메뉴 건너뛰기




Volumn 53, Issue , 2016, Pages 130-147

3D skeleton-based human action classification: A survey

Author keywords

Action classification; Action recognition; Body joint; Body pose representation; Skeleton

Indexed keywords

DATA HANDLING; MOTION ESTIMATION; MUSCULOSKELETAL SYSTEM; SURVEYS;

EID: 84958104996     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.11.019     Document Type: Article
Times cited : (413)

References (152)
  • 2
    • 84863040795 scopus 로고    scopus 로고
    • A string of feature graphs model for recognition of complex activities in natural videos
    • IEEE, Barcelona, Spain
    • U. Gaur, Y. Zhu, B. Song, A. Roy-Chowdhury, A string of feature graphs model for recognition of complex activities in natural videos, in: Proceedings of International Conference on Computer Vision (ICCV), IEEE, Barcelona, Spain, 2011, pp. 2595-2602, http://dx.doi.org/10.1109/ICCV.2011.6126548.
    • (2011) Proceedings of International Conference on Computer Vision (ICCV) , pp. 2595-2602
    • Gaur, U.1    Zhu, Y.2    Song, B.3    Roy-Chowdhury, A.4
  • 3
    • 85021151284 scopus 로고    scopus 로고
    • Recognition of two-person interactions using a hierarchical Bayesian network
    • Berkeley, California
    • S. Park, J. Aggarwal, Recognition of two-person interactions using a hierarchical Bayesian network, in: First ACM SIGMM International Workshop on Video surveillance, ACM, Berkeley, California, 2003, pp. 65-76, http://dx.doi.org/10.1145/982452.982461.
    • (2003) First ACM SIGMM International Workshop on Video Surveillance, ACM , pp. 65-76
    • Park, S.1    Aggarwal, J.2
  • 4
    • 78649327362 scopus 로고    scopus 로고
    • View-independent action recognition from temporal self-similarities
    • I. Junejo, E. Dexter, I. Laptev, and P. Pérez View-independent action recognition from temporal self-similarities IEEE Trans. Pattern Anal. Mach. Intell. 33 1 2011 172 185 10.1109/TPAMI.2010.68
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.1 , pp. 172-185
    • Junejo, I.1    Dexter, E.2    Laptev, I.3    Pérez, P.4
  • 5
    • 0043262133 scopus 로고    scopus 로고
    • Integrating perceptual and cognitive modeling for adaptive and intelligent human-computer interaction
    • Z. Duric, W. Gray, R. Heishman, F. Li, A. Rosenfeld, M. Schoelles, C. Schunn, and H. Wechsler Integrating perceptual and cognitive modeling for adaptive and intelligent human-computer interaction Proc. IEEE 90 2002 1272 1289 10.1109/JPROC.2002.801449
    • (2002) Proc. IEEE , vol.90 , pp. 1272-1289
    • Duric, Z.1    Gray, W.2    Heishman, R.3    Li, F.4    Rosenfeld, A.5    Schoelles, M.6    Schunn, C.7    Wechsler, H.8
  • 6
    • 80053625533 scopus 로고    scopus 로고
    • A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities
    • Y.-J. Chang, S.-F. Chen, and J.-D. Huang A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities Res. Dev. Disabil. 32 6 2011 2566 2570 10.1016/j.ridd.2011.07.002
    • (2011) Res. Dev. Disabil. , vol.32 , Issue.6 , pp. 2566-2570
    • Chang, Y.-J.1    Chen, S.-F.2    Huang, J.-D.3
  • 13
    • 0035271128 scopus 로고    scopus 로고
    • A survey of computer vision-based human motion capture
    • T.B. Moeslund, and E. Granum A survey of computer vision-based human motion capture Comput. Vis. Image Underst. 81 3 2001 231 268 10.1006/cviu.2000.0897
    • (2001) Comput. Vis. Image Underst. , vol.81 , Issue.3 , pp. 231-268
    • Moeslund, T.B.1    Granum, E.2
  • 15
    • 77949275097 scopus 로고    scopus 로고
    • A survey on vision-based human action recognition
    • R. Poppe A survey on vision-based human action recognition Image Vis. Comput. 28 6 2010 976 990 10.1016/j.imavis.2009.11.014
    • (2010) Image Vis. Comput. , vol.28 , Issue.6 , pp. 976-990
    • Poppe, R.1
  • 16
    • 78751648503 scopus 로고    scopus 로고
