메뉴 건너뛰기




Volumn , Issue , 2015, Pages

Very deep convolutional networks for large-scale image recognition

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE RECOGNITION;

EID: 85083953063     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (32775)

References (34)
  • 1
    • 84962478162 scopus 로고    scopus 로고
    • Material recognition in the wild with the materials in context database
    • Bell, S., Upchurch, P., Snavely, N., and Bala, K. Material recognition in the wild with the materials in context database. CoRR, abs/1412.0623, 2014.
    • (2014) CoRR
    • Bell, S.1    Upchurch, P.2    Snavely, N.3    Bala, K.4
  • 2
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. In Proc. BMVC., 2014.
    • (2014) Proc. BMVC.
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 3
    • 84956696983 scopus 로고    scopus 로고
    • Deep convolutional filter banks for texture recognition and segmentation
    • Cimpoi, M., Maji, S., and Vedaldi, A. Deep convolutional filter banks for texture recognition and segmentation. CoRR, abs/1411.6836, 2014.
    • (2014) CoRR
    • Cimpoi, M.1    Maji, S.2    Vedaldi, A.3
  • 4
    • 84881039921 scopus 로고    scopus 로고
    • Flexible, high performance convolutional neural networks for image classification
    • Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., and Schmidhuber, J. Flexible, high performance convolutional neural networks for image classification. In IJCAI, pp. 1237–1242, 2011.
    • (2011) IJCAI , pp. 1237-1242
    • Ciresan, D.C.1    Meier, U.2    Masci, J.3    Gambardella, L.M.4    Schmidhuber, J.5
  • 7
    • 84904482223 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. Decaf: A deep convolutional activation feature for generic visual recognition. CoRR, abs/1310.1531, 2013.
    • (2013) CoRR
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 9
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., and Perona, P. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In IEEE CVPR Workshop of Generative Model Based Vision, 2004.
    • (2004) IEEE CVPR Workshop of Generative Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 10
    • 84906343066 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Published in Proc. CVPR, 2014
    • Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524v5, 2014. Published in Proc. CVPR, 2014.
    • (2014) CoRR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 85070921619 scopus 로고    scopus 로고
    • Actions and attributes from wholes and parts
    • Gkioxari, G., Girshick, R., and Malik, J. Actions and attributes from wholes and parts. CoRR, abs/1412.2604, 2014.
    • (2014) CoRR
    • Gkioxari, G.1    Girshick, R.2    Malik, J.3
  • 12
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. AISTATS, volume 9, pp. 249–256, 2010.
    • (2010) Proc. AISTATS , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 13
    • 85083953281 scopus 로고    scopus 로고
    • Multi-digit number recognition from street view imagery using deep convolutional neural networks
    • Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. Multi-digit number recognition from street view imagery using deep convolutional neural networks. In Proc. ICLR, 2014.
    • (2014) Proc. ICLR
    • Goodfellow, I.J.1    Bulatov, Y.2    Ibarz, J.3    Arnoud, S.4    Shet, V.5
  • 15
    • 84959229874 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406.4729v2, 2014.
    • (2014) CoRR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 84990024921 scopus 로고    scopus 로고
    • Regularized max pooling for image categorization
    • Hoai, M. Regularized max pooling for image categorization. In Proc. BMVC., 2014.
    • (2014) Proc. BMVC.
    • Hoai, M.1
  • 17
    • 85083952994 scopus 로고    scopus 로고
    • Some improvements on deep convolutional neural network based image classification
    • Howard, A. G. Some improvements on deep convolutional neural network based image classification. In Proc. ICLR, 2014.
    • (2014) Proc. ICLR
    • Howard, A.G.1
  • 19
    • 84959099868 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • Karpathy, A. and Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. CoRR, abs/1412.2306, 2014.
    • (2014) CoRR
    • Karpathy, A.1    Fei-Fei, L.2
  • 20
    • 84946802533 scopus 로고    scopus 로고
    • Unifying visual-semantic embeddings with multimodal neural language models
    • Kiros, R., Salakhutdinov, R., and Zemel, R. S. Unifying visual-semantic embeddings with multimodal neural language models. CoRR, abs/1411.2539, 2014.
    • (2014) CoRR
    • Kiros, R.1    Salakhutdinov, R.2    Zemel, R.S.3
  • 21
    • 84946590547 scopus 로고    scopus 로고
    • One weird trick for parallelizing convolutional neural networks
    • Krizhevsky, A. One weird trick for parallelizing convolutional neural networks. CoRR, abs/1404.5997, 2014.
    • (2014) CoRR
    • Krizhevsky, A.1
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks. In NIPS, pp. 1106–1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 84937144752 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks for semantic segmentation. CoRR, abs/1411.4038, 2014.
    • (2014) CoRR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 26
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring Mid-Level image representations using convolutional neural networks
    • Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 27
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • Perronnin, F., Sánchez, J., and Mensink, T. Improving the Fisher kernel for large-scale image classification. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 28
    • 84906506420 scopus 로고    scopus 로고
    • CNN features off-the-shelf: An astounding baseline for recognition
    • Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. CNN Features off-the-shelf: an Astounding Baseline for Recognition. CoRR, abs/1403.6382, 2014.
    • (2014) CoRR
    • Razavian, A.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 30
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. In Proc. ICLR, 2014.
    • (2014) Proc. ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 31
    • 84924949081 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • Published in Proc. NIPS, 2014
    • Simonyan, K. and Zisserman, A. Two-stream convolutional networks for action recognition in videos. CoRR, abs/1406.2199, 2014. Published in Proc. NIPS, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 34
    • 84906341064 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Published in Proc. ECCV, 2014
    • Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013. Published in Proc. ECCV, 2014.
    • (2013) CoRR
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.