-
3
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural networks segment neuronal membranes in electron microscopy images. In NIPS, 2012.
-
(2012)
NIPS
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
4
-
-
84867136939
-
Scene parsing with multiscale feature learning, purity trees, and optimal covers
-
C. Farabet, C. Couprie, L. Najman, and Y. Le Cun. Scene parsing with multiscale feature learning, purity trees, and optimal covers. In ICML, 2012.
-
(2012)
ICML
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Le Cun, Y.4
-
5
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
C. Farabet, C. Couprie, L. Najman, and Y. Le Cun. Learning hierarchical features for scene labeling. T. PAMI, 35(8):1915-1929, 2013.
-
(2013)
T. PAMI
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Le Cun, Y.4
-
6
-
-
85006783560
-
Region-based convolutional networks for accurate object detection and segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-based convolutional networks for accurate object detection and segmentation. T. PAMI, PP (99):1-1, 2015.
-
(2015)
T. PAMI
, vol.PP
, Issue.99
, pp. 1
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
8
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
9
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
12
-
-
51849117118
-
-
Technical, University of Massachusetts, Amherst
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, 2007.
-
(2007)
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
13
-
-
84887349828
-
Augmenting CRFs with Boltzmann machine shape priors for image labeling
-
A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Augmenting CRFs with Boltzmann machine shape priors for image labeling. In CVPR, 2013.
-
(2013)
CVPR
-
-
Kae, A.1
Sohn, K.2
Lee, H.3
Learned-Miller, E.4
-
14
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.P.1
Ba, J.2
-
16
-
-
84959248509
-
Auto-encoding variational Bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2013.
-
(2013)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
17
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
18
-
-
84861999538
-
The neural autoregressive distribution estimator
-
H. Larochelle and I. Murray. The neural autoregressive distribution estimator. JMLR, 15:29-37, 2011.
-
(2011)
JMLR
, vol.15
, pp. 29-37
-
-
Larochelle, H.1
Murray, I.2
-
19
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Le Cun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
20
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011.
-
(2011)
Communications of the ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
21
-
-
84887360102
-
Exploring compositional high order pattern potentials for structured output learning
-
Y. Li, D. Tarlow, and R. Zemel. Exploring compositional high order pattern potentials for structured output learning. In CVPR, 2013.
-
(2013)
CVPR
-
-
Li, Y.1
Tarlow, D.2
Zemel, R.3
-
22
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
23
-
-
84919790220
-
Recurrent convolutional neural networks for scene parsing
-
P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene parsing. In ICML, 2013.
-
(2013)
ICML
-
-
Pinheiro, P.1
Collobert, R.2
-
24
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
26
-
-
84906347546
-
OverFeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le Cun. OverFeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2013.
-
(2013)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
Le Cun, Y.6
-
27
-
-
84965161185
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2014.
-
(2014)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
28
-
-
84937873395
-
Improved multimodal deep learning with variation of information
-
K. Sohn, W. Shang, and H. Lee. Improved multimodal deep learning with variation of information. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sohn, K.1
Shang, W.2
Lee, H.3
-
29
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15(1):1929-1958, 2014.
-
(2014)
JMLR
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
30
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
31
-
-
84898989329
-
Deep neural networks for object detection
-
C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013.
-
(2013)
NIPS
-
-
Szegedy, C.1
Toshev, A.2
Erhan, D.3
-
32
-
-
84898947294
-
Learning stochastic feedforward neural networks
-
Y. Tang and R. Salakhutdinov. Learning stochastic feedforward neural networks. In NIPS, 2013.
-
(2013)
NIPS
-
-
Tang, Y.1
Salakhutdinov, R.2
-
33
-
-
84962815548
-
MatConvNet-convolutional neural networks for MATLAB
-
A. Vedaldi and K. Lenc. MatConvNet-convolutional neural networks for MATLAB. In ACMMM, 2015.
-
(2015)
ACMMM
-
-
Vedaldi, A.1
Lenc, K.2
-
34
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
35
-
-
84866674574
-
What are good parts for hair shape modeling?
-
N. Wang, H. Ai, and F. Tang. What are good parts for hair shape modeling? In CVPR, 2012.
-
(2012)
CVPR
-
-
Wang, N.1
Ai, H.2
Tang, F.3
-
36
-
-
80052891795
-
-
Technical, California Institute of Technology
-
P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.
-
(2010)
Caltech-UCSD Birds 200
-
-
Welinder, P.1
Branson, S.2
Mita, T.3
Wah, C.4
Schroff, F.5
Belongie, S.6
Perona, P.7
-
37
-
-
84911438661
-
Max-margin Boltzmann machines for object segmentation
-
J. Yang, S. Sáfár, and M.-H. Yang. Max-margin Boltzmann machines for object segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Yang, J.1
Sáfár, S.2
Yang, M.-H.3
|