메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2377-2385

Training very deep networks

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE; NETWORK LAYERS; TRANSPORTATION;

EID: 84965164720     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1610)

References (38)
  • 4
    • 84881039921 scopus 로고    scopus 로고
    • Flexible, high performance convolutional neural networks for image classification
    • D C Ciresan, Ueli Meier, Jonathan Masci, Luca M Gambardella, and Jürgen Schmidhuber. Flexible, high performance convolutional neural networks for image classification. In IJCAI, 2011.
    • (2011) IJCAI
    • Ciresan, D.C.1    Meier, U.2    Masci, J.3    Gambardella, L.M.4    Schmidhuber, J.5
  • 9
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits. Computational Complexity, 1(2):113-129, 1991.
    • (1991) Computational Complexity , vol.1 , Issue.2 , pp. 113-129
    • Håstad, J.1    Goldmann, M.2
  • 10
    • 84904743910 scopus 로고    scopus 로고
    • On the complexity of neural network classifiers: A comparison between shallow and deep architectures
    • Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison between shallow and deep architectures. IEEE Transactions on Neural Networks, 2014.
    • (2014) IEEE Transactions on Neural Networks
    • Bianchini, M.1    Scarselli, F.2
  • 13
    • 84893500334 scopus 로고    scopus 로고
    • Training deep and recurrent networks with hessian-free optimization
    • James Martens and Ilya Sutskever. Training deep and recurrent networks with hessian-free optimization. Neural Networks: Tricks of the Trade, pages 1-58, 2012.
    • (2012) Neural Networks: Tricks of the Trade , pp. 1-58
    • Martens, J.1    Sutskever, I.2
  • 26
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • March
    • Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2):234-242, March 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 27
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 29
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • November
    • Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780, November 1997.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 30
    • 0033344091 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with LSTM. In ICANN, volume 2, pages 850-855, 1999.
    • (1999) ICANN , vol.2 , pp. 850-855
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 36
    • 84937961845 scopus 로고    scopus 로고
    • Deep networks with internal selective attention through feedback connections
    • Marijn F Stollenga, Jonathan Masci, Faustino Gomez, and Jürgen Schmidhuber. Deep networks with internal selective attention through feedback connections. In NIPS. 2014.
    • (2014) NIPS
    • Stollenga, M.F.1    Masci, J.2    Gomez, F.3    Schmidhuber, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.