-
1
-
-
84940121964
-
Better together: Engineering and application of microbial symbioses
-
Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA. 2015. Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 36:40-49. https://doi.org/10.1016/j.copbio.2015.08.008.
-
(2015)
Curr Opin Biotechnol
, vol.36
, pp. 40-49
-
-
Hays, S.G.1
Patrick, W.G.2
Ziesack, M.3
Oxman, N.4
Silver, P.A.5
-
2
-
-
84960382191
-
Engineering microbial consortia for controllable outputs
-
Lindemann SR, Bernstein HC, Song HS, Fredrickson JK, Fields MW, Shou W, Johnson DR, Beliaev AS. 2016. Engineering microbial consortia for controllable outputs. ISME J 10:2077-2084. https://doi.org/10.1038/ismej.2016.26.
-
(2016)
ISME J
, vol.10
, pp. 2077-2084
-
-
Lindemann, S.R.1
Bernstein, H.C.2
Song, H.S.3
Fredrickson, J.K.4
Fields, M.W.5
Shou, W.6
Johnson, D.R.7
Beliaev, A.S.8
-
3
-
-
84896045978
-
Synthetic microbial communities
-
Grosskopf T, Soyer OS. 2014. Synthetic microbial communities. Curr Opin Microbiol 18:72-77. https://doi.org/10.1016/j.mib.2014.02.002.
-
(2014)
Curr Opin Microbiol
, vol.18
, pp. 72-77
-
-
Grosskopf, T.1
Soyer, O.S.2
-
4
-
-
1642561497
-
Coral reef ecosystems: How much greater is the whole than the sum of the parts?
-
Hatcher BG. 1997. Coral reef ecosystems: how much greater is the whole than the sum of the parts? Coral Reefs 16:S77-S91. https://doi.org/10.1007/s003380050244.
-
(1997)
Coral Reefs
, vol.16
, pp. S77-S91
-
-
Hatcher, B.G.1
-
5
-
-
84940559798
-
Synthetic communities, the sum of parts
-
Teague B, Weiss R. 2015. Synthetic communities, the sum of parts. Science 349:924-925. https://doi.org/10.1126/science.aad0876.
-
(2015)
Science
, vol.349
, pp. 924-925
-
-
Teague, B.1
Weiss, R.2
-
7
-
-
0032411333
-
N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica
-
Olson JB, Steppe TF, Litaker RW, Paerl HW. 1998. N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231-238. https://doi.org/10.1007/s002489900110.
-
(1998)
Microb Ecol
, vol.36
, pp. 231-238
-
-
Olson, J.B.1
Steppe, T.F.2
Litaker, R.W.3
Paerl, H.W.4
-
8
-
-
4644305766
-
Biofuel cells select for microbial consortia that self-mediate electron transfer
-
Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373-5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 5373-5382
-
-
Rabaey, K.1
Boon, N.2
Siciliano, S.D.3
Verhaege, M.4
Verstraete, W.5
-
9
-
-
84958250665
-
Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids
-
Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM, Hahn J, Koffas MAG. 2016. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35:55-63. https://doi.org/10.1016/j.ymben.2016.01.006.
