메뉴 건너뛰기




Volumn 115, Issue 3, 2015, Pages 330-344

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

Author keywords

Convolutional neural networks; Deep learning; Feature learning; Saliency detection

Indexed keywords

COMPUTER VISION; CONVOLUTION; FEATURE EXTRACTION; NEURAL NETWORKS; OBJECT RECOGNITION;

EID: 84947025839     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-015-0822-0     Document Type: Article
Times cited : (289)

References (50)
  • 1
    • 70450186191 scopus 로고    scopus 로고
    • Frequency-tuned salient region detection
    • Achanta, R., Hemami, S., Estrada, F., & Susstrunk, S. (2009). Frequency-tuned salient region detection. In CVPR (pp. 1597–1604).
    • (2009) In CVPR , pp. 1597-1604
    • Achanta, R.1    Hemami, S.2    Estrada, F.3    Susstrunk, S.4
  • 2
    • 84866657764 scopus 로고    scopus 로고
    • SLIC superpixels compared to state-of-the-art superpixel methods
    • Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Ssstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI (pp. 2274–2282).
    • (2012) IEEE TPAMI , pp. 2274-2282
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Ssstrunk, S.6
  • 3
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE TPAMI, 33(5), 898–916.
    • (2011) IEEE TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 4
    • 34547653853 scopus 로고    scopus 로고
    • Seam carving for content-aware image resizing
    • Avidan, S., & Shamir, A. (2007). Seam carving for content-aware image resizing. ACM TOG, 26(3), 10.
    • (2007) ACM TOG , vol.26 , Issue.3 , pp. 10
    • Avidan, S.1    Shamir, A.2
  • 5
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the netflix prize challenge
    • Bell, R., & Koren, Y. (2007). Lessons from the netflix prize challenge. SIGKDD Explorations Newsletter, 9(2), 75–79.
    • (2007) SIGKDD Explorations Newsletter , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.1    Koren, Y.2
  • 6
    • 84866641899 scopus 로고    scopus 로고
    • Boosting bottom-up and top-down visual features for saliency estimation
    • Borji, A. (2012). Boosting bottom-up and top-down visual features for saliency estimation. In CVPR (pp. 438–445).
    • (2012) In CVPR , pp. 438-445
    • Borji, A.1
  • 7
    • 84947017723 scopus 로고    scopus 로고
    • Borji, A., Sihite, D., & Itti, L. (2012). Salient object detection: A benchmark. In ECCV
    • Borji, A., Sihite, D., & Itti, L. (2012). Salient object detection: A benchmark. In ECCV.
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 80052948224 scopus 로고    scopus 로고
    • Global contrast based salient region detection
    • Cheng, M., Zhang, G., Mitra, N., Huang, X., & Hu, S. (2011). Global contrast based salient region detection. In CVPR (pp. 409–416).
    • (2011) In CVPR , pp. 409-416
    • Cheng, M.1    Zhang, G.2    Mitra, N.3    Huang, X.4    Hu, S.5
  • 10
    • 80054740693 scopus 로고    scopus 로고
    • A committee of neural networks for traffic sign classification
    • Ciresan, D., Meier, U., Masci, J., & Schmidhuber, J. (2011). A committee of neural networks for traffic sign classification. In IJCNN (pp. 1918–1921).
    • (2011) In IJCNN , pp. 1918-1921
    • Ciresan, D.1    Meier, U.2    Masci, J.3    Schmidhuber, J.4
  • 11
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • Ciresan, D.C., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In CVPR (pp. 3642–3649).
    • (2012) In CVPR , pp. 3642-3649
    • Ciresan, D.C.1    Meier, U.2    Schmidhuber, J.3
  • 12
    • 84947041692 scopus 로고    scopus 로고
    • Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A Matlab-like environment for machine learning. In BigLearn NIPS Workshop
    • Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A Matlab-like environment for machine learning. In BigLearn NIPS Workshop.
  • 13
    • 0037353547 scopus 로고    scopus 로고
    • Does luminance-contrast contribute to a saliency map for overt visualn attention?
    • Einhauser, W., & Konig, P. (2003). Does luminance-contrast contribute to a saliency map for overt visualn attention? European Journal of Neuroscience, 17(5), 1089–1097.
    • (2003) European Journal of Neuroscience , vol.17 , Issue.5 , pp. 1089-1097
    • Einhauser, W.1    Konig, P.2
  • 14
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • Farabet, C., Couprie, C., Najman, L., & Lecun, Y. (2013). Learning hierarchical features for scene labeling. IEEE TPAMI, 35(8), 1915–1929.
    • (2013) IEEE TPAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    Lecun, Y.4
  • 15
    • 85119024550 scopus 로고    scopus 로고
    • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR
    • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR.
  • 16
    • 77956008283 scopus 로고    scopus 로고
