-
1
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33(5):898-916, 2011.
-
(2011)
PAMI
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
2
-
-
84959231756
-
Deepedge: A multiscale bifurcated deep network for top-down contour detection
-
G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multiscale bifurcated deep network for top-down contour detection. In CVPR, 2015.
-
(2015)
CVPR
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
3
-
-
85021793123
-
Multiscale convolutional neural networks for vision-based classification of cells
-
P. Buyssens, A. Elmoataz, and O. Lézoray. Multiscale convolutional neural networks for vision-based classification of cells. In ACCV. 2013.
-
(2013)
ACCV
-
-
Buyssens, P.1
Elmoataz, A.2
Lézoray, O.3
-
4
-
-
0022808786
-
A computational approach to edge detection
-
J. Canny. A computational approach to edge detection. PAMI, (6):679-698, 1986.
-
(1986)
PAMI
, Issue.6
, pp. 679-698
-
-
Canny, J.1
-
5
-
-
33845580709
-
Supervised learning of edges and object boundaries
-
P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In CVPR, 2006.
-
(2006)
CVPR
-
-
Dollar, P.1
Tu, Z.2
Belongie, S.3
-
6
-
-
84947781852
-
Fast edge detection using structured forests
-
P. Dollár and C. L. Zitnick. Fast edge detection using structured forests. PAMI, 2015.
-
(2015)
PAMI
-
-
Dollár, P.1
Zitnick, C.L.2
-
7
-
-
0036977067
-
Ecological statistics of gestalt laws for the perceptual organization of contours
-
J. H. Elder and R. M. Goldberg. Ecological statistics of gestalt laws for the perceptual organization of contours. Journal of Vision, 2(4):5, 2002.
-
(2002)
Journal of Vision
, vol.2
, Issue.4
, pp. 5
-
-
Elder, J.H.1
Goldberg, R.M.2
-
9
-
-
9644254228
-
Efficient graphbased image segmentation
-
P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. IJCV, 59(2):167-181, 2004.
-
(2004)
IJCV
, vol.59
, Issue.2
, pp. 167-181
-
-
Felzenszwalb, P.F.1
Huttenlocher, D.P.2
-
11
-
-
84887380335
-
Perceptual organization and recognition of indoor scenes from rgb-d images
-
S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition of indoor scenes from rgb-d images. In CVPR, 2013.
-
(2013)
CVPR
-
-
Gupta, S.1
Arbelaez, P.2
Malik, J.3
-
12
-
-
84922645579
-
Learning rich features from rgb-d images for object detection and segmentation
-
S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from rgb-d images for object detection and segmentation. In ECCV, 2014.
-
(2014)
ECCV
-
-
Gupta, S.1
Girshick, R.2
Arbeláez, P.3
Malik, J.4
-
14
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
15
-
-
51349086291
-
Putting objects in perspective
-
D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in perspective. IJCV, 80(1):3-15, 2008.
-
(2008)
IJCV
, vol.80
, Issue.1
, pp. 3-15
-
-
Hoiem, D.1
Efros, A.A.2
Hebert, M.3
-
17
-
-
84887340408
-
Boundary detection benchmarking: Beyond f-measures
-
X. Hou, A. Yuille, and C. Koch. Boundary detection benchmarking: Beyond f-measures. In CVPR, 2013.
-
(2013)
CVPR
-
-
Hou, X.1
Yuille, A.2
Koch, C.3
-
18
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
-
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1):106-154, 1962.
-
(1962)
The Journal of Physiology
, vol.160
, Issue.1
, pp. 106-154
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
19
-
-
85083952247
-
Pixel-wise deep learning for contour detection
-
J.-J. Hwang and T.-L. Liu. Pixel-wise deep learning for contour detection. In ICLR, 2015.
-
(2015)
ICLR
-
-
Hwang, J.-J.1
Liu, T.-L.2
-
20
-
-
0020968793
-
On the accuracy of the sobel edge detector
-
J. Kittler. On the accuracy of the sobel edge detector. Image and Vision Computing, 1(1):37-42, 1983.
-
(1983)
Image and Vision Computing
, vol.1
, Issue.1
, pp. 37-42
-
-
Kittler, J.1
-
21
-
-
84959243006
-
Visual boundary prediction: A deep neural prediction network and quality dissection
-
J. J. Kivinen, C. K. Williams, N. Heess, and D. Technologies. Visual boundary prediction: A deep neural prediction network and quality dissection. In AISTATS, 2014.
