메뉴 건너뛰기




Volumn , Issue , 2017, Pages 4278-4284

Inception-v4, inception-ResNet and the impact of residual connections on learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); IMAGE RECOGNITION;

EID: 85028013193     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11065)

References (21)
  • 3
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Springer
    • Dong, C.; Loy, C. C.; He, K.; and Tang, X. 2014. Learning a deep convolutional network for image super-resolution. In Computer Vision-ECCV 2014. Springer. 184-199.
    • (2014) Computer Vision-ECCV 2014 , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 4
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics 36 (4): 193-202.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 19
    • 84893343292 scopus 로고    scopus 로고
    • Divide the gradient by a running average of its recent magnitude
    • 4, 2012. Accessed: 2015-11-05
    • Tieleman, T., and Hinton, G. Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012. Accessed: 2015-11-05.
    • COURSERA: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.