메뉴 건너뛰기




Volumn 39, Issue 4, 2017, Pages 640-651

Fully Convolutional Networks for Semantic Segmentation

Author keywords

Convolutional Networks; Deep Learning; Semantic Segmentation; Transfer Learning

Indexed keywords

DEEP LEARNING; IMAGE SEGMENTATION; PIXELS; SEMANTIC WEB; SEMANTICS;

EID: 85015843890     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2016.2572683     Document Type: Article
Times cited : (8511)

References (62)
  • 5
    • 84961595279 scopus 로고    scopus 로고
    • Region-based convolutional networks for accurate object detection and segmentation
    • Jan.
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158, Jan. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , Issue.1 , pp. 142-158
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 6
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 346-361.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 84906344142 scopus 로고    scopus 로고
    • Learning rich features from RGB-D images for object detection and segmentation
    • S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, "Learning rich features from RGB-D images for object detection and segmentation," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 345-360.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 345-360
    • Gupta, S.1    Girshick, R.2    Arbelaez, P.3    Malik, J.4
  • 16
    • 84959181749 scopus 로고    scopus 로고
    • N4-fields: Neural network nearest neighbor fields for image transforms
    • Y. Ganin and V. Lempitsky, "N4-fields: Neural network nearest neighbor fields for image transforms," in Proc. Asian Conf. Comput. Vis., 2014, pp. 536-551.
    • (2014) Proc. Asian Conf. Comput. Vis. , pp. 536-551
    • Ganin, Y.1    Lempitsky, V.2
  • 18
    • 84904482223 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • J. Donahue, et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. Int. Conf. Mach. Learn., 2014, pp. 647-655.
    • (2014) Proc. Int. Conf. Mach. Learn. , pp. 647-655
    • Donahue, J.1
  • 19
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing andunderstanding convolutionalnetworks
    • M.D.Zeiler andR. Fergus, "Visualizing andunderstanding convolutionalnetworks," inProc.Eur.Conf.Comput.Vis.,2014, pp. 818-833.
    • (2014) Proc. Eur. Conf. Comput.Vis. , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 21
    • 0000359337 scopus 로고
    • Backpropagation applied to hand-written zip code recognition
    • Y. LeCun, et al., "Backpropagation applied to hand-written zip code recognition," in Proc. Neural Comput., 1989, pp. 541-551.
    • (1989) Proc. Neural Comput. , pp. 541-551
    • LeCun, Y.1
  • 22
    • 33646900230 scopus 로고
    • Postal address block location using a convolutional locator network
    • R. Wolf and J. C. Platt, "Postal address block location using a convolutional locator network," in Proc. Neural Inf. Process. Syst., 1994, pp. 745-745.
    • (1994) Proc. Neural Inf. Process. Syst. , pp. 745
    • Wolf, R.1    Platt, J.C.2
  • 23
    • 84898798806 scopus 로고    scopus 로고
    • Restoring an image taken through a window covered with dirt or rain
    • D. Eigen, D. Krishnan, and R. Fergus, "Restoring an image taken through a window covered with dirt or rain," in Proc. Int. Conf. Comput. Vis., 2013, pp. 633-640.
    • (2013) Proc. Int. Conf. Comput. Vis. , pp. 633-640
    • Eigen, D.1    Krishnan, D.2    Fergus, R.3
  • 24
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler, "Joint training of a convolutional network and a graphical model for human pose estimation," in Proc. Neural Inf. Process. Syst., 2014, pp. 1799-1807.
    • (2014) Proc. Neural Inf. Process. Syst. , pp. 1799-1807
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 25
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • D. Eigen, C. Puhrsch, and R. Fergus, "Depth map prediction from a single image using a multi-scale deep network," in Proc. Neural Inf. Process. Syst., 2014, pp. 2366-2374.
    • (2014) Proc. Neural Inf. Process. Syst. , pp. 2366-2374
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 26
    • 0020737631 scopus 로고
    • The Laplacian pyramid as a compact image code
    • Apr.
    • P. Burt and E. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun., vol. 31, no. 4, pp. 532-540, Apr. 1983.
    • (1983) IEEE Trans. Commun. , vol.31 , Issue.4 , pp. 532-540
    • Burt, P.1    Adelson, E.2
  • 27
    • 0023141705 scopus 로고
    • Representation of local geometry in the visual system
    • Mar.
    • J. J. Koenderink and A. J. van Doorn, "Representation of local geometry in the visual system," Biol. Cybern., vol. 55, no. 6, pp. 367-375, Mar. 1987.
    • (1987) Biol. Cybern. , vol.55 , Issue.6 , pp. 367-375
    • Koenderink, J.J.1    Van Doorn, A.J.2
  • 31
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," in Proc. Neural Inf. Process. Syst., 2015, pp. 91-99.
    • (2015) Proc. Neural Inf. Process. Syst. , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 32
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • S. Xie and Z. Tu, "Holistically-nested edge detection," in Proc. Int. Conf. Comput. Vis., 2015, pp. 1395-1403.
    • (2015) Proc. Int. Conf. Comput. Vis. , pp. 1395-1403
    • Xie, S.1    Tu, Z.2
  • 33
    • 84986257303 scopus 로고    scopus 로고
    • Learning depth from single monocular images using deep convolutional neural fields
