메뉴 건너뛰기




Volumn , Issue , 2010, Pages 807-814

Rectified linear units improve Restricted Boltzmann machines

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; FACE VERIFICATION; FEATURE DETECTOR; HIDDEN UNITS; INFERENCE RULES; INFINITE NUMBERS; MULTIPLE LAYERS; NEGATIVE BIAS; RELATIVE INTENSITY; RESTRICTED BOLTZMANN MACHINE;

EID: 77956509090     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18721)

References (21)
  • 2
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • Washington, DC, USA, IEEE Computer Society
    • Chopra, S., Hadsell, R., and LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In CVPR, pp. 539-546, Washington, DC, USA, 2005. IEEE Computer Society.
    • (2005) CVPR , pp. 539-546
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 4
    • 0037365779 scopus 로고    scopus 로고
    • Permitted and forbidden sets in symmetric threshold-linear networks
    • ISSN 0899-7667
    • Hahnloser, Richard H. R., Seung, H. Sebastian, and Slotine, Jean-Jacques. Permitted and forbidden sets in symmetric threshold-linear networks. Neural Computation, 15(3):621-638, 2003. ISSN 0899-7667.
    • (2003) Neural Computation , vol.15 , Issue.3 , pp. 621-638
    • Hahnloser, R.H.R.1    Seung, H.S.2    Slotine, J.-J.3
  • 5
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8): 1711-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1711-1800
    • Hinton, G.E.1
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. and Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science, 313: 504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 8
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation, 18: 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 12
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio., Y. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, pp. 473-480, 2007.
    • (2007) ICML , pp. 473-480
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio., Y.5
  • 13
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Washington, D.C.
    • LeCun, Y., Huang, F. J., and Bottou., L. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, Washington, D.C., 2004.
    • (2004) CVPR
    • LeCun, Y.1    Huang, F.J.2    Bottou., L.3
  • 15
    • 78049409973 scopus 로고    scopus 로고
    • Phone recognition using restricted boltzmann machines
    • Dallas, TX, USA
    • Mohamed, A. and Hinton, G. E. Phone recognition using restricted boltzmann machines. In ICASSP, Dallas, TX, USA, 2010.
    • (2010) ICASSP
    • Mohamed, A.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.