    • Goferman, S., Zelnik-Manor, L., & Tal, A. (2010). Context-aware saliency detection. In CVPR
    • Goferman, S., Zelnik-Manor, L., & Tal, A. (2010). Context-aware saliency detection. In CVPR.
  • 17
    • 84864037603 scopus 로고    scopus 로고
    • Graph-based visual saliency
    • Harel, J., Koch, C., & Perona, P. (2007). Graph-based visual saliency. In NIPS (pp. 545–552).
    • (2007) In NIPS , pp. 545-552
    • Harel, J.1    Koch, C.2    Perona, P.3
  • 18
    • 84906499178 scopus 로고    scopus 로고
    • Saliency detection with flash and no-flash image pairs
    • He, S., & Lau, R. (2014). Saliency detection with flash and no-flash image pairs. In ECCV (pp. 110–124).
    • (2014) In ECCV , pp. 110-124
    • He, S.1    Lau, R.2
  • 20
    • 0035511645 scopus 로고    scopus 로고
    • The spatial resolution of visual attention
    • Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43(3), 171–216.
    • (2001) Cognitive Psychology , vol.43 , Issue.3 , pp. 171-216
    • Intriligator, J.1    Cavanagh, P.2
  • 21
    • 0035286497 scopus 로고    scopus 로고
    • Computational modelling of visual attention
    • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.
    • (2001) Nature Reviews Neuroscience , vol.2 , Issue.3 , pp. 194-203
    • Itti, L.1    Koch, C.2
  • 22
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI, 20(11), 1254–1259.
    • (1998) IEEE TPAMI , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 23
    • 84898491541 scopus 로고    scopus 로고
    • Jiang, H., Wang, J., Yuan, Z., Liu, T., & Zheng, N. (2011). Automatic salient object segmentation based on context and shape prior. In BMVC
    • Jiang, H., Wang, J., Yuan, Z., Liu, T., & Zheng, N. (2011). Automatic salient object segmentation based on context and shape prior. In BMVC.
  • 24
    • 84887392014 scopus 로고    scopus 로고
    • Salient object detection: A discriminative regional feature integration approach
    • Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., & Li, S. (2013). Salient object detection: A discriminative regional feature integration approach. In CVPR (pp. 2083–2090).
    • (2013) In CVPR , pp. 2083-2090
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Wu, Y.4    Zheng, N.5    Li, S.6
  • 25
    • 84898823850 scopus 로고    scopus 로고
    • Jiang, P., Ling, H., Yu, J., & Peng, J. (2013). Salient region detection by ufo: Uniqueness, focusness and objectness. In ICCV
    • Jiang, P., Ling, H., Yu, J., & Peng, J. (2013). Salient region detection by ufo: Uniqueness, focusness and objectness. In ICCV.
  • 26
    • 0022388528 scopus 로고
    • Shifts in selective visual attention: Towards the underlying neural circuitry
    • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4, 219–227.
    • (1985) Human Neurobiology , vol.4 , pp. 219-227
    • Koch, C.1    Ullman, S.2
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In NIPS (pp. 1106–1114).
    • (2012) In NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 28
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 29
    • 0042565834 scopus 로고    scopus 로고
    • Hierarchical Bayesian inference in the visual cortex
    • Lee, T., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, 20(7), 1434–1448.
    • (2003) Journal of the Optical Society of America A , vol.20 , Issue.7 , pp. 1434-1448
    • Lee, T.1    Mumford, D.2
  • 30
    • 84939885143 scopus 로고    scopus 로고
    • Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network
    • Li, S., Liu, Z.Q., & Chan, A. (2014). Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network. In IJCV (pp. 1–18).
    • (2014) In IJCV , pp. 1-18
    • Li, S.1    Liu, Z.Q.2    Chan, A.3
  • 32
    • 84866723453 scopus 로고    scopus 로고
    • Learning attention map from images
    • Lu, Y., Zhang, W., Jin, C., & Xue, X. (2012). Learning attention map from images. In CVPR (pp. 1067–1074).
    • (2012) In CVPR , pp. 1067-1074
    • Lu, Y.1    Zhang, W.2    Jin, C.3    Xue, X.4
  • 33
    • 2342589340 scopus 로고    scopus 로고
    • Contrast-based image attention analysis by using fuzzy growing
    • Ma, Y., & Zhang, H. (2003). Contrast-based image attention analysis by using fuzzy growing. In ACM Multimedia (pp. 374–381).
    • (2003) In ACM Multimedia , pp. 374-381
    • Ma, Y.1    Zhang, H.2
  • 34
    • 0036126103 scopus 로고    scopus 로고
    • Directing attention to locations and to sensory modalities: Multiple levels of selective processing revealed with pet
    • Macaluso, E., Frith, C., & Driver, J. (2002). Directing attention to locations and to sensory modalities: Multiple levels of selective processing revealed with pet. Cerebral Cortex, 12(4), 357–368.
    • (2002) Cerebral Cortex , vol.12 , Issue.4 , pp. 357-368
