1
Anderson, A.2
Hinton, G.E.3
-
28
-
-
85083953343
-
Intriguing properties of neural networks
-
abs/1312.6199
-
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R. (2014). Intriguing properties of neural networks. ICLR, abs/1312.6199.
-
(2014)
ICLR
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.J.6
Fergus, R.7
-
29
-
-
35148825083
-
Learning generative models via discriminative approaches
-
IEEE Conference on IEEE
-
Tu, Z. (2007). Learning generative models via discriminative approaches. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1-8. IEEE.
-
(2007)
Computer Vision and Pattern Recognition, 2007. CVPR'07
, pp. 1-8
-
-
Tu, Z.1
|