메뉴 건너뛰기




Volumn 14, Issue 5, 2016, Pages 288-304

Fuelling the future: Microbial engineering for the production of sustainable biofuels

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; BIOFUEL; CARBON DIOXIDE; COENZYME A; FATTY ACID; ISOPRENOID; LIGNOCELLULOSE; METHANE; OXOACID; LIGNIN;

EID: 84961922827     PISSN: 17401526     EISSN: 17401534     Source Type: Journal    
DOI: 10.1038/nrmicro.2016.32     Document Type: Review
Times cited : (478)

References (173)
  • 2
    • 0037076764 scopus 로고    scopus 로고
    • Dangerous climate impacts and the Kyoto Protocol
    • O?Neill, B. C., & Oppenheimer, M. Dangerous climate impacts and the Kyoto Protocol. Science 296, 1971-1972 (2002
    • (2002) Science , vol.296 , pp. 1971-1972
    • Oneill, B.C.1    Oppenheimer, M.2
  • 3
    • 4043100553 scopus 로고    scopus 로고
    • Stabilization wedges: Solving the climate problem for the next 50 years with current technologies
    • Pacala, S., & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968-972 (2004
    • (2004) Science , vol.305 , pp. 968-972
    • Pacala, S.1    Socolow, R.2
  • 4
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: Chemical challenges in solar energy utilization
    • Lewis, S. N., & Nocera, G. D. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729-15735 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 15729-15735
    • Lewis, S.N.1    Nocera, G.D.2
  • 5
    • 17444361892 scopus 로고    scopus 로고
    • Biotechnological processes for conversion of corn into ethanol
    • Bothast, R. J., & Schlicher, M. A. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67, 19-25 (2005
    • (2005) Appl. Microbiol. Biotechnol , vol.67 , pp. 19-25
    • Bothast, R.J.1    Schlicher, M.A.2
  • 7
    • 33846980741 scopus 로고    scopus 로고
    • Ethanol for a sustainable energy future
    • Goldemberg, J. Ethanol for a sustainable energy future. Science 315 808-810 (2009
    • (2009) Science , vol.315 , pp. 808-810
    • Goldemberg, J.1
  • 9
    • 70350493687 scopus 로고    scopus 로고
    • Fixing a critical climate accounting error
    • Searchinger T. D., et al. Fixing a critical climate accounting error. Science 326, 527-528 (2009
    • (2009) Science , vol.326 , pp. 527-528
    • Searchinger, T.D.1
  • 11
    • 84875219847 scopus 로고    scopus 로고
    • Advanced biofuels: Future perspectives from an expert elicitation survey
    • Fiorese, G., Catenacci, M., Verdolini, E., & Bosetti, V. Advanced biofuels: future perspectives from an expert elicitation survey. Energy Policy 56, 293-311 (2013
    • (2013) Energy Policy , vol.56 , pp. 293-311
    • Fiorese, G.1    Catenacci, M.2    Verdolini, E.3    Bosetti, V.4
  • 12
    • 84897417675 scopus 로고    scopus 로고
    • Methane fluxes show consistent temperature dependence across microbial to ecosystem scales
    • Yvon-Durocher G., et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488-491 (2014
    • (2014) Nature , vol.507 , pp. 488-491
    • Yvon-Durocher, G.1
  • 14
    • 84902545912 scopus 로고    scopus 로고
    • Biomass gasification for synthesis gas production and applications of the syngas
    • Rauch, R., Hrbek, J., & Hofbauer, H. Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ. 3, 343-362 (2014
    • (2014) WIREs Energy Environ , vol.3 , pp. 343-362
    • Rauch, R.1    Hrbek, J.2    Hofbauer, H.3
  • 15
    • 66149117908 scopus 로고    scopus 로고
    • Carboxylate platform: The MixAlco process part 1: Comparison of three biomass conversion platforms
    • Holtzapple, M., & Granda, C. Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Appl. Biochem. Biotechnol. 156, 95-106 (2009
    • (2009) Appl. Biochem. Biotechnol , vol.156 , pp. 95-106
    • Holtzapple, M.1    Granda, C.2
  • 16
    • 78751627523 scopus 로고    scopus 로고
    • Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform
    • Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 29, 70-78 (2015
    • (2015) Trends Biotechnol , vol.29 , pp. 70-78
    • Agler, M.T.1    Wrenn, B.A.2    Zinder, S.H.3    Angenent, L.T.4
  • 17
    • 84868519276 scopus 로고    scopus 로고
    • Methane production from solid-state anaerobic digestion of lignocellulosic biomass
    • Liew, L. N., Shi, J., & Li, Y. Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46, 125-132 (2012
    • (2012) Biomass Bioenergy , vol.46 , pp. 125-132
    • Liew, L.N.1    Shi, J.2    Li, Y.3
  • 18
    • 84883818507 scopus 로고    scopus 로고
    • Application of Fischer-Tropsch synthesis in biomass to liquid conversion
    • Hu, J., Yu, F., & Lu, Y. Application of Fischer-Tropsch synthesis in biomass to liquid conversion. Catalysts 2, 303 (2012
    • (2012) Catalysts , vol.2 , pp. 303
    • Hu, J.1    Yu, F.2    Lu, Y.3
  • 19
    • 34249931692 scopus 로고    scopus 로고
    • Microbiology of synthesis gas fermentation for biofuel production
    • Henstra, A. M., Sipma, J., Rinzema, A., & Stams, A. J. M. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18, 200-206 (2007
    • (2007) Curr. Opin. Biotechnol , vol.18 , pp. 200-206
    • Henstra, A.M.1    Sipma, J.2    Rinzema, A.3    Stams, A.J.M.4
  • 20
    • 84911440829 scopus 로고    scopus 로고
    • Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
    • Schuchmann, K., & Muller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809-821 (2014
    • (2014) Nat. Rev. Microbiol , vol.12 , pp. 809-821
    • Schuchmann, K.1    Muller, V.2
  • 21
    • 67650229586 scopus 로고    scopus 로고
    • Lessons from the cow: What the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass
    • Weimer, P. J., Russell, J. B., & Muck, R. E. Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresour. Technol. 100, 5323-5331 (2009
    • (2009) Bioresour. Technol , vol.100 , pp. 5323-5331
    • Weimer, P.J.1    Russell, J.B.2    Muck, R.E.3
  • 22
    • 9944252948 scopus 로고    scopus 로고
    • Features of promising technologies for pretreatment of lignocellulosic biomass
    • Mosier N., et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673-686 (2005
    • (2005) Bioresour. Technol , vol.96 , pp. 673-686
    • Mosier, N.1
  • 23
    • 65249115211 scopus 로고    scopus 로고
    • Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production
    • Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713-3729 (2009
    • (2009) Ind. Eng. Chem. Res , vol.48 , pp. 3713-3729
    • Kumar, P.1    Barrett, D.M.2    Delwiche, M.J.3    Stroeve, P.4
  • 24
    • 43449098828 scopus 로고    scopus 로고
    • Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina)
    • Martinez D., et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26, 553-560 (2008
    • (2008) Nat. Biotechnol , vol.26 , pp. 553-560
    • Martinez, D.1
  • 25
    • 0042432086 scopus 로고    scopus 로고
    • Directed evolution of industrial enzymes: An update
    • Cherry, J. R., & Fidantsef, A. L. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14, 438-443 (2003
    • (2003) Curr. Opin. Biotechnol , vol.14 , pp. 438-443
    • Cherry, J.R.1    Fidantsef, A.L.2
  • 26
    • 0000103970 scopus 로고
    • Limited proteolysis of the cellobiohydrolase i from Trichoderma reesei: Separation of functional domains
    • Van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R., & Pettersson, G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of functional domains. FEBS Lett. 204, 223-227 (1986
    • (1986) FEBS Lett , vol.204 , pp. 223-227
    • Van Tilbeurgh, H.1    Tomme, P.2    Claeyssens, M.3    Bhikhabhai, R.4    Pettersson, G.5
  • 27
    • 34249773227 scopus 로고
    • Cellulases and their interaction with cellulose
    • Henrissat, B. Cellulases and their interaction with cellulose. Cellulose 1, 169-196 (1994
    • (1994) Cellulose , vol.1 , pp. 169-196
    • Henrissat, B.1
  • 28
    • 0033485705 scopus 로고    scopus 로고
    • Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase i and endoglucanase i
    • Väljamäe, P., Sild, V., Nutt, A., Pettersson, G., & Johansson, G. Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur. J. Biochem. 266, 327-334 (1999
    • (1999) Eur. J. Biochem , vol.266 , pp. 327-334
    • Väljamäe, P.1    Sild, V.2    Nutt, A.3    Pettersson, G.4    Johansson, G.5
  • 29
    • 77958179580 scopus 로고    scopus 로고
    • Efficient screening of fungal cellobiohydrolase class i enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination
    • Heinzelman P., et al. Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng. Des. Sel. 23, 871-880 (2010
    • (2010) Protein Eng. Des. Sel , vol.23 , pp. 871-880
    • Heinzelman, P.1
  • 30
    • 84878391705 scopus 로고    scopus 로고
    • Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures
    • Wu, I., & Arnold, F. H. Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol. Bioeng. 110, 1874-1883 (2013
    • (2013) Biotechnol. Bioeng , vol.110 , pp. 1874-1883
    • Wu, I.1    Arnold, F.H.2
  • 31
    • 84953367723 scopus 로고    scopus 로고
    • Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling
    • Liu, G., Zhang, J., & Bao, J. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst. Eng. 39, 133-140 (2016
    • (2016) Bioprocess Biosyst. Eng , vol.39 , pp. 133-140
    • Liu, G.1    Zhang, J.2    Bao, J.3
  • 33
    • 80051801783 scopus 로고    scopus 로고
    • Alternatives to Trichoderma reesei in biofuel production
    • Gusakov, A. V. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29, 419-425 (2011
    • (2011) Trends Biotechnol , vol.29 , pp. 419-425
    • Gusakov, A.V.1
  • 34
    • 0021078758 scopus 로고
    • Adherence of Clostridium thermocellum to cellulose
    • Bayer, E. A., Kenig, R., & Lamed, R. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156, 818-827 (1983
    • (1983) J. Bacteriol , vol.156 , pp. 818-827
    • Bayer, E.A.1    Kenig, R.2    Lamed, R.3
  • 35
    • 33750838967 scopus 로고    scopus 로고
    • Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum
    • Lu, Y., Zhang, Y. H. P., & Lynd, L. R. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl Acad. Sci. USA 103, 16165-16169 (2006
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 16165-16169
    • Lu, Y.1    Zhang, Y.H.P.2    Lynd, L.R.3
  • 36
    • 84863115935 scopus 로고    scopus 로고
    • Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex
    • You, C., Zhang, X. Z., Sathitsuksanoh, N., Lynd, L. R., & Zhang, Y. H. P. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl. Environ. Microbiol. 78, 1437-1444 (2012
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 1437-1444
    • You, C.1    Zhang, X.Z.2    Sathitsuksanoh, N.3    Lynd, L.R.4    Zhang, Y.H.P.5
  • 37
    • 0027285934 scopus 로고
    • Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL protein reveals an unusual degree of internal homology
    • Gerngross, U. T., Romaniec, M. P., Kobayashi, T., Huskisson, N. S., & Demain, A. L. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL protein reveals an unusual degree of internal homology. Mol. Microbiol. 8, 325-334 (1993
    • (1993) Mol. Microbiol , vol.8 , pp. 325-334
    • Gerngross, U.T.1    Romaniec, M.P.2    Kobayashi, T.3    Huskisson, N.S.4    Demain, A.L.5
  • 38
    • 0034840478 scopus 로고    scopus 로고
    • The cellulosome and cellulose degradation by anaerobic bacteria
    • Schwarz, W. H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634-649 (2001
    • (2001) Appl. Microbiol. Biotechnol , vol.56 , pp. 634-649
    • Schwarz, W.H.1
  • 39
    • 18844371475 scopus 로고    scopus 로고
    • Cellulose utilization by Clostridium thermocellum: Bioenergetics and hydrolysis product assimilation
    • Zhang, Y. H. P., & Lynd, L. R. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl. Acad. Sci. USA 102, 7321-7325 (2005
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 7321-7325
    • Zhang, Y.H.P.1    Lynd, L.R.2
  • 40
    • 1642273858 scopus 로고    scopus 로고
    • Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum
    • Zhang, Y. H. P., & Lynd, L. R. Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl. Environ. Microbiol. 70, 1563-1569 (2004
    • (2004) Appl. Environ. Microbiol , vol.70 , pp. 1563-1569
    • Zhang, Y.H.P.1    Lynd, L.R.2
  • 41
    • 84878892982 scopus 로고    scopus 로고
    • Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction
    • Resch M. G., et al. Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ. Sci. 6, 1858-1867 (2013
    • (2013) Energy Environ. Sci , vol.6 , pp. 1858-1867
    • Resch, M.G.1
  • 42
    • 84990872349 scopus 로고    scopus 로고
    • Clean fractionation pretreatment reduces enzyme loadings for biomass saccharification and reveals the mechanism of free and cellulosomal enzyme synergy
    • Resch M. G., et al. Clean fractionation pretreatment reduces enzyme loadings for biomass saccharification and reveals the mechanism of free and cellulosomal enzyme synergy. ACS Sustainable Chem. Eng. 2, 1377-1387 (2014
    • (2014) ACS Sustainable Chem. Eng , vol.2 , pp. 1377-1387
    • Resch, M.G.1
  • 43
    • 79960095189 scopus 로고    scopus 로고
    • Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of caldicellulosiruptor bescii and caldicellulosiruptor obsidiansis
    • Lochner A., et al. Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl. Environ. Microbiol. 77, 4042-4054 (2011
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 4042-4054
    • Lochner, A.1
  • 44
    • 84890852394 scopus 로고    scopus 로고
    • Revealing nature?s cellulase diversity: The digestion mechanism of Caldicellulosiruptor bescii CelA
    • Brunecky R., et al. Revealing nature?s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342, 1513-1516 (2013
    • (2013) Science , vol.342 , pp. 1513-1516
    • Brunecky, R.1
  • 46
    • 14944356813 scopus 로고    scopus 로고
    • Cellulase clostridia, and ethanol
    • Demain, A. L., et al. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69, 124-154 (2005
    • (2005) Microbiol. Mol. Biol. Rev , vol.69 , pp. 124-154
    • Demain, A.L.1
  • 48
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper M., et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5, 399-409 (2005
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1
  • 49
    • 84893176388 scopus 로고    scopus 로고
    • Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2 deoxyglucose
    • Mohagheghi A., et al. Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2 deoxyglucose. Biotechnol. Biofuels 7, 19 (2014
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 19
    • Mohagheghi, A.1
  • 50
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport d xylose without inhibition by d glucose
    • Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., & Boles, E. Engineering of yeast hexose transporters to transport d xylose without inhibition by d glucose. Proc. Natl Acad. Sci. USA 111, 5159-5164 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 51
    • 84873627605 scopus 로고    scopus 로고
    • Liquid fuels, hydrogen and chemicals from lignin: A critical review
    • Azadi, P., Inderwildi, O. R., Farnood, R., & King, D. A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sust. Energ. Rev. 21, 506-523 (2002
    • (2002) Renew. Sust. Energ. Rev , vol.21 , pp. 506-523
    • Azadi, P.1    Inderwildi, O.R.2    Farnood, R.3    King, D.A.4
  • 52
    • 84900453510 scopus 로고    scopus 로고
    • Lignin valorization: Improving lignin processing in the biorefinery
    • Ragauskas A. J., et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014
    • (2014) Science , vol.344 , pp. 1246843
    • Ragauskas, A.J.1
  • 53
    • 24944461038 scopus 로고    scopus 로고
    • Biodegradation of lignocellulosics: Microbial chemical, and enzymatic aspects of the fungal attack of lignin
    • Martínez, A. T., et al. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8, 195-204 (2005
    • (2005) Int. Microbiol , vol.8 , pp. 195-204
    • Martínez, A.T.1
  • 54
    • 0018083892 scopus 로고
    • Screening for lignin degrading bacteria by means of 14C labelled lignins
    • Haider, K., Trojanowski, J., & Sundman, V. Screening for lignin degrading bacteria by means of 14C labelled lignins. Methods 119, 103-106 (1978
    • (1978) Methods , vol.119 , pp. 103-106
    • Haider, K.1    Trojanowski, J.2    Sundman, V.3
  • 55
    • 80054757000 scopus 로고    scopus 로고
    • Microbial degradation of aromatic compounds-from one strategy to four
    • Fuchs, G., Boll, M., & Heider, J. Microbial degradation of aromatic compounds-from one strategy to four. Nat. Rev. Microbiol. 9, 803-816 (2011
    • (2011) Nat. Rev. Microbiol , vol.9 , pp. 803-816
    • Fuchs, G.1    Boll, M.2    Heider, J.3
  • 56
    • 84930198715 scopus 로고    scopus 로고
    • Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin
    • Johnson, C. W., & Beckham, G. T. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metab. Eng. 28, 240-247 (2015
    • (2015) Metab. Eng , vol.28 , pp. 240-247
    • Johnson, C.W.1    Beckham, G.T.2
  • 57
    • 33947617349 scopus 로고    scopus 로고
    • Biodiesel from microalgae
    • Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306 (2007
    • (2007) Biotechnol. Adv , vol.25 , pp. 294-306
    • Chisti, Y.1
  • 58
    • 58149269804 scopus 로고    scopus 로고
    • Microalgae for oil: Strain selection induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor
    • Rodolfi, L., et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112 (2009
    • (2009) Biotechnol. Bioeng , vol.102 , pp. 100-112
    • Rodolfi, L.1
  • 59
    • 84860864006 scopus 로고    scopus 로고
    • Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas
    • Boyle N. R., et al. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J. Biol. Chem. 287, 15811-15825 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 15811-15825
    • Boyle, N.R.1
  • 60
    • 80052388966 scopus 로고    scopus 로고
    • RNA-mediated silencing in algae: Biological roles and tools for analysis of gene function
    • Cerutti, H., Ma, X., Msanne, J., & Repas, T. RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryot. Cell 10, 1164-1172 (2011
    • (2011) Eukaryot. Cell , vol.10 , pp. 1164-1172
    • Cerutti, H.1    Ma, X.2    Msanne, J.3    Repas, T.4
  • 61
    • 84878867415 scopus 로고    scopus 로고
    • Advances in microalgae engineering and synthetic biology applications for biofuel production
    • Gimpel, J. A., Specht, E. A., Georgianna, D. R., & Mayfield, S. P. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr. Opin. Chem. Biol. 17, 489-495 (2013
    • (2013) Curr. Opin. Chem. Biol , vol.17 , pp. 489-495
    • Gimpel, J.A.1    Specht, E.A.2    Georgianna, D.R.3    Mayfield, S.P.4
  • 62
    • 84929504676 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for the synthesis of commodity products
    • Angermayr, S. A., Gorchs Rovira, A., & Hellingwerf, K. J. Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352-361 (2015
    • (2015) Trends Biotechnol , vol.33 , pp. 352-361
    • Angermayr, S.A.1    Gorchs Rovira, A.2    Hellingwerf, K.J.3
  • 63
    • 0036141294 scopus 로고    scopus 로고
    • Mapping monthly distribution of daily light integrals across the contiguous United States
    • Korczynski, P. C., Logan, J., & Faust, J. E. Mapping monthly distribution of daily light integrals across the contiguous United States. HortTechnology 12, 12-16 (2002
    • (2002) HortTechnology , vol.12 , pp. 12-16
    • Korczynski, P.C.1    Logan, J.2    Faust, J.E.3
  • 64
    • 77957343168 scopus 로고    scopus 로고
    • Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review
    • Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102, 71-81 (2011
    • (2011) Bioresour. Technol , vol.102 , pp. 71-81
    • Chen, C.Y.1    Yeh, K.L.2    Aisyah, R.3    Lee, D.J.4    Chang, J.S.5
  • 66
    • 42249085227 scopus 로고    scopus 로고
    • What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
    • Zhu, X. G., Long, S. P., & Ort, D. R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?. Curr. Opin. Biotechnol. 19, 153-159 (2008
    • (2008) Curr. Opin. Biotechnol , vol.19 , pp. 153-159
    • Zhu, X.G.1    Long, S.P.2    Ort, D.R.3
  • 67
    • 84875819070 scopus 로고    scopus 로고
    • Synechococcus sp strain PCC 7002 transcriptome: Acclimation to temperature salinity, oxidative stress, and mixotrophic growth conditions
    • Ludwig, M., & Bryant, D. A. Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions. Front. Microbiol. 3, 354 (2012
    • (2012) Front. Microbiol , vol.3 , pp. 354
    • Ludwig, M.1    Bryant, D.A.2
  • 69
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship, R. E., et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805-809 (2011
    • (2011) Science , vol.332 , pp. 805-809
    • Blankenship, R.E.1
  • 70
    • 84912560037 scopus 로고    scopus 로고
    • Overview of current development in electrical energy storage technologies and the application potential in power system operation
    • Luo, X., Wang, J., Dooner, M., & Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511-536 (2015
    • (2015) Appl. Energy , vol.137 , pp. 511-536
    • Luo, X.1    Wang, J.2    Dooner, M.3    Clarke, J.4
  • 71
    • 84859111827 scopus 로고    scopus 로고
    • Integrated electromicrobial conversion of CO2 to higher alcohols
    • Li H., et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596-1596 (2012
    • (2012) Science , vol.335 , pp. 1596
    • Li, H.1
  • 72
    • 84923676034 scopus 로고    scopus 로고
    • Efficient solar to fuels production from a hybrid microbial-water-splitting catalyst system
    • Torella J. P., et al. Efficient solar to fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337-2342 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 2337-2342
    • Torella, J.P.1
  • 73
    • 84899982297 scopus 로고    scopus 로고
    • Isopropanol production with engineered Cupriavidus necator as bioproduction platform
    • Grousseau, E., Lu, J., Gorret, N., Guillouet, S. E., & Sinskey, A. J. Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 98, 4277-4290 (2014
    • (2014) Appl. Microbiol. Biotechnol , vol.98 , pp. 4277-4290
    • Grousseau, E.1    Lu, J.2    Gorret, N.3    Guillouet, S.E.4    Sinskey, A.J.5
  • 74
    • 84876029446 scopus 로고    scopus 로고
    • Exploiting microbial hyperthermophilicity to produce an industrial chemical using hydrogen and carbon dioxide
    • Keller, M. W., et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl Acad. Sci. USA 110, 5840-5845 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 5840-5845
    • Keller, M.W.1
  • 75
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory, K. B., Bond, D. R., & Lovley, D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596-604 (2004
    • (2004) Environ. Microbiol , vol.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 76
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • 10
    • Nevin, K. P., Woodard, T. L., & Franks, A. E. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103 10 (2010
    • (2010) MBio , vol.1 , pp. e00103
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3
  • 77
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • Nevin K. P., et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882-2886 (2011
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2882-2886
    • Nevin, K.P.1
  • 79
    • 84893646822 scopus 로고    scopus 로고
    • Envisioning the bioconversion of methane to liquid fuels
    • Conrado, R. J., & Gonzalez, R. Envisioning the bioconversion of methane to liquid fuels. Science 343, 621-623 (2014
    • (2014) Science , vol.343 , pp. 621-623
    • Conrado, R.J.1    Gonzalez, R.2
  • 81
    • 84923361975 scopus 로고    scopus 로고
    • Structure of the key species in the enzymatic oxidation of methane to methanol
    • Banerjee, R., Proshlyakov, Y., Lipscomb, J. D., & Proshlyakov, D. A. Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518, 431-434 (2015
    • (2015) Nature , vol.518 , pp. 431-434
    • Banerjee, R.1    Proshlyakov, Y.2    Lipscomb, J.D.3    Proshlyakov, D.A.4
  • 82
    • 84909606329 scopus 로고    scopus 로고
    • Building carbon-carbon bonds using a biocatalytic methanol condensation cycle
    • Bogorad I. W., et al. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc. Natl Acad. Sci. USA 111, 15928-15933 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 15928-15933
    • Bogorad, I.W.1
  • 83
    • 84926364931 scopus 로고    scopus 로고
    • Metabolic engineering in methanotrophic bacteria
    • Kalyuzhnaya, M. G., Puri, A. W., & Lidstrom, M. E. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29, 142-152 (2015
    • (2015) Metab. Eng , vol.29 , pp. 142-152
    • Kalyuzhnaya, M.G.1    Puri, A.W.2    Lidstrom, M.E.3
  • 85
    • 84907483760 scopus 로고    scopus 로고
    • Altered sterol composition renders yeast thermotolerant
    • Caspeta L., et al. Altered sterol composition renders yeast thermotolerant. Science 346, 75-78 (2014
    • (2014) Science , vol.346 , pp. 75-78
    • Caspeta, L.1
  • 86
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T., et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb. Cell Fact. 10, 2 (2011
    • (2011) Microb. Cell Fact , vol.10 , pp. 2
    • Hasunuma, T.1
  • 87
    • 0017361914 scopus 로고
    • The biology of Zymomonas
    • Swings, J., & De Ley, J. The biology of Zymomonas. Bacteriol. Rev. 41, 1-46 (1977
    • (1977) Bacteriol. Rev , vol.41 , pp. 1-46
    • Swings, J.1    De Ley, J.2
  • 88
    • 84923308098 scopus 로고    scopus 로고
    • N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis
    • Kremer, T. A., LaSarre, B., Posto, A. L., & McKinlay, J. B. N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc. Natl Acad. Sci. USA 112, 2222-2226 (2015
    • (2015) Proc Natl Acad. Sci. USA , vol.112 , pp. 2222-2226
    • Kremer, T.A.1    LaSarre, B.2    Posto, A.L.3    McKinlay, J.B.4
  • 90
    • 84876299239 scopus 로고    scopus 로고
    • Atypical glycolysis in clostridium thermocellum
    • Zhou J., et al. Atypical glycolysis in Clostridium thermocellum. Appl. Environ. Microbiol. 79, 3000-3008 (2013
