메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1395-1403

Holistically-nested edge detection

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER VISION; IMAGE CLASSIFICATION; NEURAL NETWORKS; SIGNAL DETECTION;

EID: 84973859794     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.164     Document Type: Conference Paper
Times cited : (3380)

References (41)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33(5):898-916, 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 84959231756 scopus 로고    scopus 로고
    • Deepedge: A multiscale bifurcated deep network for top-down contour detection
    • G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multiscale bifurcated deep network for top-down contour detection. In CVPR, 2015.
    • (2015) CVPR
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 3
    • 85021793123 scopus 로고    scopus 로고
    • Multiscale convolutional neural networks for vision-based classification of cells
    • P. Buyssens, A. Elmoataz, and O. Lézoray. Multiscale convolutional neural networks for vision-based classification of cells. In ACCV. 2013.
    • (2013) ACCV
    • Buyssens, P.1    Elmoataz, A.2    Lézoray, O.3
  • 4
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • J. Canny. A computational approach to edge detection. PAMI, (6):679-698, 1986.
    • (1986) PAMI , Issue.6 , pp. 679-698
    • Canny, J.1
  • 5
    • 33845580709 scopus 로고    scopus 로고
    • Supervised learning of edges and object boundaries
    • P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In CVPR, 2006.
    • (2006) CVPR
    • Dollar, P.1    Tu, Z.2    Belongie, S.3
  • 6
    • 84947781852 scopus 로고    scopus 로고
    • Fast edge detection using structured forests
    • P. Dollár and C. L. Zitnick. Fast edge detection using structured forests. PAMI, 2015.
    • (2015) PAMI
    • Dollár, P.1    Zitnick, C.L.2
  • 7
    • 0036977067 scopus 로고    scopus 로고
    • Ecological statistics of gestalt laws for the perceptual organization of contours
    • J. H. Elder and R. M. Goldberg. Ecological statistics of gestalt laws for the perceptual organization of contours. Journal of Vision, 2(4):5, 2002.
    • (2002) Journal of Vision , vol.2 , Issue.4 , pp. 5
    • Elder, J.H.1    Goldberg, R.M.2
  • 8
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. PAMI, 2013.
    • (2013) PAMI
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 9
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graphbased image segmentation
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. IJCV, 59(2):167-181, 2004.
    • (2004) IJCV , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 11
    • 84887380335 scopus 로고    scopus 로고
    • Perceptual organization and recognition of indoor scenes from rgb-d images
    • S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition of indoor scenes from rgb-d images. In CVPR, 2013.
    • (2013) CVPR
    • Gupta, S.1    Arbelaez, P.2    Malik, J.3
  • 12
    • 84922645579 scopus 로고    scopus 로고
    • Learning rich features from rgb-d images for object detection and segmentation
    • S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from rgb-d images for object detection and segmentation. In ECCV, 2014.
    • (2014) ECCV
    • Gupta, S.1    Girshick, R.2    Arbeláez, P.3    Malik, J.4
  • 14
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 15
    • 51349086291 scopus 로고    scopus 로고
    • Putting objects in perspective
    • D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in perspective. IJCV, 80(1):3-15, 2008.
    • (2008) IJCV , vol.80 , Issue.1 , pp. 3-15
    • Hoiem, D.1    Efros, A.A.2    Hebert, M.3
  • 16
    • 50649107653 scopus 로고    scopus 로고
    • Recovering occlusion boundaries from a single image
    • D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recovering occlusion boundaries from a single image. In ICCV, 2007.
    • (2007) ICCV
    • Hoiem, D.1    Stein, A.N.2    Efros, A.A.3    Hebert, M.4
  • 17
    • 84887340408 scopus 로고    scopus 로고
    • Boundary detection benchmarking: Beyond f-measures
    • X. Hou, A. Yuille, and C. Koch. Boundary detection benchmarking: Beyond f-measures. In CVPR, 2013.
    • (2013) CVPR
    • Hou, X.1    Yuille, A.2    Koch, C.3
  • 18
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1):106-154, 1962.
    • (1962) The Journal of Physiology , vol.160 , Issue.1 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 19
    • 85083952247 scopus 로고    scopus 로고
    • Pixel-wise deep learning for contour detection
    • J.-J. Hwang and T.-L. Liu. Pixel-wise deep learning for contour detection. In ICLR, 2015.
    • (2015) ICLR
    • Hwang, J.-J.1    Liu, T.-L.2
  • 20
    • 0020968793 scopus 로고
    • On the accuracy of the sobel edge detector
    • J. Kittler. On the accuracy of the sobel edge detector. Image and Vision Computing, 1(1):37-42, 1983.