-
(2016)
Metab Eng
, vol.35
, pp. 55-63
-
-
Jones, J.A.1
Vernacchio, V.R.2
Sinkoe, A.L.3
Collins, S.M.4
Ibrahim, M.H.A.5
Lachance, D.M.6
Hahn, J.7
Koffas, M.A.G.8
-
10
-
-
84936803078
-
Engineering Escherichia coli coculture systems for the production of biochemical products
-
Zhang H, Pereira B, Li Z, Stephanopoulos G. 2015. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci USA 112:8266-8271. https://doi.org/10.1073/pnas.1506781112.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 8266-8271
-
-
Zhang, H.1
Pereira, B.2
Li, Z.3
Stephanopoulos, G.4
-
11
-
-
84941558348
-
Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol
-
Zhang H, Li Z, Pereira B, Stephanopoulos G. 2015. Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol. Microb Cell Fact 14:134. https://doi.org/10.1186/s12934-015-0319-0.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 134
-
-
Zhang, H.1
Li, Z.2
Pereira, B.3
Stephanopoulos, G.4
-
12
-
-
84926646130
-
Distributing a metabolic pathway among a microbial consortium enhances production of natural products
-
Zhou K, Qiao K, Edgar S, Stephanopoulos G. 2015. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33:377-383. https://doi.org/10.1038/nbt.3095.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 377-383
-
-
Zhou, K.1
Qiao, K.2
Edgar, S.3
Stephanopoulos, G.4
-
13
-
-
84925955420
-
Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation
-
Willrodt C, Hoschek A, Bühler B, Schmid A, Julsing MK. 2015. Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation. Biotechnol Bioeng 112:1738-1750. https://doi.org/10.1002/bit.25592.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 1738-1750
-
-
Willrodt, C.1
Hoschek, A.2
Bühler, B.3
Schmid, A.4
Julsing, M.K.5
-
14
-
-
84973519852
-
Modular co-culture engineering, a new approach for metabolic engineering
-
Zhang H, Wang X. 2016. Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng 37:114-121. https://doi.org/10.1016/j.ymben.2016.05.007.
-
(2016)
Metab Eng
, vol.37
, pp. 114-121
-
-
Zhang, H.1
Wang, X.2
-
15
-
-
0343990055
-
Analysis of anthocyanins in strawberries and elderberries. A comparison of capillary zone electrophoresis and HPLC
-
Bridle P, García-Viguera C. 1997. Analysis of anthocyanins in strawberries and elderberries. A comparison of capillary zone electrophoresis and HPLC. Food Chem 59:299-304. https://doi.org/10.1016/S0308-8146(96)00176-8.
-
(1997)
Food Chem
, vol.59
, pp. 299-304
-
-
Bridle, P.1
García-Viguera, C.2
-
16
-
-
25144431998
-
Biosynthesis of natural flavanones in Saccharomyces cerevisiae
-
Yan Y, Kohli A, Koffas MAG. 2005. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610-5613. https://doi.org/10.1128/AEM.71.9.5610-5613.2005.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 5610-5613
-
-
Yan, Y.1
Kohli, A.2
Koffas, M.A.G.3
-
17
-
-
84945262305
-
Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin
-
Lim CG, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, Koffas MAG. 2015. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microbiol 81:6276-6284. https://doi.org/10.1128/AEM.01448-15.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 6276-6284
-
-
Lim, C.G.1
Wong, L.2
Bhan, N.3
Dvora, H.4
Xu, P.5
Venkiteswaran, S.6
Koffas, M.A.G.7
-
18
-
-
84886239741
-
Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain
-
Huang Q, Lin Y, Yan Y. 2013. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 110:3188-3196. https://doi.org/10.1002/bit.24988.
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 3188-3196
-
-
Huang, Q.1
Lin, Y.2
Yan, Y.3
-
19
-
-
84870293949
-
Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain
-
Kang SY, Choi O, Lee JK, Hwang BY, Uhm TB, Hong YS. 2012. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microb Cell Fact 11:153. https://doi.org/10.1186/1475-2859-11-153.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 153
-
-
Kang, S.Y.1
Choi, O.2
Lee, J.K.3
Hwang, B.Y.4
Uhm, T.B.5
Hong, Y.S.6
-
20
-
-
79958715193
-
Optimization of a heterologous pathway for the production of flavonoids from glucose
-
Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392-400. https://doi.org/10.1016/j.ymben.2011.02.002.
-
(2011)
Metab Eng
, vol.13
, pp. 392-400
-
-
Santos, C.N.S.1
Koffas, M.2
Stephanopoulos, G.3
-
22
-
-
84948179681
-
Optimization of naringenin and p-coumaric acid hydroxylation using the native E. coli hydroxylase complex, HpaBC
-
Jones JA, Collins SM, Vernacchio VR, Lachance DM, Koffas MA. 2016. Optimization of naringenin and p-coumaric acid hydroxylation using the native E. coli hydroxylase complex, HpaBC. Biotechnol Prog 32:21-25. https://doi.org/10.1002/btpr.2185.