    • F. Liu, C. Shen, G. Lin, and I. Reid, "Learning depth from single monocular images using deep convolutional neural fields," IEEE Trans. Pattern Anal. Mach. Intell., 2015, Doi: 10.1109/TPAMI.2015.2505283.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell.
    • Liu, F.1    Shen, C.2    Lin, G.3    Reid, I.4
  • 34
    • 85009841433 scopus 로고    scopus 로고
    • Learning optical flow with convolutional networks
    • P. Fischer, et al., "Learning optical flow with convolutional networks," in Proc. Int. Conf. Comput. Vis., 2015.
    • (2015) Proc. Int. Conf. Comput. Vis.
    • Fischer, P.1
  • 35
    • 84973922870 scopus 로고    scopus 로고
    • Constrained convolutional neural networks for weakly supervised segmentation
    • D. Pathak, P. Krähenbühl, and T. Darrell, "Constrained convolutional neural networks for weakly supervised segmentation," in Proc. Int. Conf. Comput. Vis., 2015, pp. 1796-1804.
    • (2015) Proc. Int. Conf. Comput. Vis. , pp. 1796-1804
    • Pathak, D.1    Krähenbühl, P.2    Darrell, T.3
  • 36
    • 84973863204 scopus 로고    scopus 로고
    • Weakly-and semi-supervised learning of a DCNN for semantic image segmentation
    • G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille, "Weakly-and semi-supervised learning of a DCNN for semantic image segmentation," in Proc. Int. Conf. Comput. Vis., 2015, pp. 1742-1750.
    • (2015) Proc. Int. Conf. Comput. Vis. , pp. 1742-1750
    • Papandreou, G.1    Chen, L.-C.2    Murphy, K.3    Yuille, A.L.4
  • 37
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • J. Dai, K. He, and J. Sun, "Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation," in Proc. Int. Conf. Comput. Vis., 2015, pp. 1635-1643.
    • (2015) Proc. Int. Conf. Comput. Vis. , pp. 1635-1643
    • Dai, J.1    He, K.2    Sun, J.3
  • 38
    • 84965099276 scopus 로고    scopus 로고
    • Decoupled deep neural network for semi-supervised semantic segmentation
    • S. Hong, H. Noh, and B. Han, "Decoupled deep neural network for semi-supervised semantic segmentation," in Proc. Neural Inf. Process. Syst., 2015, pp. 1495-1503.
    • (2015) Proc. Neural Inf. Process. Syst. , pp. 1495-1503
    • Hong, S.1    Noh, H.2    Han, B.3
  • 40
    • 84973861983 scopus 로고    scopus 로고
    • Conditional random fields as recurrent neural networks
    • S. Zheng, et al., "Conditional random fields as recurrent neural networks," in Proc. Int. Conf. Comput. Vis., 2015, pp. 1529-1537.
    • (2015) Proc. Int. Conf. Comput. Vis. , pp. 1529-1537
    • Zheng, S.1
  • 42
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation," in Proc. Int. Conf. Comput. Vis., 2015, pp. 1520-1528.
    • (2015) Proc. Int. Conf. Comput. Vis. , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 44
  • 48
    • 0025244687 scopus 로고
    • Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial
    • Jan.
    • P. P. Vaidyanathan, "Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial," Proc. IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.1 , pp. 56-93
    • Vaidyanathan, P.P.1
  • 53
    • 0001857994 scopus 로고    scopus 로고
    • Neural Networks: Tricks of the Trade. Berlin, Germany: Springer
    • Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, "Efficient backprop," in Neural Networks: Tricks of the Trade. Berlin, Germany: Springer, 1998, pp. 9-48.
    • (1998) Efficient Backprop , pp. 9-48
    • LeCun, Y.A.1    Bottou, L.2    Orr, G.B.3    Müller, K.-R.4
  • 56
    • 84887380335 scopus 로고    scopus 로고
    • Perceptual organization and recognition of indoor scenes from RGB-D images
    • S. Gupta, P. Arbelaez, and J. Malik, "Perceptual organization and recognition of indoor scenes from RGB-D images," in Proc. Comput. Vis. Pattern Recognit., 2013, pp. 564-571.
    • (2013) Proc. Comput. Vis. Pattern Recognit. , pp. 564-571
    • Gupta, S.1    Arbelaez, P.2    Malik, J.3
  • 57
    • 79953049203 scopus 로고    scopus 로고
    • Sift flow: Dense correspondence across scenes and its applications
    • May
    • C. Liu, J. Yuen, and A. Torralba, "Sift flow: Dense correspondence across scenes and its applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 978-994, May 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 978-994
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 58
    • 78149311874 scopus 로고    scopus 로고
    • Superparsing: Scalable nonparametric image parsing with superpixels
    • J. Tighe and S. Lazebnik, "Superparsing: scalable nonparametric image parsing with superpixels," in Proc. Eur. Conf. Comput. Vis., 2010, pp. 352-365.
    • (2010) Proc. Eur. Conf. Comput. Vis. , pp. 352-365
    • Tighe, J.1    Lazebnik, S.2
  • 59
    • 84887363465 scopus 로고    scopus 로고
    • Finding things: Image parsing with regions and per-exemplar detectors
    • J. Tighe and S. Lazebnik, "Finding things: Image parsing with regions and per-exemplar detectors," in Proc. Comput. Vis. Pattern Recognit., 2013, pp. 3001-3008.
    • (2013) Proc. Comput. Vis. Pattern Recognit. , pp. 3001-3008
    • Tighe, J.1    Lazebnik, S.2
  • 60
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • J. Dai, K. He, and J. Sun, "Convolutional feature masking for joint object and stuff segmentation," in Proc. Comput. Vis. Pattern Recognit., 2015, pp. 3992-4000.
    • (2015) Proc. Comput. Vis. Pattern Recognit. , pp. 3992-4000
    • Dai, J.1    He, K.2    Sun, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.