    • (2013) Appl. Environ. Microbiol , vol.79 , pp. 3000-3008
    • Zhou, J.1
  • 91
    • 84871712835 scopus 로고    scopus 로고
    • Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
    • Buckel, W., & Thauer, R. K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta. 1827, 94-113 (2013
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 94-113
    • Buckel, W.1    Thauer, R.K.2
  • 92
    • 84942612938 scopus 로고    scopus 로고
    • Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum
    • Papanek, B., Biswas, R., Rydzak, T., & Guss, A. M. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab. Eng. 32, 49-54 (2015
    • (2015) Metab. Eng , vol.32 , pp. 49-54
    • Papanek, B.1    Biswas, R.2    Rydzak, T.3    Guss, A.M.4
  • 93
    • 79954572190 scopus 로고    scopus 로고
    • Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725
    • Dam P., et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 39, 3240-3254 (2011
    • (2011) Nucleic Acids Res , vol.39 , pp. 3240-3254
    • Dam, P.1
  • 94
    • 84902590153 scopus 로고    scopus 로고
    • Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii
    • Chung, D., Cha, M., Guss, A. M., & Westpheling, J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl Acad. Sci. USA 111, 8931-8936 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 8931-8936
    • Chung, D.1    Cha, M.2    Guss, A.M.3    Westpheling, J.4
  • 95
    • 84903592102 scopus 로고    scopus 로고
    • Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48
    • Huang J., et al. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. ScientificWorldJournal 2014, 798683 (2014
    • (2014) ScientificWorldJournal , vol.2014 , pp. 798683
    • Huang, J.1
  • 96
    • 77953675236 scopus 로고    scopus 로고
    • Cocktail δ-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
    • Yamada R., et al. Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb. Cell Fact. 9, 32 (2010
    • (2010) Microb. Cell Fact , vol.9 , pp. 32
    • Yamada, R.1
  • 97
    • 70349436024 scopus 로고    scopus 로고
    • Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production
    • Tsai, S. L., Oh, J., Singh, S., Chen, R., & Chen, W. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 75, 6087-6093 (2009
    • (2009) Appl. Environ. Microbiol , vol.75 , pp. 6087-6093
    • Tsai, S.L.1    Oh, J.2    Singh, S.3    Chen, R.4    Chen, W.5
  • 98
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi, S., Hanai, T., & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89 (2008
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 99
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood, L. A., Daran, J. M., van Maris, A. J., Pronk, J. T., & Dickinson, J. R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259-2266 (2008
    • (2008) Appl. Environ. Microbiol , vol.74 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.M.2    Van Maris, A.J.3    Pronk, J.T.4    Dickinson, J.R.5
  • 100
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-Acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2 methylpropan 1 ol production at theoretical yield in Escherichia coli
    • Bastian S., et al. Engineered ketol-Acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2 methylpropan 1 ol production at theoretical yield in Escherichia coli. Metab. Eng. 13, 345-352 (2011
    • (2011) Metab. Eng , vol.13 , pp. 345-352
    • Bastian, S.1
  • 101
    • 84889061841 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
    • Matsuda F., et al. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb. Cell Fact. 12, 119 (2013
    • (2013) Microb. Cell Fact , vol.12 , pp. 119
    • Matsuda, F.1
  • 102
    • 79960712071 scopus 로고    scopus 로고
    • Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2 ketoisovalerate precursor pathway overexpression
    • Li, S., Wen, J., & Jia, X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2 ketoisovalerate precursor pathway overexpression. Appl. Microbiol. Biotechnol. 91, 577-589 (2011
    • (2011) Appl. Microbiol. Biotechnol , vol.91 , pp. 577-589
    • Li, S.1    Wen, J.2    Jia, X.3
  • 103
    • 84937718357 scopus 로고    scopus 로고
    • Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum
    • Lin P. P., et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab. Eng. 31, 44-52 (2015
    • (2015) Metab. Eng , vol.31 , pp. 44-52
    • Lin, P.P.1
  • 105
    • 84897025067 scopus 로고    scopus 로고
    • Expanding ester biosynthesis in Escherichia coli
    • Rodriguez, G. M., Tashiro, Y., & Atsumi, S. Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol. 10, 259-265 (2014
    • (2014) Nat. Chem. Biol , vol.10 , pp. 259-265
    • Rodriguez, G.M.1    Tashiro, Y.2    Atsumi, S.3
  • 106
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-Titer anaerobic 1 butanol synthesis in Escherichia coli
    • Shen C. R., et al. Driving forces enable high-Titer anaerobic 1 butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77, 2905-2915 (2011
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2905-2915
    • Shen, C.R.1
  • 107
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the β oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco, C., Clomburg, J. M., Miller, E. N., & Gonzalez, R. Engineered reversal of the β oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355-359 (2011
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 108
    • 78449244865 scopus 로고    scopus 로고
    • Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping
    • Inokuma, K., Liao, J. C., Okamoto, M., & Hanai, T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J. Biosci. Bioeng. 110, 696-701 (2010
    • (2010) J. Biosci. Bioeng , vol.110 , pp. 696-701
    • Inokuma, K.1    Liao, J.C.2    Okamoto, M.3    Hanai, T.4
  • 109
    • 58249098522 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the production of n butanol
    • Steen E. J., et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n butanol. Microb. Cell Fact. 7, 36 (2008
    • (2008) Microb. Cell Fact , vol.7 , pp. 36
    • Steen, E.J.1
  • 110
    • 68049135724 scopus 로고    scopus 로고
    • Engineering alternative butanol production platforms in heterologous bacteria
    • Nielsen D. R., et al. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11, 262-273 (2009
    • (2009) Metab. Eng , vol.11 , pp. 262-273
    • Nielsen, D.R.1
  • 111
    • 84882392453 scopus 로고    scopus 로고