-
(2016)
Biotechnol Prog
, vol.32
, pp. 21-25
-
-
Jones, J.A.1
Collins, S.M.2
Vernacchio, V.R.3
Lachance, D.M.4
Koffas, M.A.5
-
23
-
-
84904973763
-
Biotechnological production of plant-specific hydroxylated phenylpropanoids
-
Lin Y, Yan Y. 2014. Biotechnological production of plant-specific hydroxylated phenylpropanoids. Biotechnol Bioeng 111:1895-1899. https://doi.org/10.1002/bit.25237.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 1895-1899
-
-
Lin, Y.1
Yan, Y.2
-
24
-
-
84938746622
-
Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex
-
Lin Y, Yan Y. 2012. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb Cell Fact 11:42. https://doi.org/10.1186/1475-2859-11-42.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 42
-
-
Lin, Y.1
Yan, Y.2
-
25
-
-
84876676603
-
Engineering E. coli for caffeic acid biosynthesis from renewable sugars
-
Zhang H, Stephanopoulos G. 2013. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol 97: 3333-3341. https://doi.org/10.1007/s00253-012-4544-8.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 3333-3341
-
-
Zhang, H.1
Stephanopoulos, G.2
-
26
-
-
39649119874
-
Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli
-
Santos CNS, Stephanopoulos G. 2008. Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Appl Environ Micro-biol 74:1190-1197. https://doi.org/10.1128/AEM.02448-07.
-
(2008)
Appl Environ Micro-biol
, vol.74
, pp. 1190-1197
-
-
Santos, C.N.S.1
Stephanopoulos, G.2
-
27
-
-
33750042533
-
Optimum melanin production using recombinant Escherichia coli
-
Lagunas-Muñoz VH, Cabrera-Valladares N, Bolívar F, Gosset G, Martínez A. 2006. Optimum melanin production using recombinant Escherichia coli. J Appl Microbiol 101:1002-1008. https://doi.org/10.1111/j.1365-2672.2006.03013.x.
-
(2006)
J Appl Microbiol
, vol.101
, pp. 1002-1008
-
-
Lagunas-Muñoz, V.H.1
Cabrera-Valladares, N.2
Bolívar, F.3
Gosset, G.4
Martínez, A.5
-
28
-
-
85011320204
-
CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production
-
Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MAG. 2017. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Fact 16:10. https://doi.org/10.1186/s12934-016-0623-3.
-
(2017)
Microb Cell Fact
, vol.16
, pp. 10
-
-
Cress, B.F.1
Leitz, Q.D.2
Kim, D.C.3
Amore, T.D.4
Suzuki, J.Y.5
Linhardt, R.J.6
Koffas, M.A.G.7
-
29
-
-
42549160614
-
Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids
-
Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MAG. 2008. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257-265. https://doi.org/10.1021/mp7001472.
-
(2008)
Mol Pharm
, vol.5
, pp. 257-265
-
-
Leonard, E.1
Yan, Y.2
Fowler, Z.L.3
Li, Z.4
Lim, C.G.5
Lim, K.H.6
Koffas, M.A.G.7
-
30
-
-
84911920717
-
Metabolic pathway balancing and its role in the production of biofuels and chemicals
-
Jones JA, Toparlak ÖD, Koffas MA. 2015. Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52-59. https://doi.org/10.1016/j.copbio.2014.11.013.
-
(2015)
Curr Opin Biotechnol
, vol.33
, pp. 52-59
-
-
Jones, J.A.1
Toparlak, ÖD.2
Koffas, M.A.3
-
31
-
-
84959934868
-
Optimizing metabolic pathways for the improved production of natural products
-
Jones JA, Koffas MAG. 2016. Optimizing metabolic pathways for the improved production of natural products. Methods Enzymol 575: 179-193. https://doi.org/10.1016/bs.mie.2016.02.010.
-
(2016)
Methods Enzymol
, vol.575
, pp. 179-193
-
-
Jones, J.A.1
Koffas, M.A.G.2
-
32
-
-
84961223765
-
Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications
-
Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. 2016. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34:652-664. https://doi.org/10.1016/j.tibtech.2016.02.010.
