메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2857-2865

An exploration of parameter redundancy in deep networks with circulant projections

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTER VISION; FAST FOURIER TRANSFORMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; REDUNDANCY;

EID: 84973890879     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.327     Document Type: Conference Paper
Times cited : (331)

References (45)
  • 1
    • 33748109164 scopus 로고    scopus 로고
    • Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform
    • N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform. In ACM Symposium on Theory of Computing, 2006.
    • (2006) ACM Symposium on Theory of Computing
    • Ailon, N.1    Chazelle, B.2
  • 2
    • 84898778744 scopus 로고    scopus 로고
    • Photoocr: Reading text in uncontrolled conditions
    • A. Bissacco, M. Cummins, Y. Netzer, and H. Neven. Photoocr: Reading text in uncontrolled conditions. In ICCV, 2013.
    • (2013) ICCV
    • Bissacco, A.1    Cummins, M.2    Netzer, Y.3    Neven, H.4
  • 7
    • 84937896655 scopus 로고    scopus 로고
    • Exploiting linear structure within convolutional networks for efficient evaluation
    • E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within convolutional networks for efficient evaluation. In NIPS, pages 1269-1277, 2014.
    • (2014) NIPS , pp. 1269-1277
    • Denton, E.L.1    Zaremba, W.2    Bruna, J.3    LeCun, Y.4    Fergus, R.5
  • 9
    • 84911443425 scopus 로고    scopus 로고
    • Scalable object detection using deep neural networks
    • D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Erhan, D.1    Szegedy, C.2    Toshev, A.3    Anguelov, D.4
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 14
    • 84898831806 scopus 로고    scopus 로고
    • Beyond hard negative mining: Efficient detector learning via blockcirculant decomposition
    • J. Henriques, J. Carreira, R. Caseiro, and J. Batista. Beyond hard negative mining: Efficient detector learning via blockcirculant decomposition. In ICCV, 2013.
    • (2013) ICCV
    • Henriques, J.1    Carreira, J.2    Caseiro, R.3    Batista, J.4
  • 15
    • 84963643172 scopus 로고    scopus 로고
    • Exploiting the circulant structure of tracking-by-detection with kernels
    • J. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In ECCV, 2012.
    • (2012) ECCV
    • Henriques, J.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 16
    • 80052034277 scopus 로고    scopus 로고
    • Johnson-Lindenstrauss lemma for circulant matrices
    • A. Hinrichs and J. Vybíral. Johnson-Lindenstrauss lemma for circulant matrices. Random Structures & Algorithms, 39 (3): 391-398, 2011.
    • (2011) Random Structures & Algorithms , vol.39 , Issue.3 , pp. 391-398
    • Hinrichs, A.1    Vybíral, J.2
  • 21
    • 85062833929 scopus 로고    scopus 로고
    • Speeding up convolutional neural networks with low rank expansions
    • M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low rank expansions. In BMVC, 2014.
    • (2014) BMVC
    • Jaderberg, M.1    Vedaldi, A.2    Zisserman, A.3
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 25
  • 30
    • 84929095672 scopus 로고    scopus 로고
    • Training and operation of an integrated neuromorphic network based on metal-oxide memristors
    • M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B. Strukov. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521 (7550): 61-64, 2015.
    • (2015) Nature , vol.521 , Issue.7550 , pp. 61-64
    • Prezioso, M.1    Merrikh-Bayat, F.2    Hoskins, B.3    Adam, G.4    Likharev, K.K.5    Strukov, D.B.6
  • 32
    • 84890454527 scopus 로고    scopus 로고
    • Low-rank matrix factorization for deep neural network training with high-dimensional output targets
    • T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-Rank Matrix Factorization for Deep Neural Network Training with High-Dimensional Output Targets. In ICASSP, 2013.
    • (2013) ICASSP
    • Sainath, T.1    Kingsbury, B.2    Sindhwani, V.3    Arisoy, E.4    Ramabhadran, B.5
  • 33
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 34
    • 84905265980 scopus 로고    scopus 로고
    • Joint training of convoutional and non-convoutional neural networks
    • H. Soltau, G. Saon, and T. Sainath. Joint training of convoutional and non-convoutional neural networks. In ICASSP, 2014.
    • (2014) ICASSP
    • Soltau, H.1    Saon, G.2    Sainath, T.3
  • 35
    • 84946769681 scopus 로고    scopus 로고
    • Deeply learned face representations are sparse, selective, and robust
    • Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. In CVPR, 2015.
    • (2015) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 36
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10, 000 classes
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10, 000 classes. In CVPR, 2014.
    • (2014) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 38
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 41
    • 78650311155 scopus 로고    scopus 로고
    • A variant of the johnson-lindenstrauss lemma for circulant matrices
    • J. Vybíral. A variant of the johnson-lindenstrauss lemma for circulant matrices. Journal of Functional Analysis, 260 (4): 1096-1105, 2011.
    • (2011) Journal of Functional Analysis , vol.260 , Issue.4 , pp. 1096-1105
    • Vybíral, J.1
  • 45
    • 84966582502 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.