    • Oxygen-Tolerant coenzyme A acylating aldehyde dehydrogenase facilitates efficient photosynthetic n butanol biosynthesis in cyanobacteria
    • Lan, E. I., Ro, S. Y., & Liao, J. C. Oxygen-Tolerant coenzyme A acylating aldehyde dehydrogenase facilitates efficient photosynthetic n butanol biosynthesis in cyanobacteria. Energy Environ. Sci. 6, 2672 (2013
    • (2013) Energy Environ. Sci , vol.6 , pp. 2672
    • Lan, E.I.1    Ro, S.Y.2    Liao, J.C.3
  • 112
    • 0017621746 scopus 로고
    • Propionate-induced synthesis of odd-chain-length fatty acids by Escherichia coli
    • Ingram, L. O., Chevalier, L. S., Gabba, E. J., Ley, K. D., & Winters, K. Propionate-induced synthesis of odd-chain-length fatty acids by Escherichia coli. J. Bacteriol. 131, 1023-1025 (1977
    • (1977) J. Bacteriol , vol.131 , pp. 1023-1025
    • Ingram, L.O.1    Chevalier, L.S.2    Gabba, E.J.3    Ley, K.D.4    Winters, K.5
  • 113
    • 84868098920 scopus 로고    scopus 로고
    • Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways
    • Tseng, H. C., & Prather, K. L. J. Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc. Natl Acad. Sci. USA 109, 17925-17930 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 17925-17930
    • Tseng, H.C.1    Prather, K.L.J.2
  • 114
    • 84874796954 scopus 로고    scopus 로고
    • Synergy as design principle for metabolic engineering of 1 propanol production in Escherichia coli
    • Shen, C. R., & Liao, J. C. Synergy as design principle for metabolic engineering of 1 propanol production in Escherichia coli. Metab. Eng. 17, 12-22 (2013
    • (2013) Metab. Eng , vol.17 , pp. 12-22
    • Shen, C.R.1    Liao, J.C.2
  • 115
    • 84903647698 scopus 로고    scopus 로고
    • Fermentative production of short-chain fatty acids in Escherichia coli
    • Volker A. R., et al. Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 160, 1513-1522 (2014
    • (2014) Microbiology , vol.160 , pp. 1513-1522
    • Volker, A.R.1
  • 116
    • 0030922888 scopus 로고    scopus 로고
    • The genes for butanol and acetone formation in clostridium acetobutylicum atcc 824 reside on a large plasmid whose loss leads to degeneration of the strain
    • Cornillot, E., Nair, R. V., Papoutsakis, E. T., & Soucaille, P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179, 5442-5447 (1997
    • (1997) J. Bacteriol , vol.179 , pp. 5442-5447
    • Cornillot, E.1    Nair, R.V.2    Papoutsakis, E.T.3    Soucaille, P.4
  • 117
    • 84868610929 scopus 로고    scopus 로고
    • Integration of chemical catalysis with extractive fermentation to produce fuels
    • Anbarasan P., et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491, 235-239 (2012
    • (2012) Nature , vol.491 , pp. 235-239
    • Anbarasan, P.1
  • 118
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts, B. B., Bellerose, R. J., & Chang, M. C. Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222-227 (2011
    • (2011) Nat. Chem. Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 119
    • 84900830230 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of butyric acid
    • Saini, M., Wang, Z. W., Chiang, C. J., & Chao, Y. P. Metabolic engineering of Escherichia coli for production of butyric acid. J. Agr. Food Chem. 62, 4342-4348 (2014
    • (2014) J. Agr. Food Chem , vol.62 , pp. 4342-4348
    • Saini, M.1    Wang, Z.W.2    Chiang, C.J.3    Chao, Y.P.4
  • 120
    • 84900521212 scopus 로고    scopus 로고
    • A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus
    • Cheon Y. et al. A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J. Biotechnol. 182-183, 30-36 2014
    • (2014) J. Biotechnol , vol.182-183 , pp. 30-36
    • Cheon, Y.1
  • 121
    • 33947316606 scopus 로고    scopus 로고
    • Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation
    • Black, P. N., & DiRusso, C. C. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim. Biophys. Acta. 1771, 286-298 (2007
    • (2007) Biochim. Biophys. Acta , vol.1771 , pp. 286-298
    • Black, P.N.1    DiRusso, C.C.2
  • 122
    • 75749125061 scopus 로고    scopus 로고
    • Microbial production of fatty-Acid-derived fuels and chemicals from plant biomass
    • Steen E. J., et al. Microbial production of fatty-Acid-derived fuels and chemicals from plant biomass. Nature 463, 559-562 (2010
    • (2010) Nature , vol.463 , pp. 559-562
    • Steen, E.J.1
  • 123
    • 0028960890 scopus 로고
    • Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis
    • Cho, H., & Cronan, J. E. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J. Biol. Chem. 270, 4216-4219 (1995
    • (1995) J. Biol. Chem , vol.270 , pp. 4216-4219
    • Cho, H.1    Cronan, J.E.2
  • 124
    • 57049105699 scopus 로고    scopus 로고
    • Overproduction of free fatty acids in e coli: Implications for biodiesel production
    • Lu, X., Vora, H., & Khosla, C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab. Eng. 10, 333-339 (2008
    • (2008) Metab. Eng , vol.10 , pp. 333-339
    • Lu, X.1    Vora, H.2    Khosla, C.3
  • 125
    • 78650570829 scopus 로고    scopus 로고
    • Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals
    • Handke, P., Lynch, S. A., & Gill, R. T. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab. Eng. 13, 28-37 (2011
    • (2011) Metab. Eng , vol.13 , pp. 28-37
    • Handke, P.1    Lynch, S.A.2    Gill, R.T.3
  • 126
    • 0028335691 scopus 로고
    • Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action
    • Jiang, P., & Cronan, J. E. Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J. Bacteriol. 176, 2814-2821 (1994
    • (1994) J. Bacteriol , vol.176 , pp. 2814-2821
    • Jiang, P.1    Cronan, J.E.2
  • 128
    • 84877352651 scopus 로고    scopus 로고
    • Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli
    • Howard T. P., et al. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 7636-7641 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 7636-7641
    • Howard, T.P.1
  • 129
    • 84879960190 scopus 로고    scopus 로고
    • Tailored fatty acid synthesis via dynamic control of fatty acid elongation
    • Torella J. P., et al. Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc. Natl Acad. Sci. USA 110, 11290-11295 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 11290-11295
    • Torella, J.P.1
  • 130
    • 84886948663 scopus 로고    scopus 로고
    • Microbial production of short-chain alkanes
    • Choi, Y. J., & Lee, S. Y. Microbial production of short-chain alkanes. Nature 502, 571-574 (2013
    • (2013) Nature , vol.502 , pp. 571-574
    • Choi, Y.J.1    Lee, S.Y.2