    • A survey of vision-based methods for action representation, segmentation and recognition
    • D. Weinland, R. Ronfard, and E. Boyer A survey of vision-based methods for action representation, segmentation and recognition Comput. Vis. Image Underst. 115 2 2011 224 241 10.1016/j.cviu.2010.10.002
    • (2011) Comput. Vis. Image Underst. , vol.115 , Issue.2 , pp. 224-241
    • Weinland, D.1    Ronfard, R.2    Boyer, E.3
  • 17
    • 84928273573 scopus 로고    scopus 로고
    • Semantic human activity recognition: A literature review
    • M. Ziaeefar, and R. Bergevin Semantic human activity recognition: a literature review Pattern Recognit. 8 48 2015 2329 2345 10.1016/j.patcog.2015.03.006
    • (2015) Pattern Recognit. , vol.8 , Issue.48 , pp. 2329-2345
    • Ziaeefar, M.1    Bergevin, R.2
  • 18
    • 84902318725 scopus 로고    scopus 로고
    • A survey on still image based human action recognition
    • G. Guo, and A. Lai A survey on still image based human action recognition Pattern Recognit. 47 10 2014 3343 3361 10.1016/j.patcog.2014.04.018
    • (2014) Pattern Recognit. , vol.47 , Issue.10 , pp. 3343-3361
    • Guo, G.1    Lai, A.2
  • 19
    • 84921772594 scopus 로고    scopus 로고
    • Fuzzy human motion analysis: A review
    • C.H. Lim, E. Vats, and C.S. Chan Fuzzy human motion analysis: a review Pattern Recognit. 48 5 2015 1773 1796 10.1016/j.patcog.2014.11.016
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1773-1796
    • Lim, C.H.1    Vats, E.2    Chan, C.S.3
  • 23
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • IEEE, Kyoto, Japan
    • L. Bourdev, J. Malik, Poselets: body part detectors trained using 3D human pose annotations, in: Proceedings of International Conference on Computer Vision (ICCV), IEEE, Kyoto, Japan, 2009, pp. 1365-1372, http://dx.doi.org/10.1109/ICCV.2009.5459303.
    • (2009) Proceedings of International Conference on Computer Vision (ICCV) , pp. 1365-1372
    • Bourdev, L.1    Malik, J.2
  • 26
    • 34948833676 scopus 로고    scopus 로고
    • Single view human action recognition using key pose matching and Viterbi path searching
    • IEEE, Minneapolis, Minnesota
    • F. Lv, R. Nevatia, Single view human action recognition using key pose matching and Viterbi path searching, in: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Minneapolis, Minnesota, 2007, pp. 1-8.
    • (2007) Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 1-8
    • Lv, F.1    Nevatia, R.2
  • 29
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • H. Wang, A. Kläser, C. Schmid, and C.-L. Liu Dense trajectories and motion boundary descriptors for action recognition Int. J. Comput. Vis. 103 1 2013 60 79 10.1007/s11263-012-0594-8
    • (2013) Int. J. Comput. Vis. , vol.103 , Issue.1 , pp. 60-79
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.-L.4
  • 30
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J.C. Niebles, H. Wang, and L. Fei-Fei Unsupervised learning of human action categories using spatial-temporal words Int. J. Comput. Vis. 79 3 2008 299 318 10.1007/s11263-007-0122-4
    • (2008) Int. J. Comput. Vis. , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 31
    • 0015721589 scopus 로고
    • Visual perception of biological motion and a model for its analysis
    • G. Johansson Visual perception of biological motion and a model for its analysis Percept. Psychophys. 14 2 1973 201 211
    • (1973) Percept. Psychophys. , vol.14 , Issue.2 , pp. 201-211
    • Johansson, G.1
  • 32
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • IEEE, Providence, Rhode Island
    • S. Sadanand, J.J. Corso, Action bank: a high-level representation of activity in video, in: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, Rhode Island, 2012, pp. 1234-1241, http://dx.doi.org/10.1109/CVPR.2012.6247806.
