-
1
-
-
77952844108
-
Fast high-dimensional filtering using the permutohedral lattice
-
Adams, A., Baek, J., and Davis, M. A. Fast high-dimensional filtering using the permutohedral lattice. In Computer Graphics Forum, 2010.
-
(2010)
Computer Graphics Forum
-
-
Adams, A.1
Baek, J.2
Davis, M.A.3
-
2
-
-
84911417279
-
Multiscale combinatorial grouping
-
Arbeláez, P., Pont-Tuset, J., Barron, J. T., Marques, F., and Malik, J. Multiscale combinatorial grouping. In CVPR, 2014.
-
(2014)
CVPR
-
-
Arbeláez, P.1
Pont-Tuset, J.2
Barron, J.T.3
Marques, F.4
Malik, J.5
-
3
-
-
84962478162
-
-
Bell, S., Upchurch, P., Snavely, N., and Bala, K. Material recognition in the wild with the materials in context database. arXiv:1412.0623, 2014.
-
(2014)
Material Recognition in the Wild with the Materials in Context Database
-
-
Bell, S.1
Upchurch, P.2
Snavely, N.3
Bala, K.4
-
4
-
-
84861335581
-
CPMC: Automatic object segmentation using constrained parametric min-cuts
-
Carreira, J. and Sminchisescu, C. Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI, 2012.
-
(2012)
PAMI
-
-
Carreira, J.1
Sminchisescu, C.2
-
5
-
-
84877621844
-
Semantic segmentation with second-order pooling
-
Carreira, J., Caseiro, R., Batista, J., and Sminchisescu, C. Semantic segmentation with second-order pooling. In ECCV, 2012.
-
(2012)
ECCV
-
-
Carreira, J.1
Caseiro, R.2
Batista, J.3
Sminchisescu, C.4
-
6
-
-
84898816122
-
Learning a dictionary of shape epitomes with applications to image labeling
-
Chen, L.-C., Papandreou, G., and Yuille, A. Learning a dictionary of shape epitomes with applications to image labeling. In ICCV, 2013.
-
(2013)
ICCV
-
-
Chen, L.-C.1
Papandreou, G.2
Yuille, A.3
-
7
-
-
85009898679
-
-
Chen, L.-C., Schwing, A., Yuille, A., and Urtasun, R. Learning deep structured models. arXiv:1407.2538, 2014.
-
(2014)
Learning Deep Structured Models
-
-
Chen, L.-C.1
Schwing, A.2
Yuille, A.3
Urtasun, R.4
-
8
-
-
84990051868
-
-
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915, 2016.
-
(2016)
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
9
-
-
84937873698
-
Articulated pose estimation by a graphical model with image dependent pairwise relations
-
Chen, X. and Yuille, A. L. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014.
-
(2014)
NIPS
-
-
Chen, X.1
Yuille, A.L.2
-
10
-
-
84986305007
-
-
Cogswell, M., Lin, X., Purushwalkam, S., and Batra, D. Combining the best of graphical models and convnets for semantic segmentation. arXiv:1412.4313, 2014.
-
(2014)
Combining the Best of Graphical Models and Convnets for Semantic Segmentation
-
-
Cogswell, M.1
Lin, X.2
Purushwalkam, S.3
Batra, D.4
-
12
-
-
84855348351
-
Fast approximate energy minimization with label costs
-
Delong, A., Osokin, A., Isack, H. N., and Boykov, Y. Fast approximate energy minimization with label costs. IJCV, 2012.
-
(2012)
IJCV
-
-
Delong, A.1
Osokin, A.2
Isack, H.N.3
Boykov, Y.4
-
14
-
-
84952007662
-
The pascal visual object classes challenge a retrospective
-
Everingham, M., Eslami, S. M. A., Gool, L. V., Williams, C. K. I., Winn, J., and Zisserma, A. The pascal visual object classes challenge a retrospective. IJCV, 2014.
-
(2014)
IJCV
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.V.3
Williams, C.K.I.4
Winn, J.5
Zisserma, A.6
-
15
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., and LeCun, Y. Learning hierarchical features for scene labeling. PAMI, 2013.
-
(2013)
PAMI
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
16
-
-
0026151642
-
Parallel and deterministic algorithms from mrfs: Surface reconstruction
-
Geiger, D. and Girosi, F. Parallel and deterministic algorithms from mrfs: Surface reconstruction. PAMI, 13(5):401–412, 1991.
-
(1991)
PAMI
, vol.13
, Issue.5
, pp. 401-412
-
-
Geiger, D.1
Girosi, F.2
-
17
-
-
0026201666
-
A common framework for image segmentation
-
Geiger, D. and Yuille, A. A common framework for image segmentation. IJCV, 6(3):227–243, 1991.
-
(1991)
IJCV
, vol.6
, Issue.3
, pp. 227-243
-
-
Geiger, D.1
Yuille, A.2
-
18
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
19
-
-
84897769461
-
Fast image scanning with deep max-pooling convolutional neural networks
-
Giusti, A., Ciresan, D., Masci, J., Gambardella, L., and Schmidhuber, J. Fast image scanning with deep max-pooling convolutional neural networks. In ICIP, 2013.
-
(2013)
ICIP
-
-
Giusti, A.1
Ciresan, D.2
Masci, J.3
Gambardella, L.4
Schmidhuber, J.5
-
20
-
-
77955998994
-
Harmony potentials for joint classification and segmentation
-
Gonfaus, J. M., Boix, X., Van de Weijer, J., Bagdanov, A. D., Serrat, J., and Gonzalez, J. Harmony potentials for joint classification and segmentation. In CVPR, 2010.
