-
1
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
Mimee, M.2
Lu, T.K.3
-
2
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
3
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
5
-
-
84970046200
-
Consequences of Cas9 cleavage in the chromosome of Escherichia coli
-
Cui L, Bikard D. 2016. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res 44:4243–4251.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 4243-4251
-
-
Cui, L.1
Bikard, D.2
-
6
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
7
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
8
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
-
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
Hartenian, E.2
Graham, D.B.3
Tothova, Z.4
Hegde, M.5
Smith, I.6
Sullender, M.7
Ebert, B.L.8
Xavier, R.J.9
Root, D.E.10
-
9
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
Joung, J.K.6
Sander, J.D.7
-
10
-
-
84892930258
-
Genetic recombination in bacteriophage lambda
-
Hillyar CRT. 2012. Genetic recombination in bacteriophage lambda. Biosci Horizons 5:1–7.
-
(2012)
Biosci Horizons
, vol.5
, pp. 1-7
-
-
Hillyar, C.R.T.1
-
11
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170.
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
12
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
13
-
-
84882622697
-
Genome-scale genetic engineering in Escherichia coli
-
Jeong J, Cho N, Jung D, Bang D. 2013. Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv 31:804–810.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 804-810
-
-
Jeong, J.1
Cho, N.2
Jung, D.3
Bang, D.4
-
14
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
15
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
16
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
17
-
-
84946471431
-
Cas9 gRNA engineering for genome editing, activation and repression
-
Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, Buchthal J, Kowal EJK, Ebrahimkhani MR, Collins JJ, Weiss R, Church G. 2015. Cas9 gRNA engineering for genome editing, activation and repression. Nat Meth 12:1051–1054.
-
(2015)
Nat Meth
, vol.12
, pp. 1051-1054
-
-
Kiani, S.1
Chavez, A.2
Tuttle, M.3
Hall, R.N.4
Chari, R.5
Ter-Ovanesyan, D.6
Qian, J.7
Pruitt, B.W.8
Beal, J.9
Vora, S.10
Buchthal, J.11
Kowal, E.J.K.12
Ebrahimkhani, M.R.13
Collins, J.J.14
Weiss, R.15
Church, G.16
-
18
-
-
77951278557
-
Site-specific chromosomal integration of large synthetic constructs
-
Kuhlman TE, Cox EC. 2010. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 38:e92.
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Kuhlman, T.E.1
Cox, E.C.2
-
19
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
-
Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang Y-j, Chen T, Zhao X. 2015. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 31:13–21.
-
(2015)
Metab Eng
, vol.31
, pp. 13-21
-
-
Li, Y.1
Lin, Z.2
Huang, C.3
Zhang, Y.4
Wang, Z.5
Tang, Y.-J.6
Chen, T.7
Zhao, X.8
-
20
-
-
84960431733
-
Genome-editing technologies for gene and cell therapy
-
Maeder ML, Gersbach CA. 2016. Genome-editing technologies for gene and cell therapy. Mol Ther 24:430–446.
-
(2016)
Mol Ther
, vol.24
, pp. 430-446
-
-
Maeder, M.L.1
Gersbach, C.A.2
-
21
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
22
-
-
22744444676
-
After 30 years of study, the bacterial SOS response still surprises us
-
Michel B. 2005. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol 3:e255.
-
(2005)
PLoS Biol
, vol.3
-
-
Michel, B.1
-
23
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131.
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Oh, J.H.1
van Pijkeren, J.P.2
-
24
-
-
84936967101
-
Coupling the CRISPR/Cas9 System with Lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne ME, Moo-Young M, Chung DA, Chou CP. 2015. Coupling the CRISPR/Cas9 System with Lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81:5103–5114.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.A.3
Chou, C.P.4
-
25
-
-
84884288934
-
Double nicking by RNA-Guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu Patrick D, Lin C-Y, Gootenberg Jonathan S, Konermann S, Trevino AE, Scott David A, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-Guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu Patrick, D.2
Lin, C.-Y.3
Gootenberg Jonathan, S.4
Konermann, S.5
Trevino, A.E.6
Scott David, A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
Zhang, F.11
-
26
-
-
84879225332
-
Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci
-
Sabri S, Steen JA, Bongers M, Nielsen LK, Vickers CE. 2013. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci. Microb Cell Fact 12:60.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 60
-
-
Sabri, S.1
Steen, J.A.2
Bongers, M.3
Nielsen, L.K.4
Vickers, C.E.5
-
27
-
-
84925876620
-
Harnessing CRISPR-Cas systems for bacterial genome editing
-
Selle K, Barrangou R. 2015. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23:225–232.
-
(2015)
Trends Microbiol
, vol.23
, pp. 225-232
-
-
Selle, K.1
Barrangou, R.2
-
28
-
-
59849119654
-
Recombineering: A homologous recombination-based method of genetic engineering
-
Sharan SK, Thomason LC, Kuznetsov SG, Court DL. 2009. Recombineering: A homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223.
-
(2009)
Nat Protoc
, vol.4
, pp. 206-223
-
-
Sharan, S.K.1
Thomason, L.C.2
Kuznetsov, S.G.3
Court, D.L.4
-
29
-
-
84921508419
-
Genome engineering and gene expression control for bacterial strain development
-
Song CW, Lee J, Lee SY. 2015. Genome engineering and gene expression control for bacterial strain development. Biotechnol J 10:56–68.