    • (2012) Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 1234-1241
    • Sadanand, S.1    Corso, J.J.2
  • 38
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P.F. Felzenszwalb, and D.P. Huttenlocher Pictorial structures for object recognition Int. J. Comput. Vis. 61 1 2005 55 79 10.1023/B:VISI.0000042934.15159.49
    • (2005) Int. J. Comput. Vis. , vol.61 , Issue.1 , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 41
    • 84898426452 scopus 로고    scopus 로고
    • A spatio-temporal descriptor based on 3d-gradients
    • BMVA Press, Leeds, UK 1
    • A. Klaser, M. Marszałek, C. Schmid, A spatio-temporal descriptor based on 3d-gradients, in: Proceedings of British Machine Vision Conference (BMVC), BMVA Press, Leeds, UK. 2008, p. 275:1.
    • (2008) Proceedings of British Machine Vision Conference (BMVC) , pp. 275
    • Klaser, A.1
  • 42
    • 84875243023 scopus 로고    scopus 로고
    • Learning discriminative features for fast frame-based action recognition
    • L. Wang, Y. Wang, T. Jiang, D. Zhao, and W. Gao Learning discriminative features for fast frame-based action recognition Pattern Recognit. 46 7 2013 1832 1840 10.1016/j.patcog.2012.08.016
    • (2013) Pattern Recognit. , vol.46 , Issue.7 , pp. 1832-1840
    • Wang, L.1    Wang, Y.2    Jiang, T.3    Zhao, D.4    Gao, W.5
  • 43
    • 77953210669 scopus 로고    scopus 로고
    • Fast realistic multi-action recognition using mined dense spatio-temporal features
    • IEEE, Kyoto, Japan
    • A. Gilbert, J. Illingworth, R. Bowden, Fast realistic multi-action recognition using mined dense spatio-temporal features, in: Proceedings of International Conference on Computer Vision (ICCV), IEEE, Kyoto, Japan, 2009, pp. 925-931, http://dx.doi.org/10.1109/ICCV.2009.5459335.
    • (2009) Proceedings of International Conference on Computer Vision (ICCV) , pp. 925-931
    • Gilbert, A.1    Illingworth, J.2    Bowden, R.3
  • 46
    • 84879553900 scopus 로고    scopus 로고
    • Recognizing 50 human action categories of web videos
    • K.K. Reddy, and M. Shah Recognizing 50 human action categories of web videos Mach. Vis. Appl. 24 5 2013 971 981
    • (2013) Mach. Vis. Appl. , vol.24 , Issue.5 , pp. 971-981
    • Reddy, K.K.1    Shah, M.2
  • 47
    • 84893694309 scopus 로고    scopus 로고
    • Robust action recognition using local motion and group sparsity
    • J. Cho, M. Lee, H.J. Chang, and S. Oh Robust action recognition using local motion and group sparsity Pattern Recognit. 47 5 2014 1813 1825 10.1016/j.patcog.2013.12.004
    • (2014) Pattern Recognit. , vol.47 , Issue.5 , pp. 1813-1825
    • Cho, J.1    Lee, M.2    Chang, H.J.3    Oh, S.4
  • 48
    • 84907711294 scopus 로고    scopus 로고
    • Realistic action recognition via sparsely-constructed Gaussian processes
    • L. Liu, L. Shao, F. Zheng, and X. Li Realistic action recognition via sparsely-constructed gaussian processes Pattern Recognit. 47 12 2014 3819 3827 10.1016/j.patcog.2014.07.006
    • (2014) Pattern Recognit. , vol.47 , Issue.12 , pp. 3819-3827
    • Liu, L.1    Shao, L.2    Zheng, F.3    Li, X.4
  • 52
    • 84903175597 scopus 로고    scopus 로고
    • Structured time series analysis for human action segmentation and recognition
    • D. Gong, G. Medioni, and X. Zhao Structured time series analysis for human action segmentation and recognition IEEE Trans. Pattern Anal. Mach. Intell. 36 7 2014 1414 1427 10.1109/TPAMI.2013.244
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.7 , pp. 1414-1427
    • Gong, D.1    Medioni, G.2    Zhao, X.3
  • 53
    • 84857999484 scopus 로고    scopus 로고
    • Part-based motion descriptor image for human action recognition
    • K.N. Tran, I.A. Kakadiaris, and S.K. Shah Part-based motion descriptor image for human action recognition Pattern Recognit. 45 7 2012 2562 2572 10.1016/j.patcog.2011.12.028
    • (2012) Pattern Recognit. , vol.45 , Issue.7 , pp. 2562-2572
    • Tran, K.N.1    Kakadiaris, I.A.2    Shah, S.K.3
  • 55
    • 84884910745 scopus 로고    scopus 로고
    • Exploring the trade-off between accuracy and observational latency in action recognition
    • S.Z. Masood, C. Ellis, M.F. Tappen, J.J. LaViola, and R. Sukthankar Exploring the trade-off between accuracy and observational latency in action recognition Int. J. Comput. Vis. 101 3 2013 420 436 10.1007/s11263-012-0550-7
    • (2013) Int. J. Comput. Vis. , vol.101 , Issue.3 , pp. 420-436
    • Masood, S.Z.1    Ellis, C.2    Tappen, M.F.3    LaViola, J.J.4    Sukthankar, R.5
  • 58
    • 84865033379 scopus 로고    scopus 로고
    • View invariant human action recognition using histograms of 3D joints
    • IEEE, Providence, Rhode Island
    • L. Xia, C.-C. Chen, J. Aggarwal, View invariant human action recognition using histograms of 3D joints, in: Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Providence, Rhode Island, 2012, pp. 20-27, http://dx.doi.org/10.1109/CVPRW.2012.6239233.