    • Macaluso, E.1    Frith, C.2    Driver, J.3
  • 35
    • 77953210642 scopus 로고    scopus 로고
    • A framework for visual saliency detection with applications to image thumbnailing
    • Marchesotti, L., Cifarelli, C., & Csurka, G. (2009). A framework for visual saliency detection with applications to image thumbnailing. In CVPR (pp. 2232–2239).
    • (2009) In CVPR , pp. 2232-2239
    • Marchesotti, L.1    Cifarelli, C.2    Csurka, G.3
  • 36
    • 84887324302 scopus 로고    scopus 로고
    • Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct? In CVPR
    • Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct? In CVPR.
  • 37
    • 84898797836 scopus 로고    scopus 로고
    • Ming-Chng, Warrell, J., Lin, W., Zheng, S., Vineet, V., & Crook, N. (2013). Efficient salient region detection with soft image abstraction. In ICCV
    • Ming-Chng, Warrell, J., Lin, W., Zheng, S., Vineet, V., & Crook, N. (2013). Efficient salient region detection with soft image abstraction. In ICCV.
  • 39
    • 34249661090 scopus 로고    scopus 로고
    • Synergistic face detection and pose estimation with energy-based models
    • Osadchy, M., LeCun, Y., & Miller, M. (2007). Synergistic face detection and pose estimation with energy-based models. Journal of Machine Learning Research, 8, 1197–1215.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1197-1215
    • Osadchy, M.1    LeCun, Y.2    Miller, M.3
  • 40
    • 0036160528 scopus 로고    scopus 로고
    • Modeling the role of salience in the allocation of overt visual attention
    • Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42(1), 107–123.
    • (2002) Vision Research , vol.42 , Issue.1 , pp. 107-123
    • Parkhurst, D.1    Law, K.2    Niebur, E.3
  • 41
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012). Saliency filters: Contrast based filtering for salient region detection. In CVPR (pp. 733–740).
    • (2012) In CVPR , pp. 733-740
    • Perazzi, F.1    Krähenbühl, P.2    Pritch, Y.3    Hornung, A.4
  • 42
    • 84925305292 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene parsing
    • Pinheiro, P., & Collobert, R. (2014). Recurrent convolutional neural networks for scene parsing. In ICML (pp. 82–90).
    • (2014) In ICML , pp. 82-90
    • Pinheiro, P.1    Collobert, R.2
  • 43
    • 84947043144 scopus 로고    scopus 로고
    • Shen, C., Mingli, S., & Zhao, Q. (2012). Learning high-level concepts by training a deep network on eye fixations. In Deep Learning and Unsupervised Feature Learning NIPS Workshop
    • Shen, C., Mingli, S., & Zhao, Q. (2012). Learning high-level concepts by training a deep network on eye fixations. In Deep Learning and Unsupervised Feature Learning NIPS Workshop.
  • 44
    • 84887364811 scopus 로고    scopus 로고
    • Deep convolutional network cascade for facial point detection
    • Sun, Y., Wang, X., & Tang, X. (2013). Deep convolutional network cascade for facial point detection. In CVPR (pp. 3476–3483).
    • (2013) In CVPR , pp. 3476-3483
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 46
    • 36448979181 scopus 로고    scopus 로고
    • The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions
    • Tatler, B. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision, 7(14), 4, 1–17.
    • (2007) Journal of Vision , vol.4 , pp. 1-17
    • Tatler, B.1
  • 47
    • 80053106764 scopus 로고    scopus 로고
    • Computational versus psychophysical bottom-up image saliency: A comparative evaluation study
    • Toet, A. (2011). Computational versus psychophysical bottom-up image saliency: A comparative evaluation study. IEEE TPAMI, 33(11), 2131–2146.
    • (2011) IEEE TPAMI , vol.33 , Issue.11 , pp. 2131-2146
    • Toet, A.1
  • 48
    • 84862262021 scopus 로고    scopus 로고
    • Xdog: An extended difference-of-gaussians compendium including advanced image stylization
    • Winnemoller, H., Kyprianidis, J., & Olsen, S. (2012). Xdog: An extended difference-of-gaussians compendium including advanced image stylization. Computers & Graphics, 36(6), 740–753.
    • (2012) Computers & Graphics , vol.36 , Issue.6 , pp. 740-753
    • Winnemoller, H.1    Kyprianidis, J.2    Olsen, S.3
  • 49
    • 84887322898 scopus 로고    scopus 로고
    • Yan, Q., Xu, L., Shi, J., & Jia, J. (2013). Hierachical saliency detection. In CVPR
    • Yan, Q., Xu, L., Shi, J., & Jia, J. (2013). Hierachical saliency detection. In CVPR.
  • 50
    • 84887357058 scopus 로고    scopus 로고
    • Yang, C., Zhang, L., Lu, H., Ruan, X., & Yang, M. (2013). Saliency detection via graph-based manifold ranking. In CVPR
    • Yang, C., Zhang, L., Lu, H., Ruan, X., & Yang, M. (2013). Saliency detection via graph-based manifold ranking. In CVPR.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.