-
(2015)
Biotechnol J
, vol.10
, pp. 56-68
-
-
Song, C.W.1
Lee, J.2
Lee, S.Y.3
-
30
-
-
84881514425
-
Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: A comparative study
-
Sung LY, Chen CL, Lin SY, Hwang SM, Lu CH, Li KC, Lan AS, Hu YC. 2013. Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: A comparative study. Nucleic Acids Res 41:e139.
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Sung, L.Y.1
Chen, C.L.2
Lin, S.Y.3
Hwang, S.M.4
Lu, C.H.5
Li, K.C.6
Lan, A.S.7
Hu, Y.C.8
-
31
-
-
0034513411
-
The SOS response: Recent insights into umuDC-dependent mutagenesis and DNA damage tolerance
-
Sutton MD, Smith BT, Godoy VG, Walker GC. 2000. The SOS response: Recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu Rev Genet 34:479–497.
-
(2000)
Annu Rev Genet
, vol.34
, pp. 479-497
-
-
Sutton, M.D.1
Smith, B.T.2
Godoy, V.G.3
Walker, G.C.4
-
32
-
-
84901639837
-
Recombineering: Genetic engineering in bacteria using homologous recombination
-
Thomason LC, Sawitzke JA, Li X, Costantino N, Court DL. 2014. Recombineering: Genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 106:1 16 11–11 16 39.
-
(2014)
Curr Protoc Mol Biol
, vol.106
, pp. 1 16 11-11 16 39
-
-
Thomason, L.C.1
Sawitzke, J.A.2
Li, X.3
Costantino, N.4
Court, D.L.5
-
33
-
-
84940106526
-
CRISPR-Cas9 based engineering of Actinomycgenomes
-
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of Actinomycgenomes. ACS Synth Biol 4:1020–1029.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
Charusanti, P.2
Zhang, L.3
Weber, T.4
Lee, S.Y.5
-
34
-
-
79957530428
-
Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering
-
Wang HH, Church GM. 2011. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol 498:409–426.
-
(2011)
Methods Enzymol
, vol.498
, pp. 409-426
-
-
Wang, H.H.1
Church, G.M.2
-
35
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang Y, Zhang Z-T, Seo S-O, Choi K, Lu T, Jin Y-S, Blaschek HP. 2015. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1–5.
-
(2015)
J Biotechnol
, vol.200
, pp. 1-5
-
-
Wang, Y.1
Zhang, Z.-T.2
Seo, S.-O.3
Choi, K.4
Lu, T.5
Jin, Y.-S.6
Blaschek, H.P.7
-
36
-
-
0037308590
-
Non-homologous end-joining: Bacteria join the chromosome breakdance
-
Wilson TE, Topper LM, Palmbos PL. 2003. Non-homologous end-joining: Bacteria join the chromosome breakdance. Trends Biochem Sci 28:62–66.
-
(2003)
Trends Biochem Sci
, vol.28
, pp. 62-66
-
-
Wilson, T.E.1
Topper, L.M.2
Palmbos, P.L.3
-
37
-
-
84880117972
-
Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish
-
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, Zhu Z, Lin S, Zhang B. 2013. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:e141.
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Xiao, A.1
Wang, Z.2
Hu, Y.3
Wu, Y.4
Luo, Z.5
Yang, Z.6
Zu, Y.7
Li, W.8
Huang, P.9
Tong, X.10
Zhu, Z.11
Lin, S.12
Zhang, B.13
-
38
-
-
84960328499
-
CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice
-
Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, Zhu H, Ma J, Han R. 2016. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24:564–569.
-
(2016)
Mol Ther
, vol.24
, pp. 564-569
-
-
Xu, L.1
Park, K.H.2
Zhao, L.3
Xu, J.4
El Refaey, M.5
Gao, Y.6
Zhu, H.7
Ma, J.8
Han, R.9
-
39
-
-
84941421523
-
Multiple-site genetic modifications in Escherichia coli using lambda-Red recombination and I-SceI cleavage
-
Yang J, Sun B, Huang H, Chen B, Xu C, Wang X, Liu J, Diao L. 2015. Multiple-site genetic modifications in Escherichia coli using lambda-Red recombination and I-SceI cleavage. Biotechnol Lett 37:2011–2018.
-
(2015)
Biotechnol Lett
, vol.37
, pp. 2011-2018
-
-
Yang, J.1
Sun, B.2
Huang, H.3
Chen, B.4
Xu, C.5
Wang, X.6
Liu, J.7
Diao, L.8
-
40
-
-
84902147306
-
High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage
-
Yang J, Sun B, Huang H, Jiang Y, Diao L, Chen B, Xu C, Wang X, Liu J, Jiang W, Yang S. 2014. High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage. Appl Environ Microbiol 80:3826–3834.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 3826-3834
-
-
Yang, J.1
Sun, B.2
Huang, H.3
Jiang, Y.4
Diao, L.5
Chen, B.6
Xu, C.7
Wang, X.8
Liu, J.9
Jiang, W.10
Yang, S.11
-
41
-
-
0034705144
-
An efficient recombination system for chromosome engineering in Escherichia coli
-
Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 5978-5983
-
-
Yu, D.1
Ellis, H.M.2
Lee, E.C.3
Jenkins, N.A.4
Copeland, N.G.5
Court, D.L.6
|