    • (2012) Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW) , pp. 20-27
    • Xia, L.1    Chen, C.-C.2    Aggarwal, J.3
  • 59
    • 84864968280 scopus 로고    scopus 로고
    • Eigenjoints-based action recognition using Naive-Bayes-Nearest-Neighbor
    • IEEE, Providence, Rhode Island
    • X. Yang, Y. Tian, Eigenjoints-based action recognition using Naive-Bayes-Nearest-Neighbor, in: Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Providence, Rhode Island, 2012, pp. 14-19, http://dx.doi.org/10.1109/CVPRW.2012.6239232.
    • (2012) Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW) , pp. 14-19
    • Yang, X.1    Tian, Y.2
  • 64
    • 84891625198 scopus 로고    scopus 로고
    • Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition
    • F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy Sequence of the most informative joints (SMIJ): a new representation for human skeletal action recognition J. Vis. Commun. Image Represent. 25 1 2014 24 38 10.1016/j.jvcir.2013.04.007
    • (2014) J. Vis. Commun. Image Represent. , vol.25 , Issue.1 , pp. 24-38
    • Ofli, F.1    Chaudhry, R.2    Kurillo, G.3    Vidal, R.4    Bajcsy, R.5
  • 65
    • 84911003814 scopus 로고    scopus 로고
    • Accurate 3D action recognition using learning on the Grassmann manifold
    • R. Slama, H. Wannous, M. Daoudi, and A. Srivastava Accurate 3D action recognition using learning on the Grassmann manifold Pattern Recognit. 48 2 2015 556 567 10.1016/j.patcog.2014.08.011
    • (2015) Pattern Recognit. , vol.48 , Issue.2 , pp. 556-567
    • Slama, R.1    Wannous, H.2    Daoudi, M.3    Srivastava, A.4
  • 66
    • 84885063479 scopus 로고    scopus 로고
    • A survey of human motion analysis using depth imagery
    • L. Chen, H. Wei, and J. Ferryman A survey of human motion analysis using depth imagery Pattern Recognit. Lett. 34 15 2013 1995 2006 10.1016/j.patrec.2013.02.006
    • (2013) Pattern Recognit. Lett. , vol.34 , Issue.15 , pp. 1995-2006
    • Chen, L.1    Wei, H.2    Ferryman, J.3
  • 67
    • 84906782091 scopus 로고    scopus 로고
    • Human activity recognition from 3D data: A review
    • J. Aggarwal, and L. Xia Human activity recognition from 3D data: a review Pattern Recognit. Lett. 48 2014 70 80 10.1016/j.patrec.2014.04.011
    • (2014) Pattern Recognit. Lett. , vol.48 , pp. 70-80
    • Aggarwal, J.1    Xia, L.2
  • 68
    • 0033899090 scopus 로고    scopus 로고
    • Using real-time stereo vision for mobile robot navigation
    • D. Murray, and J.J. Little Using real-time stereo vision for mobile robot navigation Auton. Robots 8 2 2000 161 171
    • (2000) Auton. Robots , vol.8 , Issue.2 , pp. 161-171
    • Murray, D.1    Little, J.J.2
  • 70
    • 2942521528 scopus 로고    scopus 로고
    • A posture sequence learning system for an anthropomorphic robotic hand
    • A. Chella, H. Dindo, I. Infantino, and I. Macaluso A posture sequence learning system for an anthropomorphic robotic hand Robot. Auton. Syst. 47 2 2004 143 152 10.1016/j.robot.2004.03.008
    • (2004) Robot. Auton. Syst. , vol.47 , Issue.2 , pp. 143-152
    • Chella, A.1    Dindo, H.2    Infantino, I.3    Macaluso, I.4
  • 71
    • 84925244342 scopus 로고    scopus 로고
    • RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments
    • Citeseer, Springer, Berlin, Heidelberg
    • P. Henry, M. Krainin, E. Herbst, X. Ren, D. Fox, RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments, in: Experimental Robotics, Springer Tracts in Advanced Robotics, vol. 79, Citeseer, Springer, Berlin, Heidelberg, 2014, pp. 477-491, http://dx.doi.org/10.1007/978-3-642-28572-1-33.
