메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2921-2929

Learning Deep Features for Discriminative Localization

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS;

EID: 84986247435     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.319     Document Type: Conference Paper
Times cited : (10207)

References (36)
  • 6
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 2007.
    • (2007) Computer Vision and Image Understanding
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 8
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 12
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • L.-J. Li and L. Fei-Fei. What, where and who? classifying events by scene and object recognition. Proc. ICCV, 2007.
    • (2007) Proc. ICCV
    • Li, L.-J.1    Fei-Fei, L.2
  • 14
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 15
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 16
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free? Weakly-supervised learning with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? weakly-supervised learning with convolutional neural networks. Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 17
    • 84866637964 scopus 로고    scopus 로고
    • Sun attribute database: Discovering, annotating, and recognizing scene attributes
    • G. Patterson and J. Hays. Sun attribute database: Discovering, annotating, and recognizing scene attributes. Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Patterson, G.1    Hays, J.2
  • 30
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 32
    • 84898819241 scopus 로고    scopus 로고
    • Deformable part descriptors for fine-grained recognition and attribute prediction
    • N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable part descriptors for fine-grained recognition and attribute prediction. Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Zhang, N.1    Farrell, R.2    Iandola, F.3    Darrell, T.4
  • 33
    • 84959187860 scopus 로고    scopus 로고
    • Conceptlearner: Discovering visual concepts from weakly labeled image collections
    • B. Zhou, V. Jagadeesh, and R. Piramuthu. Conceptlearner: Discovering visual concepts from weakly labeled image collections. Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Zhou, B.1    Jagadeesh, V.2    Piramuthu, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.