  • 131
    • 70350205608 scopus 로고    scopus 로고
    • Yarrowia lipolytica as a model for bio-oil production
    • Beopoulos A., et al. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48, 375-387 (2009
    • (2009) Prog. Lipid Res , vol.48 , pp. 375-387
    • Beopoulos, A.1
  • 132
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    • Tai, M., & Stephanopoulos, G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1-9 (2013
    • (2013) Metab. Eng , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 133
    • 84924657793 scopus 로고    scopus 로고
    • Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica
    • Qiao K., et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 29, 56-65 (2015
    • (2015) Metab. Eng , vol.29 , pp. 56-65
    • Qiao, K.1
  • 134
    • 0036690439 scopus 로고    scopus 로고
    • Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units
    • Kuzuyama, T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci. Biotechnol. Biochem. 66, 1619-1627 (2002
    • (2002) Biosci. Biotechnol. Biochem , vol.66 , pp. 1619-1627
    • Kuzuyama, T.1
  • 135
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D., & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796-802 (2003
    • (2003) Nat. Biotechnol , vol.21 , pp. 796-802
    • Martin, V.J.J.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 136
    • 84923021733 scopus 로고    scopus 로고
    • Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
    • Jakočiunas T., et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28, 213-222 (2015
    • (2015) Metab. Eng , vol.28 , pp. 213-222
    • Jakočiunas, T.1
  • 137
    • 84868628420 scopus 로고    scopus 로고
    • Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate
    • Chou, H. H., & Keasling, J. D. Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate. Appl. Environ. Microbiol. 78, 7849-7855 (2012
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 7849-7855
    • Chou, H.H.1    Keasling, J.D.2
  • 138
    • 84930664946 scopus 로고    scopus 로고
    • Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in e
    • George K. W., et al. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci. Rep. 5, 11128 (2015
    • (2015) Coli. Sci. Rep , vol.5 , pp. 11128
    • George, K.W.1
  • 139
    • 84910046651 scopus 로고    scopus 로고
    • MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli
    • Liu H., et al. MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microb. Cell Fact. 13, 135 (2014
    • (2014) Microb. Cell Fact , vol.13 , pp. 135
    • Liu, H.1
  • 140
    • 70449336249 scopus 로고    scopus 로고
    • Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
    • Lindberg, P., Park, S., & Melis, A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12, 70-79 (2010
    • (2010) Metab. Eng , vol.12 , pp. 70-79
    • Lindberg, P.1    Park, S.2    Melis, A.3
  • 141
    • 79953268907 scopus 로고    scopus 로고
    • Enhancing isoprene production by genetic modification of the 1 deoxy d xylulose 5 phosphate pathway in Bacillus subtilis
    • Xue, J., & Ahring, B. K. Enhancing isoprene production by genetic modification of the 1 deoxy d xylulose 5 phosphate pathway in Bacillus subtilis. Appl. Environ. Microbiol. 77, 2399-2405 (2011
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2399-2405
    • Xue, J.1    Ahring, B.K.2
  • 143
    • 77149168163 scopus 로고    scopus 로고
    • High-density renewable fuels based on the selective dimerization of pinenes
    • Harvey, B. G., Wright, M. E., & Quintana, R. L. High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels 24, 267-273 (2010
    • (2010) Energy Fuels , vol.24 , pp. 267-273
    • Harvey, B.G.1    Wright, M.E.2    Quintana, R.L.3
  • 144
    • 84879829307 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production
    • Alonso-Gutierrez J., et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19, 33-41 (2013
    • (2013) Metab. Eng , vol.19 , pp. 33-41
    • Alonso-Gutierrez, J.1
  • 145
    • 85050641846 scopus 로고    scopus 로고
    • Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp PCC 7002
    • Davies, F. K., Work, V. H., Beliaev, A. S., & Posewitz, M. C. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front. Bioeng. Biotechnol. 2, 21 (2014
    • (2014) Front. Bioeng. Biotechnol , vol.2 , pp. 21
    • Davies, F.K.1    Work, V.H.2    Beliaev, A.S.3    Posewitz, M.C.4
  • 146
    • 55549116661 scopus 로고    scopus 로고
    • Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha 4,11 diene
    • Anthony J. R., et al. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha 4,11 diene. Metab. Eng. 11, 13-19 (2009
    • (2009) Metab. Eng , vol.11 , pp. 13-19
    • Anthony, J.R.1
  • 147
    • 80053412686 scopus 로고    scopus 로고
    • Identification and microbial production of a terpene-based advanced biofuel
    • Peralta-Yahya P. P., et al. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun. 2, 483 (2011
    • (2011) Nat. Commun , vol.2 , pp. 483
    • Peralta-Yahya, P.P.1
  • 149
    • 84928114309 scopus 로고    scopus 로고
    • Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene
    • Phelan, R. M., Sekurova, O. N., Keasling, J. D., & Zotchev, S. B. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth. Biol. 4, 393-399 (2014
    • (2014) ACS Synth. Biol , vol.4 , pp. 393-399
    • Phelan, R.M.1    Sekurova, O.N.2    Keasling, J.D.3    Zotchev, S.B.4
  • 150
    • 78651479441 scopus 로고    scopus 로고
    • Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway
    • Wang C., et al. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol. Bioeng. 107, 421-429 (2010
    • (2010) Biotechnol. Bioeng , vol.107 , pp. 421-429
    • Wang, C.1
  • 151
    • 77951531018 scopus 로고    scopus 로고
    • Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae
    • Asadollahi, M. A., Maury, J., Schalk, M., Clark, A., & Nielsen, J. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 106, 86-96 (2010
    • (2010) Biotechnol. Bioeng , vol.106 , pp. 86-96
    • Asadollahi, M.A.1    Maury, J.2    Schalk, M.3    Clark, A.4    Nielsen, J.5
  • 152
    • 0034024497 scopus 로고    scopus 로고
    • Improving lycopene production in Escherichia coli by engineering metabolic control
    • Farmer, W. R., & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18, 533-537 (2000
    • (2000) Nat. Biotechnol , vol.18 , pp. 533-537
    • Farmer, W.R.1    Liao, J.C.2
  • 153
    • 84859633048 scopus 로고    scopus 로고
    • Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