    • (2014) Experimental Robotics, Springer Tracts in Advanced Robotics , vol.79 , pp. 477-491
    • Henry, P.1    Krainin, M.2    Herbst, E.3    Ren, X.4    Fox, D.5
  • 76
    • 0036537472 scopus 로고    scopus 로고
    • A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
    • D. Scharstein, and R. Szeliski A taxonomy and evaluation of dense two-frame stereo correspondence algorithms Int. J. Comput. Vis. 74 1-3 2002 7 42
    • (2002) Int. J. Comput. Vis. , vol.74 , Issue.1-3 , pp. 7-42
    • Scharstein, D.1    Szeliski, R.2
  • 77
    • 0027773280 scopus 로고
    • A parallel stereo algorithm that produces dense depth maps and preserves image features
    • P. Fua A parallel stereo algorithm that produces dense depth maps and preserves image features Mach. Vis. Appl. 6 1 1993 35 49 10.1007/BF01212430
    • (1993) Mach. Vis. Appl. , vol.6 , Issue.1 , pp. 35-49
    • Fua, P.1
  • 78
    • 79961078042 scopus 로고    scopus 로고
    • Lock-in time-of-flight (tof) cameras: A survey
    • S. Foix, G. Alenya, and C. Torras Lock-in time-of-flight (tof) cameras: a survey IEEE Sens. J. 11 9 2011 1917 1926
    • (2011) IEEE Sens. J. , vol.11 , Issue.9 , pp. 1917-1926
    • Foix, S.1    Alenya, G.2    Torras, C.3
  • 81
    • 84875257324 scopus 로고    scopus 로고
    • Part template: 3D representation for multiview human pose estimation
    • J. Shen, W. Yang, and Q. Liao Part template: 3D representation for multiview human pose estimation Pattern Recognit. 46 7 2013 1920 1932 10.1016/j.patcog.2013.01.001
    • (2013) Pattern Recognit. , vol.46 , Issue.7 , pp. 1920-1932
    • Shen, J.1    Yang, W.2    Liao, Q.3
  • 83
    • 0015567825 scopus 로고
    • The representation and matching of pictorial structures
    • M.A. Fischler, and R.A. Elschlager The representation and matching of pictorial structures IEEE Trans. Comput. 22 1 1973 67 92 10.1109/T-C.1973.223602
    • (1973) IEEE Trans. Comput. , vol.22 , Issue.1 , pp. 67-92
    • Fischler, M.A.1    Elschlager, R.A.2
  • 86
    • 33745958242 scopus 로고    scopus 로고
    • Recovering human body configurations using pairwise constraints between parts
    • IEEE, Beijing, P.R. China
    • X. Ren, A. C. Berg, J. Malik, Recovering human body configurations using pairwise constraints between parts, in: Proceedings of International Conference on Computer Vision (ICCV), vol. 1, IEEE, Beijing, P.R. China, 2005, pp. 824-831.
