-
2
-
-
84887363304
-
Intrinsic scene properties from a single rgb-d image
-
1, 2
-
J. T. Barron and J. Malik. Intrinsic scene properties from a single rgb-d image. CVPR, 2013. 1, 2
-
(2013)
CVPR
-
-
Barron, J.T.1
Malik, J.2
-
3
-
-
84947217753
-
Shape, illumination, and reflectance from shading
-
1, 2
-
J. T. Barron and J. Malik. Shape, illumination, and reflectance from shading. TPAMI, 2015. 1, 2
-
(2015)
TPAMI
-
-
Barron, J.T.1
Malik, J.2
-
4
-
-
84861335581
-
Cpmc: Automatic object segmentation using constrained parametric min-cuts
-
2
-
J. Carreira and C. Sminchisescu. Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI, 2012. 2
-
(2012)
PAMI
-
-
Carreira, J.1
Sminchisescu, C.2
-
5
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
6
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR, 2015. 6
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
6
-
-
85083953146
-
Indoor semantic segmentation using depth information
-
2, 3, 5, 6
-
C. Couprie, C. Farabet, L. Najman, and Y. LeCun. Indoor semantic segmentation using depth information. ICLR, 2013. 2, 3, 5, 6
-
(2013)
ICLR
-
-
Couprie, C.1
Farabet, C.2
Najman, L.3
LeCun, Y.4
-
8
-
-
84937943470
-
Depth map prediction from a single image using a multi-scale deep network
-
1, 3, 5
-
D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. NIPS, 2014. 1, 3, 5
-
(2014)
NIPS
-
-
Eigen, D.1
Puhrsch, C.2
Fergus, R.3
-
9
-
-
84867136939
-
-
arXiv 1202 2160. 2, 3, 6
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing with multiscale feature learning, purity trees, and optimal covers. arXiv: 1202. 2160, 2012. 2, 3, 6
-
(2012)
Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
10
-
-
84898832490
-
Data-driven 3d primitives for single image understanding
-
1, 5, 7
-
D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d primitives for single image understanding. In ICCV, 2013. 1, 5, 7
-
(2013)
ICCV
-
-
Fouhey, D.F.1
Gupta, A.2
Hebert, M.3
-
11
-
-
84959200391
-
Unfolding an indoor origami world
-
1, 2, 5
-
D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami world. In ECCV, 2014. 1, 2, 5
-
(2014)
ECCV
-
-
Fouhey, D.F.1
Gupta, A.2
Hebert, M.3
-
12
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
1
-
R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014. 1
-
(2014)
CVPR
-
-
Girshick, R.B.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
13
-
-
84887380335
-
Perceptual organization and recognition of indoor scenes from rgb-d images
-
2, 5, 6
-
S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition of indoor scenes from rgb-d images. In CVPR, 2013. 2, 5, 6
-
(2013)
CVPR
-
-
Gupta, S.1
Arbelaez, P.2
Malik, J.3
-
14
-
-
84922645579
-
Learning rich features from rgb-d images for object detection and segmentation
-
1, 2, 4, 6
-
S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from rgb-d images for object detection and segmentation. In ECCV. 2014. 1, 2, 4, 6
-
(2014)
ECCV
-
-
Gupta, S.1
Girshick, R.2
Arbeláez, P.3
Malik, J.4
-
17
-
-
84929208272
-
Dense 3d semantic mapping of indoor scenes from rgb-d images
-
2, 6
-
A. Hermans, G. Floros, and B. Leibe. Dense 3d semantic mapping of indoor scenes from rgb-d images. ICRA, 2014. 2, 6
-
(2014)
ICRA
-
-
Hermans, A.1
Floros, G.2
Leibe, B.3
-
18
-
-
84887384531
-
Depth extraction from video using non-parametric sampling
-
5
-
K. Karsch, C. Liu, S. B. Kang, and N. England. Depth extraction from video using non-parametric sampling. In TPAMI, 2014. 5
-
(2014)
TPAMI
-
-
Karsch, K.1
Liu, C.2
Kang, S.B.3
England, N.4
-
19
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
1, 3
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 3
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
20
-
-
84911412663
-
Pulling things out of perspective
-
4, 5
-
L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of perspective. In CVPR, 2014. 4, 5
-
(2014)
CVPR
-
-
Ladicky, L.1
Shi, J.2
Pollefeys, M.3
-
24
-
-
84937144752
-
-
CoRR, abs/1411. 4038 2, 6
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CoRR, abs/1411. 4038, 2014. 2, 6
-
(2014)
Fully Convolutional Networks for Semantic Segmentation
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
26
-
-
84929208342
-
Learning depth-sensitive conditional random fields for semantic segmentation of rgb-d images
-
2, 6
-
A. C. Muller and S. Behnke. Learning depth-sensitive conditional random fields for semantic segmentation of rgb-d images. ICRA, 2014. 2, 6
-
(2014)
ICRA
-
-
Muller, A.C.1
Behnke, S.2
-
27
-
-
84878361931
-
Synergistic face detection and pose estimation with energy-based models
-
Springer 1
-
M. Osadchy, Y. Le Cun, and M. L. Miller. Synergistic face detection and pose estimation with energy-based models. In Toward Category-Level Object Recognition, pages 196-206. Springer, 2006. 1
-
(2006)
Toward Category-Level Object Recognition
, pp. 196-206
-
-
Osadchy, M.1
Le Cun, Y.2
Miller, M.L.3
-
28
-
-
84919790220
-
Recurrent convolutional neural networks for scene labeling
-
2, 6
-
P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014. 2, 6
-
(2014)
ICML
-
-
Pinheiro, P.1
Collobert, R.2
-
29
-
-
84866653395
-
Rgb-(d) scene labeling: Features and algorithms
-
2
-
X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features and algorithms. In CVPR, 2012. 2
-
(2012)
CVPR
-
-
Ren, X.1
Bo, L.2
Fox, D.3
-
30
-
-
84906347546
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
1
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR, 2013. 1
-
(2013)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
31
-
-
84881536861
-
Indoor segmentation and support inference from rgbd images
-
2, 4, 5
-
N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012. 2, 4, 5
-
(2012)
ECCV
-
-
Silberman, N.1
Hoiem, D.2
Kohli, P.3
Fergus, R.4
-
34
-
-
84964983441
-
-
1 CoRR, abs/1409. 4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CoRR, abs/1409. 4842, 2014. 1
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
35
-
-
84887363465
-
Finding things: Image parsing with regions and per-exemplar detectors
-
2, 6
-
J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-exemplar detectors. In CVPR, 2013. 2, 6
-
(2013)
CVPR
-
-
Tighe, J.1
Lazebnik, S.2
-
36
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
1
-
J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. NIPS, 2014. 1
-
(2014)
NIPS
-
-
Tompson, J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
37
-
-
84928501500
-
Multimodal unsupervised feature learning for rgb-d scene labeling
-
1, 2, 5, 6, 7
-
A. Wang, J. Lu, G. Wang, J. Cai, and T.-J. Cham. Multimodal unsupervised feature learning for rgb-d scene labeling. In ECCV. 2014. 1, 2, 5, 6, 7
-
(2014)
ECCV
-
-
Wang, A.1
Lu, J.2
Wang, G.3
Cai, J.4
Cham, T.-J.5
|