    • Zhang, F., Carothers, J. M., & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354-359 (2012
    • (2012) Nat. Biotechnol , vol.30 , pp. 354-359
    • Zhang, F.1    Carothers, J.M.2    Keasling, J.D.3
  • 154
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565-1568 (2006
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 155
    • 84940434585 scopus 로고    scopus 로고
    • Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and its effect on metabolism
    • Lo J., et al. Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and its effect on metabolism. J. Bacteriol. 197, 2920-2929 (2015
    • (2015) J. Bacteriol , vol.197 , pp. 2920-2929
    • Lo, J.1
  • 156
    • 84936991331 scopus 로고    scopus 로고
    • Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum
    • Biswas, R., Wilson, C. M., Zheng, T., Giannone, R. J., & Dawn, M. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol. Biofuels 8, 20 (2015
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 20
    • Biswas, R.1    Wilson, C.M.2    Zheng, T.3    Giannone, R.J.4    Dawn, M.5
  • 157
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1 butanol in cyanobacteria
    • Lan, E. I., & Liao, J. C. ATP drives direct photosynthetic production of 1 butanol in cyanobacteria. Proc. Natl Acad. Sci. USA 109, 6018-6023 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 158
    • 84883554012 scopus 로고    scopus 로고
    • The damaging effects of short chain fatty acids on Escherichia coli membranes
    • Royce, L., Liu, P., Stebbins, M., Hanson, B., & Jarboe, L. The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl. Microbiol. Biotechnol. 97, 8317-8327 (2013
    • (2013) Appl. Microbiol. Biotechnol , vol.97 , pp. 8317-8327
    • Royce, L.1    Liu, P.2    Stebbins, M.3    Hanson, B.4    Jarboe, L.5
  • 159
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • Bogorad, I. W., Lin, T. S., & Liao, J. C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693-697 (2013
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.S.2    Liao, J.C.3
  • 160
    • 84883554005 scopus 로고    scopus 로고
    • A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli
    • Mainguet, S. E., Gronenberg, L. S., Wong, S. S., & Liao, J. C. A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 19, 116-127 (2013
    • (2013) Metab Eng , vol.19 , pp. 116-127
    • Mainguet, S.E.1    Gronenberg, L.S.2    Wong, S.S.3    Liao, J.C.4
  • 162
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon, J. M., & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001
    • (2001) Nature , vol.414 , pp. 359-367
    • Tarascon, J.M.1    Armand, M.2
  • 163
    • 84863114260 scopus 로고    scopus 로고
    • Electrical energy storage for transportation-Approaching the limits of, and going beyond, lithium-ion batteries
    • Thackeray, M. M., Wolverton, C., & Isaacs, E. D. Electrical energy storage for transportation-Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854 (2012
    • (2012) Energy Environ. Sci , vol.5 , pp. 7854
    • Thackeray, M.M.1    Wolverton, C.2    Isaacs, E.D.3
  • 164
    • 84963944890 scopus 로고    scopus 로고
    • ICT-Energy-Concepts Towards Zero-Power Information and Communication Technology [online]
    • Rohan, J. F., Hasan, M., Patil, S., Casey, D. P., & Clancy, T. Energy storage: battery materials and architectures at the nanoscale. ICT-Energy-Concepts Towards Zero-Power Information and Communication Technology [online], http://www.intechopen.com/books/ict-energy-concepts-Towards-zero-power-information-And-communication-Technology/energy-storage-battery-materials-And-Architectures-At-The-nanoscale (2014
    • (2014) Energy Storage: Battery Materials and Architectures at the Nanoscale
    • Rohan, J.F.1    Hasan, M.2    Patil, S.3    Casey, D.P.4    Clancy, T.5
  • 165
    • 84894238033 scopus 로고    scopus 로고
    • Life cycle assessment of a lithium-ion battery vehicle pack
    • Ellingsen, L. A. W., et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113-124 (2014
    • (2014) J. Ind. Ecol , vol.18 , pp. 113-124
    • Ellingsen, L.A.W.1
  • 166
    • 77955623505 scopus 로고    scopus 로고
    • Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate
    • Beer C., et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834-838 (2010
    • (2010) Science , vol.329 , pp. 834-838
    • Beer, C.1
  • 168
    • 0018293954 scopus 로고
    • A novel coenzyme from bacterial primary alcohol dehydrogenases
    • Salisbury, S. A., Forrest, H. S., Cruse, W. B. T., & Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 280, 843-844 (1979
    • (1979) Nature , vol.280 , pp. 843-844
    • Salisbury, S.A.1    Forrest, H.S.2    Cruse, W.B.T.3    Kennard, O.4
  • 169
    • 0024374320 scopus 로고
    • Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme
    • Arfman N., et al. Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Arch. Microbiol. 152, 280-288 (1989
    • (1989) Arch. Microbiol , vol.152 , pp. 280-288
    • Arfman, N.1
  • 170
    • 0017802391 scopus 로고
    • Preparation and properties of immobilized methanol oxidase
    • Baratti, J., Couderc, R., Cooney, C. L., & Wang, D. I. C. Preparation and properties of immobilized methanol oxidase. Biotechnol. Bioeng. 20, 333-348 (1978
    • (1978) Biotechnol. Bioeng , vol.20 , pp. 333-348
    • Baratti, J.1    Couderc, R.2    Cooney, C.L.3    Wang, D.I.C.4
  • 171
    • 79959974762 scopus 로고    scopus 로고
    • How half a century of research was required to understand bacterial growth on C1 and C2 compounds; The story of the serine cycle and the ethylmalonyl-CoA pathway
    • Anthony, C. How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci. Prog. 94, 109 (2011
    • (2011) Sci. Prog , vol.94 , pp. 109
    • Anthony, C.1
  • 172
    • 84890147287 scopus 로고    scopus 로고
    • Highly efficient methane biocatalysis revealed in a methanotrophic bacterium
    • Kalyuzhnaya M. G., et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013
    • (2013) Nat. Commun , vol.4 , pp. 2785
    • Kalyuzhnaya, M.G.1
  • 173
    • 84867521183 scopus 로고    scopus 로고
    • Architecture and active site of particulate methane monooxygenase
    • Culpepper, M. A., & Rosenzweig, A. C. Architecture and active site of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 47, 483-492 (2012
    • (2012) Crit. Rev. Biochem. Mol. Biol , vol.47 , pp. 483-492
    • Culpepper, M.A.1    Rosenzweig, A.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.