-
(2016)
Trends Biotechnol
, vol.34
, pp. 652-664
-
-
Wu, G.1
Yan, Q.2
Jones, J.A.3
Tang, Y.J.4
Fong, S.S.5
Koffas, M.A.G.6
-
33
-
-
84921517479
-
Functional optimization of gene clusters by combinatorial design and assembly
-
Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff LBA, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA. 2014. Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32:1241-1249. https://doi.org/10.1038/nbt.3063.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1241-1249
-
-
Smanski, M.J.1
Bhatia, S.2
Zhao, D.3
Park, Y.4
Woodruff, L.B.A.5
Giannoukos, G.6
Ciulla, D.7
Busby, M.8
Calderon, J.9
Nicol, R.10
Gordon, D.B.11
Densmore, D.12
Voigt, C.A.13
-
34
-
-
84941346066
-
Complete biosynthesis of opioids in yeast
-
Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. 2015. Complete biosynthesis of opioids in yeast. Science 349:1095-1100. https://doi.org/10.1126/science.aac9373.
-
(2015)
Science
, vol.349
, pp. 1095-1100
-
-
Galanie, S.1
Thodey, K.2
Trenchard, I.J.3
Filsinger Interrante, M.4
Smolke, C.D.5
-
35
-
-
80052021573
-
Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
-
Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MA. 2011. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13: 578-587. https://doi.org/10.1016/j.ymben.2011.06.008.
-
(2011)
Metab Eng
, vol.13
, pp. 578-587
-
-
Xu, P.1
Ranganathan, S.2
Fowler, Z.L.3
Maranas, C.D.4
Koffas, M.A.5
-
36
-
-
84914129027
-
Production of chondroitin in metabolically engineered E. coli
-
He W, Fu L, Li G, Jones JA, Linhardt RJ, Koffas M. 2015. Production of chondroitin in metabolically engineered E. coli. Metab Eng 27:92-100. https://doi.org/10.1016/j.ymben.2014.11.003.
-
(2015)
Metab Eng
, vol.27
, pp. 92-100
-
-
He, W.1
Fu, L.2
Li, G.3
Jones, J.A.4
Linhardt, R.J.5
Koffas, M.6
-
37
-
-
84868263016
-
ePathBrick: A synthetic biology platform for engineering metabolic pathways in E. coli
-
Xu P, Vansiri A, Bhan N, Koffas MAG. 2012. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth Biol 1:256-266. https://doi.org/10.1021/sb300016b.
-
(2012)
ACS Synth Biol
, vol.1
, pp. 256-266
-
-
Xu, P.1
Vansiri, A.2
Bhan, N.3
Koffas, M.A.G.4
-
38
-
-
80054112938
-
The xylA promoter of Bacillus megaterium mediates constitutive gene expression in Escherichia coli
-
Knobloch D, Clemens A, Ostermann K, Rödel G. 2011. The xylA promoter of Bacillus megaterium mediates constitutive gene expression in Escherichia coli. Eng Life Sci 11:458-462. https://doi.org/10.1002/elsc.201000225.
-
(2011)
Eng Life Sci
, vol.11
, pp. 458-462
-
-
Knobloch, D.1
Clemens, A.2
Ostermann, K.3
Rödel, G.4
-
39
-
-
84905668376
-
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
-
Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M. 2014. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci USA 111:11299-11304. https://doi.org/10.1073/pnas.1406401111.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 11299-11304
-
-
Xu, P.1
Li, L.2
Zhang, F.3
Stephanopoulos, G.4
Koffas, M.5
-
40
-
-
84920161546
-
Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering
-
Zhao S, Jones JA, Lachance DM, Bhan N, Khalidi O, Venkataraman S, Wang Z, Koffas MAG. 2015. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng 28:43-53. https://doi.org/10.1016/j.ymben.2014.12.002.
-
(2015)
Metab Eng
, vol.28
, pp. 43-53
-
-
Zhao, S.1
Jones, J.A.2
Lachance, D.M.3
Bhan, N.4
Khalidi, O.5
Venkataraman, S.6
Wang, Z.7
Koffas, M.A.G.8
|