메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1096-1103

Extracting and composing robust features with denoising autoencoders

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION THEORY; MACHINE LEARNING; EDUCATION; FEATURE EXTRACTION; LEARNING SYSTEMS; ROBOT LEARNING; UNSUPERVISED LEARNING;

EID: 56449089103     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390294     Document Type: Conference Paper
Times cited : (7162)

References (23)
  • 1
    • 56449126456 scopus 로고    scopus 로고
    • Technical Report 1312, Université de Montréal, dept. IRO
    • Bengio, Y. (2007). Learning deep architectures for AI (Technical Report 1312). Université de Montréal, dept. IRO.
    • (2007) Learning deep architectures for AI
    • Bengio, Y.1
  • 3
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • L. Bottou, O. Chapelle, D. DeCoste and J. Weston Eds, MIT Press
    • Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste and J. Weston (Eds.), Large scale kernel machines. MIT Press.
    • (2007) Large scale kernel machines
    • Bengio, Y.1    Le Cun, Y.2
  • 4
    • 0001740650 scopus 로고
    • Training with noise is equivalent to tikhonov regularization
    • Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. Neural Computation, 7, 108-116.
    • (1995) Neural Computation , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 5
    • 84864027013 scopus 로고    scopus 로고
    • A theoretical analysis of robust coding over noisy overcomplete channels
    • Y. Weiss, B. Schölkopf and J. Platt Eds, Cambridge, MA: MIT Press
    • Doi, E., Balcan, D. C., & Lewicki, M. S. (2006). A theoretical analysis of robust coding over noisy overcomplete channels. In Y. Weiss, B. Schölkopf and J. Platt (Eds.), Advances in neural information processing systems 18, 307-314. Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems 18 , pp. 307-314
    • Doi, E.1    Balcan, D.C.2    Lewicki, M.S.3
  • 6
    • 56449103441 scopus 로고    scopus 로고
    • A theory of retinal population coding
    • MIT Press
    • Doi, E., & Lewicki, M. S. (2007). A theory of retinal population coding. NIPS (pp. 353-360). MIT Press.
    • (2007) NIPS , pp. 353-360
    • Doi, E.1    Lewicki, M.S.2
  • 7
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15, 3736-3745.
    • (2006) IEEE Transactions on Image Processing , vol.15 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 9
    • 48149087583 scopus 로고    scopus 로고
    • A machine learning framework for adaptive combination of signal denoising methods
    • Hammond, D., & Simoncelli, E. (2007). A machine learning framework for adaptive combination of signal denoising methods. 2007 International Conference on Image Processing (pp. VI: 29-32).
    • (2007) International Conference on Image Processing (pp , vol.6
    • Hammond, D.1    Simoncelli, E.2
  • 10
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton, G. (1989). Connectionist learning procedures. Artificial Intelligence, 40, 185-234.
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.1
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 13
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the. National Academy of Sciences, USA, 79.
    • (1982) Proceedings of the. National Academy of Sciences, USA , vol.79
    • Hopfield, J.1
  • 16
    • 56449087263 scopus 로고    scopus 로고
    • J. Platt, D. Koller, Y. Singer and S. Roweis Eds, Advances in neural information processing systems, Cambridge, MA: MIT Press
    • Lee, H., Ekanadham, C., & Ng, A. (2008). Sparse deep belief net model for visual area V2. In J. Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Advances in neural information processing systems 20. Cambridge, MA: MIT Press.
    • (2008) Sparse deep belief net model for visual area V2 , pp. 20
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 19
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • J. Platt, D. Koller, Y. Singer and S. Roweis Eds, Cambridge, MA: MIT Press
    • Ranzato, M., Boureau, Y.-L., & LeCun, Y. (2008). Sparse feature learning for deep belief networks. In J. Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Advances in neural information processing systems 20. Cambridge, MA: MIT Press.
    • (2008) Advances in neural information processing systems 20
    • Ranzato, M.1    Boureau, Y.-L.2    LeCun, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.