    • (1983) Image and Vision Computing , vol.1 , Issue.1 , pp. 37-42
    • Kittler, J.1
  • 21
    • 84959243006 scopus 로고    scopus 로고
    • Visual boundary prediction: A deep neural prediction network and quality dissection
    • J. J. Kivinen, C. K. Williams, N. Heess, and D. Technologies. Visual boundary prediction: A deep neural prediction network and quality dissection. In AISTATS, 2014.
    • (2014) AISTATS
    • Kivinen, J.J.1    Williams, C.K.2    Heess, N.3    Technologies, D.4
  • 22
    • 0037252843 scopus 로고    scopus 로고
    • Statistical edge detection: Learning and evaluating edge cues
    • S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Statistical edge detection: Learning and evaluating edge cues. PAMI, 25(1):57-74, 2003.
    • (2003) PAMI , vol.25 , Issue.1 , pp. 57-74
    • Konishi, S.1    Yuille, A.L.2    Coughlan, J.M.3    Zhu, S.C.4
  • 24
    • 84887354170 scopus 로고    scopus 로고
    • Sketch tokens: A learned mid-level representation for contour and object detection
    • J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
    • (2013) CVPR
    • Lim, J.J.1    Zitnick, C.L.2    Dollár, P.3
  • 25
    • 80054898486 scopus 로고    scopus 로고
    • Nonparametric scene parsing via label transfer
    • C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. PAMI, 33(12):2368-2382, 2011.
    • (2011) PAMI , vol.33 , Issue.12 , pp. 2368-2382
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 26
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 28
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 26(5):530-549, 2004.
    • (2004) PAMI , vol.26 , Issue.5 , pp. 530-549
    • Martin, D.R.1    Fowlkes, C.C.2    Malik, J.3
  • 29
    • 84925321145 scopus 로고    scopus 로고
    • Multiscale deep learning for gesture detection and localization
    • N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout. Multiscale deep learning for gesture detection and localization. In ECCV Workshops, 2014.
    • (2014) ECCV Workshops
    • Neverova, N.1    Wolf, C.2    Taylor, G.W.3    Nebout, F.4
  • 30
    • 70450171342 scopus 로고    scopus 로고
    • Multi-scale improves boundary detection in natural images
    • X. Ren. Multi-scale improves boundary detection in natural images. In ECCV. 2008.
    • (2008) ECCV
    • Ren, X.1
  • 31
    • 84877752264 scopus 로고    scopus 로고
    • Discriminatively trained sparse code gradients for contour detection
    • X. Ren and L. Bo. Discriminatively trained sparse code gradients for contour detection. In NIPS, 2012.
    • (2012) NIPS
    • Ren, X.1    Bo, L.2
  • 32
    • 0001187198 scopus 로고
    • Statistics of natural images: Scaling in the woods
    • D. L. Ruderman and W. Bialek. Statistics of natural images: Scaling in the woods. Physical review letters, 73(6):814, 1994.
    • (1994) Physical Review Letters , vol.73 , Issue.6 , pp. 814
    • Ruderman, D.L.1    Bialek, W.2
  • 33
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classification
    • P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house numbers digit classification. In ICPR, 2012.
    • (2012) ICPR
    • Sermanet, P.1    Chintala, S.2    LeCun, Y.3
  • 34
    • 84944761614 scopus 로고    scopus 로고
    • Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection draft version
    • W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection draft version. In CVPR, 2015.
    • (2015) CVPR
    • Shen, W.1    Wang, X.2    Wang, Y.3    Bai, X.4    Zhang, Z.5
  • 35
    • 84881536861 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV. 2012.
    • (2012) ECCV
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 37
    • 0022690031 scopus 로고
    • On edge detection
    • V. Torre and T. A. Poggio. On edge detection. PAMI, (2):147-163, 1986.
    • (1986) PAMI , Issue.2 , pp. 147-163
    • Torre, V.1    Poggio, T.A.2
  • 38
    • 51949119486 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks
    • Z. Tu. Auto-context and its application to high-level vision tasks. In CVPR, 2008.
    • (2008) CVPR
    • Tu, Z.1
  • 39
    • 0028088013 scopus 로고
    • Neural mechanisms of form and motion processing in the primate visual system
    • D. C. Van Essen and J. L. Gallant. Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13(1):1-10, 1994.
    • (1994) Neuron , vol.13 , Issue.1 , pp. 1-10
    • Van Essen, D.C.1    Gallant, J.L.2
  • 40
    • 0021204481 scopus 로고
    • Scale-space filtering: A new approach to multiscale description
    • A. P. Witkin. Scale-space filtering: A new approach to multiscale description. In ICASSP, 1984.
    • (1984) ICASSP
    • Witkin, A.P.1
  • 41
    • 0022605087 scopus 로고
    • Scaling theorems for zero crossings
    • A. L. Yuille and T. A. Poggio. Scaling theorems for zero crossings. PAMI, (1):15-25, 1986.
    • (1986) PAMI , Issue.1 , pp. 15-25
    • Yuille, A.L.1    Poggio, T.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.