-
(2010)
CVPR
-
-
Gonfaus, J.M.1
Boix, X.2
Van de Weijer, J.3
Bagdanov, A.D.4
Serrat, J.5
Gonzalez, J.6
-
21
-
-
84856686500
-
Semantic contours from inverse detectors
-
Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., and Malik, J. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
22
-
-
84951757850
-
-
Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. Hypercolumns for object segmentation and fine-grained localization. arXiv:1411.5752, 2014a.
-
(2014)
Hypercolumns for Object Segmentation and Fine-Grained Localization
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
23
-
-
84924807123
-
Simultaneous detection and segmentation
-
Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. Simultaneous detection and segmentation. In ECCV, 2014b.
-
(2014)
ECCV
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
24
-
-
5044223520
-
Multiscale conditional random fields for image labeling
-
He, X., Zemel, R. S., and Carreira-Perpindn, M. Multiscale conditional random fields for image labeling. In CVPR, 2004.
-
(2004)
CVPR
-
-
He, X.1
Zemel, R.S.2
Carreira-Perpindn, M.3
-
25
-
-
84913555165
-
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
26
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
Kohli, P., Ladicky, L., and Torr, P. H. Robust higher order potentials for enforcing label consistency. IJCV, 2009.
-
(2009)
IJCV
-
-
Kohli, P.1
Ladicky, L.2
Torr, P.H.3
-
27
-
-
44649169686
-
Computational analysis and learning for a biologically motivated model of boundary detection
-
Kokkinos, I., Deriche, R., Faugeras, O., and Maragos, P. Computational analysis and learning for a biologically motivated model of boundary detection. Neurocomputing, 71(10):1798–1812, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.10
, pp. 1798-1812
-
-
Kokkinos, I.1
Deriche, R.2
Faugeras, O.3
Maragos, P.4
-
28
-
-
85162351107
-
Efficient inference in fully connected crfs with gaussian edge potentials
-
Krähenbühl, P. and Koltun, V. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS, 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
29
-
-
84897536915
-
Parameter learning and convergent inference for dense random fields
-
Krähenbühl, P. and Koltun, V. Parameter learning and convergent inference for dense random fields. In ICML, 2013.
-
(2013)
ICML
-
-
Krähenbühl, P.1
Koltun, V.2
-
30
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. In NIPS, 2013.
-
(2013)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
31
-
-
77953225585
-
Associative hierarchical crfs for object class image segmentation
-
Ladicky, L., Russell, C., Kohli, P., and Torr, P. H. Associative hierarchical crfs for object class image segmentation. In ICCV, 2009.
-
(2009)
ICCV
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.4
-
32
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. In Proc. IEEE, 1998.
-
(1998)
Proc. IEEE
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
35
-
-
84863059942
-
Are spatial and global constraints really necessary for segmentation?
-
Lucchi, A., Li, Y., Boix, X., Smith, K., and Fua, P. Are spatial and global constraints really necessary for segmentation? In ICCV, 2011.
-
(2011)
ICCV
-
-
Lucchi, A.1
Li, Y.2
Boix, X.3
Smith, K.4
Fua, P.5
-
39
-
-
85041932110
-
-
Papandreou, G., Chen, L.-C., Murphy, K., and Yuille, A. L. Weakly- and semi-supervised learning of a DCNN for semantic image segmentation. arXiv:1502.02734, 2015.
-
(2015)
Weakly- And Semi-Supervised Learning of A DCNN for Semantic Image Segmentation
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
40
-
-
84877632511
-
Grabcut: Interactive foreground extraction using iterated graph cuts
-
Rother, C., Kolmogorov, V., and Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts. In SIGGRAPH, 2004.
-
(2004)
SIGGRAPH
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
41
-
-
84906347546
-
-
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
42
-
-
58149151266
-
Textonboost for image understanding: Multiclass object recognition and segmentation by jointly modeling texture, layout, and context
-
Shotton, J., Winn, J., Rother, C., and Criminisi, A. Textonboost for image understanding: Multiclass object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 2009.
-
(2009)
IJCV
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
44
-
-
84964983441
-
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. arXiv:1409.4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
45
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
Tompson, J., Jain, A., LeCun, Y., and Bregler, C. Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation. In NIPS, 2014.
-
(2014)
NIPS
-
-
Tompson, J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
46
-
-
84881160857
-
Selective search for object recognition
-
Uijlings, J., van de Sande, K., Gevers, T., and Smeulders, A. Selective search for object recognition. IJCV, 2013.
-
(2013)
IJCV
-
-
Uijlings, J.1
van de Sande, K.2
Gevers, T.3
Smeulders, A.4
-
47
-
-
84959184033
-
Towards unified depth and semantic prediction from a single image
-
Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., and Yuille, A. Towards unified depth and semantic prediction from a single image. In CVPR, 2015.
-
(2015)
CVPR
-
-
Wang, P.1
Shen, X.2
Lin, Z.3
Cohen, S.4
Price, B.5
Yuille, A.6
-
49
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
50
-
-
84956617559
-
Part-based r-cnns for fine-grained category detection
-
Zhang, N., Donahue, J., Girshick, R., and Darrell, T. Part-based r-cnns for fine-grained category detection. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zhang, N.1
Donahue, J.2
Girshick, R.3
Darrell, T.4
-
51
-
-
84937134364
-
-
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., and Torr, P. Conditional random fields as recurrent neural networks. arXiv:1502.03240, 2015.
-
(2015)
Conditional Random Fields as Recurrent Neural Networks
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
|