메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3483-3491

Learning structured output representation using deep conditional generative models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPLEX NETWORKS; FORECASTING; IMAGE SEGMENTATION; INFERENCE ENGINES; INFORMATION SCIENCE; SEMANTICS; STOCHASTIC SYSTEMS; STRUCTURED PROGRAMMING;

EID: 84965139640     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3178)

References (37)
  • 3
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural networks segment neuronal membranes in electron microscopy images. In NIPS, 2012.
    • (2012) NIPS
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 4
    • 84867136939 scopus 로고    scopus 로고
    • Scene parsing with multiscale feature learning, purity trees, and optimal covers
    • C. Farabet, C. Couprie, L. Najman, and Y. Le Cun. Scene parsing with multiscale feature learning, purity trees, and optimal covers. In ICML, 2012.
    • (2012) ICML
    • Farabet, C.1    Couprie, C.2    Najman, L.3    Le Cun, Y.4
  • 5
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. Le Cun. Learning hierarchical features for scene labeling. T. PAMI, 35(8):1915-1929, 2013.
    • (2013) T. PAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    Le Cun, Y.4
  • 6
    • 85006783560 scopus 로고    scopus 로고
    • Region-based convolutional networks for accurate object detection and segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-based convolutional networks for accurate object detection and segmentation. T. PAMI, PP (99):1-1, 2015.
    • (2015) T. PAMI , vol.PP , Issue.99 , pp. 1
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 9
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 13
    • 84887349828 scopus 로고    scopus 로고
    • Augmenting CRFs with Boltzmann machine shape priors for image labeling
    • A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Augmenting CRFs with Boltzmann machine shape priors for image labeling. In CVPR, 2013.
    • (2013) CVPR
    • Kae, A.1    Sohn, K.2    Lee, H.3    Learned-Miller, E.4
  • 14
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 16
    • 84959248509 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2013.
    • (2013) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84861999538 scopus 로고    scopus 로고
    • The neural autoregressive distribution estimator
    • H. Larochelle and I. Murray. The neural autoregressive distribution estimator. JMLR, 15:29-37, 2011.
    • (2011) JMLR , vol.15 , pp. 29-37
    • Larochelle, H.1    Murray, I.2
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Le Cun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 20
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011.
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 21
    • 84887360102 scopus 로고    scopus 로고
    • Exploring compositional high order pattern potentials for structured output learning
    • Y. Li, D. Tarlow, and R. Zemel. Exploring compositional high order pattern potentials for structured output learning. In CVPR, 2013.
    • (2013) CVPR
    • Li, Y.1    Tarlow, D.2    Zemel, R.3
  • 22
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 23
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene parsing
    • P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene parsing. In ICML, 2013.
    • (2013) ICML
    • Pinheiro, P.1    Collobert, R.2
  • 24
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 26
    • 84906347546 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le Cun. OverFeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2013.
    • (2013) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    Le Cun, Y.6
  • 27
    • 84965161185 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2014.
    • (2014) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 28
    • 84937873395 scopus 로고    scopus 로고
    • Improved multimodal deep learning with variation of information
    • K. Sohn, W. Shang, and H. Lee. Improved multimodal deep learning with variation of information. In NIPS, 2014.
    • (2014) NIPS
    • Sohn, K.1    Shang, W.2    Lee, H.3
  • 29
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15(1):1929-1958, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 31
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013.
    • (2013) NIPS
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 32
    • 84898947294 scopus 로고    scopus 로고
    • Learning stochastic feedforward neural networks
    • Y. Tang and R. Salakhutdinov. Learning stochastic feedforward neural networks. In NIPS, 2013.
    • (2013) NIPS
    • Tang, Y.1    Salakhutdinov, R.2
  • 33
    • 84962815548 scopus 로고    scopus 로고
    • MatConvNet-convolutional neural networks for MATLAB
    • A. Vedaldi and K. Lenc. MatConvNet-convolutional neural networks for MATLAB. In ACMMM, 2015.
    • (2015) ACMMM
    • Vedaldi, A.1    Lenc, K.2
  • 34
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 35
    • 84866674574 scopus 로고    scopus 로고
    • What are good parts for hair shape modeling?
    • N. Wang, H. Ai, and F. Tang. What are good parts for hair shape modeling? In CVPR, 2012.
    • (2012) CVPR
    • Wang, N.1    Ai, H.2    Tang, F.3
  • 37
    • 84911438661 scopus 로고    scopus 로고
    • Max-margin Boltzmann machines for object segmentation
    • J. Yang, S. Sáfár, and M.-H. Yang. Max-margin Boltzmann machines for object segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Yang, J.1    Sáfár, S.2    Yang, M.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.