    • (2005) Proceedings of International Conference on Computer Vision (ICCV) , vol.1 , pp. 824-831
    • Ren, X.1    Berg, A.C.2    Malik, J.3
  • 94
    • 0035264984 scopus 로고    scopus 로고
    • Comparing constraint-based motion editing methods
    • M. Gleicher Comparing constraint-based motion editing methods Graph. Models 63 2 2001 107 134 10.1006/gmod.2001.0549
    • (2001) Graph. Models , vol.63 , Issue.2 , pp. 107-134
    • Gleicher, M.1
  • 95
    • 33745299969 scopus 로고    scopus 로고
    • Morphology-independent representation of motions for interactive human-like animation
    • R. Kulpa, F. Multon, and B. Arnaldi Morphology-independent representation of motions for interactive human-like animation Comput. Graph. Forum 24 3 2005 343 351 10.1111/j.1467-8659.2005.00859.x
    • (2005) Comput. Graph. Forum , vol.24 , Issue.3 , pp. 343-351
    • Kulpa, R.1    Multon, F.2    Arnaldi, B.3
  • 96
    • 4444342694 scopus 로고    scopus 로고
    • An inverse kinematics architecture enforcing an arbitrary number of strict priority levels
    • P. Baerlocher, and R. Boulic An inverse kinematics architecture enforcing an arbitrary number of strict priority levels Vis. Comput. 20 6 2004 402 417 10.1007/s00371-004-0244-4
    • (2004) Vis. Comput. , vol.20 , Issue.6 , pp. 402-417
    • Baerlocher, P.1    Boulic, R.2
  • 98
    • 84911438024 scopus 로고    scopus 로고
    • Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition
    • IEEE, Columbus, Ohio
    • D. Wu, L. Shao, Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition, in: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, Ohio. 2014, pp. 724-731.
    • (2014) Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 724-731
    • Wu, D.1    Shao, L.2
  • 101
    • 84898773205 scopus 로고    scopus 로고
    • The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection
    • IEEE, Sydney, Australia
    • M. Zanfir, M. Leordeanu, C. Sminchisescu, The moving pose: an efficient 3d kinematics descriptor for low-latency action recognition and detection, in: Proceedings of International Conference on Computer Vision (ICCV), IEEE, Sydney, Australia, 2013, pp. 2752-2759.
    • (2013) Proceedings of International Conference on Computer Vision (ICCV) , pp. 2752-2759
    • Zanfir, M.1    Leordeanu, M.2    Sminchisescu, C.3
  • 104
    • 84897499352 scopus 로고    scopus 로고
    • Fusion of skeletal and silhouette-based features for human action recognition with RGB-D devices
    • IEEE, Sydney, Australia
    • A.A. Chaaraoui, J.R. Padilla-López, F. Flórez-Revuelta, Fusion of skeletal and silhouette-based features for human action recognition with RGB-D devices, in: Proceedings of International Conference on Computer Vision Workshops (ICCVW), IEEE, Sydney, Australia, 2013, pp. 91-97, http://dx.doi.org/10.1109/ICCVW.2013.19.
    • (2013) Proceedings of International Conference on Computer Vision Workshops (ICCVW) , pp. 91-97
    • Chaaraoui, A.A.1
  • 107
  • 108
    • 33646055823 scopus 로고    scopus 로고
    • Efficient content-based retrieval of motion capture data
    • M. Müller, T. Röder, and M. Clausen Efficient content-based retrieval of motion capture data ACM Trans. Graph. 24 3 2005 677 685 10.1145/1186822.1073247
    • (2005) ACM Trans. Graph. , vol.24 , Issue.3 , pp. 677-685
    • Müller, M.1    Röder, T.2    Clausen, M.3
  • 112
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • IEEE, Providence, Rhode Island
    • J. Wang, Z. Liu, Y. Wu, J. Yuan, Mining actionlet ensemble for action recognition with depth cameras, in: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, Rhode Island, 2012, pp. 1290-1297, http://dx.doi.org/10.1109/CVPR.2012.6247813.
