메뉴 건너뛰기




Volumn 71, Issue , 2017, Pages 118-131

LG-CNN: From local parts to global discrimination for fine-grained recognition

Author keywords

Bilinear pooling; Convolutional neural networks; Fine grained recognition; Global discrimination; Local parts

Indexed keywords

CONVOLUTION; DISCRIMINATORS; NEURAL NETWORKS; OBJECT RECOGNITION;

EID: 85023175472     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2017.06.002     Document Type: Article
Times cited : (70)

References (69)
  • 1
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: surpassing human-level performance on imagenet classification
    • IEEE
    • He, K., Zhang, X., Ren, S., Sun, J., Delving deep into rectifiers: surpassing human-level performance on imagenet classification. International Conference on Computer Vision (ICCV), 2015, IEEE, 1026–1034.
    • (2015) International Conference on Computer Vision (ICCV) , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 6
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60:2 (2004), 91–110.
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 9
    • 84894569115 scopus 로고    scopus 로고
    • Feature coding in image classification: a comprehensive study
    • Huang, Y., Wu, Z., Wang, L., Tan, T., Feature coding in image classification: a comprehensive study. IEEE Trans. Pattern Anal. Mach. Intell. 36:3 (2014), 493–506.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.3 , pp. 493-506
    • Huang, Y.1    Wu, Z.2    Wang, L.3    Tan, T.4
  • 12
  • 13
    • 84961286618 scopus 로고    scopus 로고
    • Face image classification by pooling raw features
    • Shen, F., Shen, C., Zhou, X., Yang, Y., Shen, H.T., Face image classification by pooling raw features. Pattern Recognit. 54 (2016), 94–103.
    • (2016) Pattern Recognit. , vol.54 , pp. 94-103
    • Shen, F.1    Shen, C.2    Zhou, X.3    Yang, Y.4    Shen, H.T.5
  • 14
    • 78149348137 scopus 로고    scopus 로고
    • Improving the Fisher kernel for large-scale image classification
    • Springer
    • Perronnin, F., Sánchez, J., Mensink, T., Improving the Fisher kernel for large-scale image classification. Computer Vision–ECCV 2010, 2010, Springer, 143–156.
    • (2010) Computer Vision–ECCV 2010 , pp. 143-156
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 16
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the Fisher vector: theory and practice
    • Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J., Image classification with the Fisher vector: theory and practice. Int. J. Comput. Vision 105:3 (2013), 222–245.
    • (2013) Int. J. Comput. Vision , vol.105 , Issue.3 , pp. 222-245
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 19
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 21
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Springer
    • He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. Computer Vision–ECCV 2014, 2014, Springer, 346–361.
    • (2014) Computer Vision–ECCV 2014 , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 24
    • 84956858756 scopus 로고    scopus 로고
    • String representations and distances in deep convolutional neural networks for image classification
    • Barat, C., Ducottet, C., String representations and distances in deep convolutional neural networks for image classification. Pattern Recognit. 54 (2016), 104–115.
    • (2016) Pattern Recognit. , vol.54 , pp. 104-115
    • Barat, C.1    Ducottet, C.2
  • 25
    • 85020272206 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • published online.
    • Nogueira, K., Penatti, O.A., Santos, J.A.d., Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognition, 2016 published online.
    • (2016) Pattern Recognition
    • Nogueira, K.1    Penatti, O.A.2    Santos, J.A.D.3
  • 26
    • 84956860695 scopus 로고    scopus 로고
    • Human action recognition using genetic algorithms and convolutional neural networks
    • published online.
    • Ijjina, E.P., Chalavadi, K.M., Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognition, 2016 published online.
    • (2016) Pattern Recognition
    • Ijjina, E.P.1    Chalavadi, K.M.2
  • 30
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-aware cnn model
    • IEEE
    • Gidaris, S., Komodakis, N., Object detection via a multi-region and semantic segmentation-aware cnn model. International Conference on Computer Vision (ICCV), 2015, IEEE, 1134–1142.
    • (2015) International Conference on Computer Vision (ICCV) , pp. 1134-1142
    • Gidaris, S.1    Komodakis, N.2
  • 42
    • 84941415071 scopus 로고    scopus 로고
    • Generative regularization with latent topics for discriminative object recognition
    • Rubio, J.C., Eigenstetter, A., Ommer, B., Generative regularization with latent topics for discriminative object recognition. Pattern Recognit. 48:12 (2015), 3871–3880.
    • (2015) Pattern Recognit. , vol.48 , Issue.12 , pp. 3871-3880
    • Rubio, J.C.1    Eigenstetter, A.2    Ommer, B.3
  • 43
    • 84887356895 scopus 로고    scopus 로고
    • Poof: part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation
    • Berg, T., Belhumeur, P., Poof: part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, 955–962.
    • (2013) IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 955-962
    • Berg, T.1    Belhumeur, P.2
  • 55
    • 84973884428 scopus 로고    scopus 로고
    • Neural activation constellations: unsupervised part model discovery with convolutional networks
    • IEEE
    • Simon, M., Rodner, E., Neural activation constellations: unsupervised part model discovery with convolutional networks. International Conference on Computer Vision (ICCV), 2015, IEEE, 1143–1151.
    • (2015) International Conference on Computer Vision (ICCV) , pp. 1143-1151
    • Simon, M.1    Rodner, E.2
  • 58
  • 59
    • 85018497734 scopus 로고    scopus 로고
    • Hybrid CNN and dictionary-based models for scene recognition and domain adaptation
    • Xie, G., Zhang, X., Yan, S., Liu, C., Hybrid CNN and dictionary-based models for scene recognition and domain adaptation. CoRR, abs/1601.07977, 2016.
    • (2016) CoRR , vol.abs/1601.07977
    • Xie, G.1    Zhang, X.2    Yan, S.3    Liu, C.4
  • 69
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., Perona, P., Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vision Image Understanding 106:1 (2007), 59–70.
    • (2007) Comput. Vision Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.