메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2650-2658

Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; CONVOLUTION; IMAGE SEGMENTATION; NETWORK ARCHITECTURE; SEMANTICS;

EID: 84973897611     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.304     Document Type: Conference Paper
Times cited : (2975)

References (38)
  • 2
    • 84887363304 scopus 로고    scopus 로고
    • Intrinsic scene properties from a single rgb-d image
    • 1, 2
    • J. T. Barron and J. Malik. Intrinsic scene properties from a single rgb-d image. CVPR, 2013. 1, 2
    • (2013) CVPR
    • Barron, J.T.1    Malik, J.2
  • 3
    • 84947217753 scopus 로고    scopus 로고
    • Shape, illumination, and reflectance from shading
    • 1, 2
    • J. T. Barron and J. Malik. Shape, illumination, and reflectance from shading. TPAMI, 2015. 1, 2
    • (2015) TPAMI
    • Barron, J.T.1    Malik, J.2
  • 4
    • 84861335581 scopus 로고    scopus 로고
    • Cpmc: Automatic object segmentation using constrained parametric min-cuts
    • 2
    • J. Carreira and C. Sminchisescu. Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI, 2012. 2
    • (2012) PAMI
    • Carreira, J.1    Sminchisescu, C.2
  • 5
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • 6
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR, 2015. 6
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 6
    • 85083953146 scopus 로고    scopus 로고
    • Indoor semantic segmentation using depth information
    • 2, 3, 5, 6
    • C. Couprie, C. Farabet, L. Najman, and Y. LeCun. Indoor semantic segmentation using depth information. ICLR, 2013. 2, 3, 5, 6
    • (2013) ICLR
    • Couprie, C.1    Farabet, C.2    Najman, L.3    LeCun, Y.4
  • 8
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • 1, 3, 5
    • D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. NIPS, 2014. 1, 3, 5
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 10
    • 84898832490 scopus 로고    scopus 로고
    • Data-driven 3d primitives for single image understanding
    • 1, 5, 7
    • D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d primitives for single image understanding. In ICCV, 2013. 1, 5, 7
    • (2013) ICCV
    • Fouhey, D.F.1    Gupta, A.2    Hebert, M.3
  • 11
    • 84959200391 scopus 로고    scopus 로고
    • Unfolding an indoor origami world
    • 1, 2, 5
    • D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami world. In ECCV, 2014. 1, 2, 5
    • (2014) ECCV
    • Fouhey, D.F.1    Gupta, A.2    Hebert, M.3
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014. 1
    • (2014) CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84887380335 scopus 로고    scopus 로고
    • Perceptual organization and recognition of indoor scenes from rgb-d images
    • 2, 5, 6
    • S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition of indoor scenes from rgb-d images. In CVPR, 2013. 2, 5, 6
    • (2013) CVPR
    • Gupta, S.1    Arbelaez, P.2    Malik, J.3
  • 14
    • 84922645579 scopus 로고    scopus 로고
    • Learning rich features from rgb-d images for object detection and segmentation
    • 1, 2, 4, 6
    • S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from rgb-d images for object detection and segmentation. In ECCV. 2014. 1, 2, 4, 6
    • (2014) ECCV
    • Gupta, S.1    Girshick, R.2    Arbeláez, P.3    Malik, J.4
  • 15
    • 84973884953 scopus 로고    scopus 로고
    • Geometry driven semantic labeling of indoor scenes
    • 2, 6
    • S. K. Hameed, M. Bennamoun, F. Sohel, and R. Togneri. Geometry driven semantic labeling of indoor scenes. In ECCV. 2014. 2, 6
    • (2014) ECCV
    • Hameed, S.K.1    Bennamoun, M.2    Sohel, F.3    Togneri, R.4
  • 17
    • 84929208272 scopus 로고    scopus 로고
    • Dense 3d semantic mapping of indoor scenes from rgb-d images
    • 2, 6
    • A. Hermans, G. Floros, and B. Leibe. Dense 3d semantic mapping of indoor scenes from rgb-d images. ICRA, 2014. 2, 6
    • (2014) ICRA
    • Hermans, A.1    Floros, G.2    Leibe, B.3
  • 18
    • 84887384531 scopus 로고    scopus 로고
    • Depth extraction from video using non-parametric sampling
    • 5
    • K. Karsch, C. Liu, S. B. Kang, and N. England. Depth extraction from video using non-parametric sampling. In TPAMI, 2014. 5
    • (2014) TPAMI
    • Karsch, K.1    Liu, C.2    Kang, S.B.3    England, N.4
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 3
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 3
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 20
    • 84911412663 scopus 로고    scopus 로고
    • Pulling things out of perspective
    • 4, 5
    • L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of perspective. In CVPR, 2014. 4, 5
    • (2014) CVPR
    • Ladicky, L.1    Shi, J.2    Pollefeys, M.3
  • 26
    • 84929208342 scopus 로고    scopus 로고
    • Learning depth-sensitive conditional random fields for semantic segmentation of rgb-d images
    • 2, 6
    • A. C. Muller and S. Behnke. Learning depth-sensitive conditional random fields for semantic segmentation of rgb-d images. ICRA, 2014. 2, 6
    • (2014) ICRA
    • Muller, A.C.1    Behnke, S.2
  • 27
    • 84878361931 scopus 로고    scopus 로고
    • Synergistic face detection and pose estimation with energy-based models
    • Springer 1
    • M. Osadchy, Y. Le Cun, and M. L. Miller. Synergistic face detection and pose estimation with energy-based models. In Toward Category-Level Object Recognition, pages 196-206. Springer, 2006. 1
    • (2006) Toward Category-Level Object Recognition , pp. 196-206
    • Osadchy, M.1    Le Cun, Y.2    Miller, M.L.3
  • 28
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling
    • 2, 6
    • P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014. 2, 6
    • (2014) ICML
    • Pinheiro, P.1    Collobert, R.2
  • 29
    • 84866653395 scopus 로고    scopus 로고
    • Rgb-(d) scene labeling: Features and algorithms
    • 2
    • X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features and algorithms. In CVPR, 2012. 2
    • (2012) CVPR
    • Ren, X.1    Bo, L.2    Fox, D.3
  • 30
    • 84906347546 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • 1
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR, 2013. 1
    • (2013) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 31
    • 84881536861 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • 2, 4, 5
    • N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012. 2, 4, 5
    • (2012) ECCV
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 35
    • 84887363465 scopus 로고    scopus 로고
    • Finding things: Image parsing with regions and per-exemplar detectors
    • 2, 6
    • J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-exemplar detectors. In CVPR, 2013. 2, 6
    • (2013) CVPR
    • Tighe, J.1    Lazebnik, S.2
  • 36
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • 1
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. NIPS, 2014. 1
    • (2014) NIPS
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 37
    • 84928501500 scopus 로고    scopus 로고
    • Multimodal unsupervised feature learning for rgb-d scene labeling
    • 1, 2, 5, 6, 7
    • A. Wang, J. Lu, G. Wang, J. Cai, and T.-J. Cham. Multimodal unsupervised feature learning for rgb-d scene labeling. In ECCV. 2014. 1, 2, 5, 6, 7
    • (2014) ECCV
    • Wang, A.1    Lu, J.2    Wang, G.3    Cai, J.4    Cham, T.-J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.