    • (2012) Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 1290-1297
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 113
    • 84928292001 scopus 로고    scopus 로고
    • Integral invariants for space motion trajectory matching and recognition
    • Z. Shao, and Y. Li Integral invariants for space motion trajectory matching and recognition Pattern Recognit. 48 8 2015 2418 2432 10.1016/j.patcog.2015.02.029
    • (2015) Pattern Recognit. , vol.48 , Issue.8 , pp. 2418-2432
    • Shao, Z.1    Li, Y.2
  • 114
    • 84933048626 scopus 로고    scopus 로고
    • 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold
    • M. Devanne, H. Wannous, S. Berretti, P. Pala, M. Daoudi, and A. Del Bimbo 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold IEEE Trans. Cybern. 45 7 2015 1340 1352
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.7 , pp. 1340-1352
    • Devanne, M.1    Wannous, H.2    Berretti, S.3    Pala, P.4    Daoudi, M.5    Del Bimbo, A.6
  • 115
    • 84885022432 scopus 로고    scopus 로고
    • Ongoing human action recognition with motion capture
    • M. Barnachon, S. Bouakaz, B. Boufama, and E. Guillou Ongoing human action recognition with motion capture Pattern Recognit. 47 1 2014 238 247 10.1016/j.patcog.2013.06.020
    • (2014) Pattern Recognit. , vol.47 , Issue.1 , pp. 238-247
    • Barnachon, M.1    Bouakaz, S.2    Boufama, B.3    Guillou, E.4
  • 119
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • M. Barker, and W. Rayens Partial least squares for discrimination J. Chemom. 17 3 2003 166 173
    • (2003) J. Chemom. , vol.17 , Issue.3 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 120
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • R. Rosipal, and L.J. Trejo Kernel partial least squares regression in reproducing kernel Hilbert space J. Mach. Learn. Res. 2 2002 97 123
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 121
    • 84875841864 scopus 로고    scopus 로고
    • Optimal joint selection for skeletal data from rgb-d devices using a genetic algorithm
    • Springer, Tenerife - Puerto de la Cruz, Spain
    • P. Climent-Pérez, A.A. Chaaraoui, J.R. Padilla-López, F. Flórez-Revuelta, Optimal joint selection for skeletal data from rgb-d devices using a genetic algorithm, in: Advances in Computational Intelligence, Springer, Tenerife - Puerto de la Cruz, Spain, 2013, pp. 163-174, http://dx.doi.org/10.1007/978-3-642-37798-3-15.
    • (2013) Advances in Computational Intelligence , pp. 163-174
    • Climent-Pérez, P.1
  • 125
    • 84946152186 scopus 로고    scopus 로고
    • Hankelet-based dynamical systems modeling for 3D action recognition
    • Elsevier
    • L. Lo Presti, M. La Cascia, S. Sclaroff, O. Camps, Hankelet-based dynamical systems modeling for 3D action recognition, in: Image and Vision Computing, Elsevier, 44 (2015), 29-43, http://dx.doi.org/10.1016/j.imavis.2015.09.007 (http://www.sciencedirect.com/science/article/pii/S02628%85615001134).
    • (2015) Image and Vision Computing , vol.44 , pp. 29-43
    • Lo Presti, L.1    La Cascia, M.2    Sclaroff, S.3    Camps, O.4
  • 130
    • 84925086539 scopus 로고    scopus 로고
    • Action classification using a discriminative multilevel HDP-HMM
    • N. Raman, S.J. Maybank, Action classification using a discriminative multilevel HDP-HMM, Neurocomputing 154 (2015): 149-161
    • (2015) Neurocomputing , vol.154 , pp. 149-161
    • Raman, N.1    Maybank, S.J.2
  • 136
    • 84887324355 scopus 로고    scopus 로고
    • Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera
    • IEEE, Portland, Oregon
    • L. Xia, J. Aggarwal, Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera, in: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Portland, Oregon, 2013, pp. 2834-2841.
    • (2013) Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 2834-2841
    • Xia, L.1    Aggarwal, J.2
  • 137
    • 84884960526 scopus 로고    scopus 로고
    • Fusing spatiotemporal features and joints for 3D action recognition
    • IEEE, Portland, Oregon
    • Y. Zhu, W. Chen, G. Guo, Fusing spatiotemporal features and joints for 3D action recognition, in: Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Portland, Oregon, 2013, pp. 486-491, http://dx.doi.org/10.1109/CVPRW.2013.78.
    • (2013) Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW) , pp. 486-491
    • Zhu, Y.1    Chen, W.2    Guo, G.3
  • 138
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • I. Laptev On space-time interest points Int. J. Comput. Vis. 64 2 2005 107 123 10.1007/s11263-005-1838-7
    • (2005) Int. J. Comput. Vis. , vol.64 , Issue.2 , pp. 107-123
    • Laptev, I.1
  • 139
    • 84893703288 scopus 로고    scopus 로고
    • Human activity recognition using multi-features and multiple kernel learning
    • S. Althloothi, M.H. Mahoor, X. Zhang, and R.M. Voyles Human activity recognition using multi-features and multiple kernel learning Pattern Recognit. 47 5 2014 1800 1812
    • (2014) Pattern Recognit. , vol.47 , Issue.5 , pp. 1800-1812
    • Althloothi, S.1    Mahoor, M.H.2    Zhang, X.3    Voyles, R.M.4
  • 140
    • 84898794902 scopus 로고    scopus 로고
    • Learning maximum margin temporal warping for action recognition
    • IEEE, Sydney, Australia
    • J. Wang, Y. Wu, Learning maximum margin temporal warping for action recognition, in: 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, Sydney, Australia, 2013, pp. 2688-2695.