-
(2014)
AISTATS
-
-
Kivinen, J.J.1
Williams, C.K.2
Heess, N.3
Technologies, D.4
-
22
-
-
0037252843
-
Statistical edge detection: Learning and evaluating edge cues
-
S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Statistical edge detection: Learning and evaluating edge cues. PAMI, 25(1):57-74, 2003.
-
(2003)
PAMI
, vol.25
, Issue.1
, pp. 57-74
-
-
Konishi, S.1
Yuille, A.L.2
Coughlan, J.M.3
Zhu, S.C.4
-
23
-
-
85009928594
-
Deeplysupervised nets
-
C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
24
-
-
84887354170
-
Sketch tokens: A learned mid-level representation for contour and object detection
-
J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
-
(2013)
CVPR
-
-
Lim, J.J.1
Zitnick, C.L.2
Dollár, P.3
-
25
-
-
80054898486
-
Nonparametric scene parsing via label transfer
-
C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. PAMI, 33(12):2368-2382, 2011.
-
(2011)
PAMI
, vol.33
, Issue.12
, pp. 2368-2382
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
26
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
28
-
-
3042525106
-
Learning to detect natural image boundaries using local brightness, color, and texture cues
-
D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 26(5):530-549, 2004.
-
(2004)
PAMI
, vol.26
, Issue.5
, pp. 530-549
-
-
Martin, D.R.1
Fowlkes, C.C.2
Malik, J.3
-
30
-
-
70450171342
-
Multi-scale improves boundary detection in natural images
-
X. Ren. Multi-scale improves boundary detection in natural images. In ECCV. 2008.
-
(2008)
ECCV
-
-
Ren, X.1
-
31
-
-
84877752264
-
Discriminatively trained sparse code gradients for contour detection
-
X. Ren and L. Bo. Discriminatively trained sparse code gradients for contour detection. In NIPS, 2012.
-
(2012)
NIPS
-
-
Ren, X.1
Bo, L.2
-
32
-
-
0001187198
-
Statistics of natural images: Scaling in the woods
-
D. L. Ruderman and W. Bialek. Statistics of natural images: Scaling in the woods. Physical review letters, 73(6):814, 1994.
-
(1994)
Physical Review Letters
, vol.73
, Issue.6
, pp. 814
-
-
Ruderman, D.L.1
Bialek, W.2
-
33
-
-
84874575248
-
Convolutional neural networks applied to house numbers digit classification
-
P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house numbers digit classification. In ICPR, 2012.
-
(2012)
ICPR
-
-
Sermanet, P.1
Chintala, S.2
LeCun, Y.3
-
34
-
-
84944761614
-
Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection draft version
-
W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection draft version. In CVPR, 2015.
-
(2015)
CVPR
-
-
Shen, W.1
Wang, X.2
Wang, Y.3
Bai, X.4
Zhang, Z.5
-
35
-
-
84881536861
-
Indoor segmentation and support inference from rgbd images
-
N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV. 2012.
-
(2012)
ECCV
-
-
Silberman, N.1
Hoiem, D.2
Kohli, P.3
Fergus, R.4
-
36
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
37
-
-
0022690031
-
On edge detection
-
V. Torre and T. A. Poggio. On edge detection. PAMI, (2):147-163, 1986.
-
(1986)
PAMI
, Issue.2
, pp. 147-163
-
-
Torre, V.1
Poggio, T.A.2
-
38
-
-
51949119486
-
Auto-context and its application to high-level vision tasks
-
Z. Tu. Auto-context and its application to high-level vision tasks. In CVPR, 2008.
-
(2008)
CVPR
-
-
Tu, Z.1
-
39
-
-
0028088013
-
Neural mechanisms of form and motion processing in the primate visual system
-
D. C. Van Essen and J. L. Gallant. Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13(1):1-10, 1994.
-
(1994)
Neuron
, vol.13
, Issue.1
, pp. 1-10
-
-
Van Essen, D.C.1
Gallant, J.L.2
-
40
-
-
0021204481
-
Scale-space filtering: A new approach to multiscale description
-
A. P. Witkin. Scale-space filtering: A new approach to multiscale description. In ICASSP, 1984.
-
(1984)
ICASSP
-
-
Witkin, A.P.1
-
41
-
-
0022605087
-
Scaling theorems for zero crossings
-
A. L. Yuille and T. A. Poggio. Scaling theorems for zero crossings. PAMI, (1):15-25, 1986.
-
(1986)
PAMI
, Issue.1
, pp. 15-25
-
-
Yuille, A.L.1
Poggio, T.A.2
|