    • (2013) 2013 IEEE International Conference on Computer Vision (ICCV) , pp. 2688-2695
    • Wang, J.1    Wu, Y.2
  • 141
    • 85027917405 scopus 로고    scopus 로고
    • Improving human action recognition using fusion of depth camera and inertial sensors
    • C. Chen, R. Jafari, and N. Kehtarnavaz Improving human action recognition using fusion of depth camera and inertial sensors IEEE Trans. Hum.-Mach. Syst. 45 1 2015 51 61 10.1109/THMS.2014.2362520
    • (2015) IEEE Trans. Hum.-Mach. Syst. , vol.45 , Issue.1 , pp. 51-61
    • Chen, C.1    Jafari, R.2    Kehtarnavaz, N.3
  • 142
    • 0035279879 scopus 로고    scopus 로고
    • The recognition of human movement using temporal templates
    • A.F. Bobick, and J.W. Davis The recognition of human movement using temporal templates IEEE Trans. Pattern Anal. Mach. Intell. 23 3 2001 257 267
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.3 , pp. 257-267
    • Bobick, A.F.1    Davis, J.W.2
  • 143
    • 84876760038 scopus 로고    scopus 로고
    • Monitoring intake gestures using sensor fusion (microsoft kinect and inertial sensors) for smart home tele-rehab setting
    • IEEE, Houston, TX
    • H.M. Hondori, M. Khademi, C.V. Lopes, Monitoring intake gestures using sensor fusion (microsoft kinect and inertial sensors) for smart home tele-rehab setting, in: 1st Annual IEEE Healthcare Innovation Conference, IEEE, Houston, TX, 2012, pp. 1-4.
    • (2012) 1st Annual IEEE Healthcare Innovation Conference , pp. 1-4
    • Hondori, H.M.1    Khademi, M.2    Lopes, C.V.3
  • 144
    • 84880048285 scopus 로고    scopus 로고
    • Indoor activity recognition by combining one-vs.-all neural network classifiers exploiting wearable and depth sensors
    • Springer, Tenerife - Puerto de la Cruz, Spain
    • B. Delachaux, J. Rebetez, A. Perez-Uribe, H.F.S. Mejia, Indoor activity recognition by combining one-vs.-all neural network classifiers exploiting wearable and depth sensors, in: Advances in Computational Intelligence. Lecture Notes in Computer Science, Springer, Tenerife - Puerto de la Cruz, Spain, 7903 (2013), pp. 216-223.
    • (2013) Advances in Computational Intelligence. Lecture Notes in Computer Science , vol.7903 , pp. 216-223
    • Delachaux, B.1    Rebetez, J.2    Perez-Uribe, A.3    Mejia, H.F.S.4
  • 145
    • 84899512999 scopus 로고    scopus 로고
    • Fusion of inertial and depth sensor data for robust hand gesture recognition
    • K. Liu, C. Chen, R. Jafari, and N. Kehtarnavaz Fusion of inertial and depth sensor data for robust hand gesture recognition IEEE Sens. J. 14 6 2014 1898 1903
    • (2014) IEEE Sens. J. , vol.14 , Issue.6 , pp. 1898-1903
    • Liu, K.1    Chen, C.2    Jafari, R.3    Kehtarnavaz, N.4
  • 147
    • 84903127719 scopus 로고    scopus 로고
    • Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments
    • C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu Human3. 6m: large scale datasets and predictive methods for 3d human sensing in natural environments IEEE Trans. Pattern Anal. Mach. Intell. 36 7 2014 1325 1339
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.7 , pp. 1325-1339
    • Ionescu, C.1    Papava, D.2    Olaru, V.3    Sminchisescu, C.4
  • 151
  • 152
    • 84857601527 scopus 로고    scopus 로고
    • The artificiality of natural user interfaces
    • A. Malizia, and A. Bellucci The artificiality of natural user interfaces Commun. ACM 55 3 2012 36 38
    • (2012) Commun. ACM , vol.55 , Issue.3 , pp. 36-38
    • Malizia, A.1    Bellucci, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.