메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL GENOME; CRISPR CAS SYSTEM; ESCHERICHIA COLI; GENE EXPRESSION REGULATION; GENETIC ENGINEERING; GENETIC RECOMBINATION; GENETICS; MICROBIAL GENETICS; PROCEDURES; RNA EDITING;

EID: 84944320385     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep15096     Document Type: Article
Times cited : (185)

References (46)
  • 1
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97, 6640-6645 (2000).
    • (2000) Proc. Natl. Acad. Sci , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 2
    • 43149090031 scopus 로고    scopus 로고
    • Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red® /ET® Recombination
    • Heermann, R., Zeppenfeld, T. & Jung, K. Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red® /ET® Recombination. Microb. Cell Factories 7, 14 (2008).
    • (2008) Microb. Cell Factories , vol.7 , pp. 14
    • Heermann, R.1    Zeppenfeld, T.2    Jung, K.3
  • 3
    • 59849119654 scopus 로고    scopus 로고
    • Recombineering: A homologous recombination-based method of genetic engineering
    • Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206-223 (2009).
    • (2009) Nat. Protoc , vol.4 , pp. 206-223
    • Sharan, S.K.1    Thomason, L.C.2    Kuznetsov, S.G.3    Court, D.L.4
  • 4
    • 0031924072 scopus 로고    scopus 로고
    • Use of Bacteriophage λ Recombination Functions to Promote Gene Replacement in Escherichia coli
    • Murphy, K. C. Use of Bacteriophage λ Recombination Functions To Promote Gene Replacement in Escherichia coli. J. Bacteriol. 180, 2063-2071 (1998).
    • (1998) J. Bacteriol , vol.180 , pp. 2063-2071
    • Murphy, K.C.1
  • 5
    • 84890368234 scopus 로고    scopus 로고
    • Positive and negative selection using the tetA-sacB cassette: Recombineering and P1 transduction in Escherichia coli
    • Li, X., Thomason, L. C., Sawitzke, J. A., Costantino, N. & Court, D. L. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Res. 41, e204 (2013).
    • (2011) Nucleic Acids Res , vol.41 , pp. e204
    • Li, X.1    Thomason, L.C.2    Sawitzke, J.A.3    Costantino, N.4    Court, D.L.5
  • 6
    • 0035865028 scopus 로고    scopus 로고
    • Synergy between tetA and rpsL provides high-stringency positive and negative selection in bacterial artificial chromosome vectors
    • Stavropoulos, T. A. & Strathdee, C. A. Synergy between tetA and rpsL provides high-stringency positive and negative selection in bacterial artificial chromosome vectors. Genomics 72, 99-104 (2001).
    • (2001) Genomics , vol.72 , pp. 99-104
    • Stavropoulos, T.A.1    Strathdee, C.A.2
  • 7
    • 84866939087 scopus 로고    scopus 로고
    • FRUIT, a Scar-Free System for Targeted Chromosomal Mutagenesis, Epitope Tagging, and Promoter Replacement in Escherichia coli and Salmonella enterica
    • Stringer, A. M. et al. FRUIT, a Scar-Free System for Targeted Chromosomal Mutagenesis, Epitope Tagging, and Promoter Replacement in Escherichia coli and Salmonella enterica. PLoS ONE 7, e44841 (2012).
    • (2011) PLoS ONE , vol.7
    • Stringer, A.M.1
  • 8
    • 0345504146 scopus 로고    scopus 로고
    • Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome
    • Pósfai, G., Kolisnychenko, V., Bereczki, Z. & Blattner, F. R. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res. 27, 4409-4415 (1999).
    • (1999) Nucleic Acids Res , vol.27 , pp. 4409-4415
    • Pósfai, G.1    Kolisnychenko, V.2    Bereczki, Z.3    Blattner, F.R.4
  • 9
    • 49249139249 scopus 로고    scopus 로고
    • Rapid and efficient construction of markerless deletions in the Escherichia coli genome
    • Yu, B. J. et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res. 36, e84-e84 (2008).
    • (2008) Nucleic Acids Res , vol.36 , pp. e84-e84
    • Yu, B.J.1
  • 10
    • 84908101863 scopus 로고    scopus 로고
    • A versatile and highly efficient method for scarless genome editing in Escherichia coli and Salmonella enterica
    • Kim, J., Webb, A. M., Kershner, J. P., Blaskowski, S. & Copley, S. D. A versatile and highly efficient method for scarless genome editing in Escherichia coli and Salmonella enterica. BMC Biotechnol. 14, 84 (2014).
    • (2014) BMC Biotechnol , vol.14 , pp. 84
    • Kim, J.1    Webb, A.M.2    Kershner, J.P.3    Blaskowski, S.4    Copley, S.D.5
  • 11
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution
    • Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894-898 (2009).
    • (2009) Nature , vol.460 , pp. 894-898
    • Wang, H.H.1
  • 12
    • 0035810938 scopus 로고    scopus 로고
    • High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides
    • Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. 98, 6742-6746 (2001).
    • (2001) Proc. Natl. Acad. Sci , vol.98 , pp. 6742-6746
    • Ellis, H.M.1    Yu, D.2    DiTizio, T.3    Court, D.L.4
  • 13
    • 79960502359 scopus 로고    scopus 로고
    • Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
    • Isaacs, F. J. et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348-353 (2011).
    • (2011) Science , vol.333 , pp. 348-353
    • Isaacs, F.J.1
  • 14
    • 84861963767 scopus 로고    scopus 로고
    • Genome-scale promoter engineering by coselection MAGE
    • Wang, H. H. et al. Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9, 591-593 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 591-593
    • Wang, H.H.1
  • 15
    • 84866050528 scopus 로고    scopus 로고
    • Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection
    • Carr, P. A. et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. (2012). doi:10.1093/nar/gks455.
    • (2012) Nucleic Acids Res
    • Carr, P.A.1
  • 16
    • 84904468142 scopus 로고    scopus 로고
    • Harnessing CRISPR-Cas9 immunity for genetic engineering
    • Charpentier, E. & Marraffini, L. A. Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr. Opin. Microbiol. 19, 114-119 (2014).
    • (2014) Curr. Opin. Microbiol , vol.19 , pp. 114-119
    • Charpentier, E.1    Marraffini, L.A.2
  • 17
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
    • (2014) Science , vol.346
    • Doudna, J.A.1    Charpentier, E.2
  • 18
    • 84865070369 scopus 로고    scopus 로고
    • A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity
    • Jinek, M. et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816-821 (2012).
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 19
    • 84876556918 scopus 로고    scopus 로고
    • EcoCyc: Fusing model organism databases with systems biology
    • Keseler, I. M. et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 41, D605-D612 (2013).
    • (2011) Nucleic Acids Res , vol.41
    • Keseler, I.M.1
  • 20
    • 33645781346 scopus 로고    scopus 로고
    • Making Ends Meet: Repairing Breaks in Bacterial DNA by Non-Homologous End-Joining
    • Bowater, R. & Doherty, A. J. Making Ends Meet: Repairing Breaks in Bacterial DNA by Non-Homologous End-Joining. PLoS Genet 2, e8 (2006).
    • (2006) PLoS Genet , vol.2 , pp. e8
    • Bowater, R.1    Doherty, A.J.2
  • 22
    • 84936967101 scopus 로고    scopus 로고
    • Coupling the CRISPR/Cas9 system to lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli
    • Pyne, M. E., Moo-Young, M., Chung, D. A. & Chou, C. P. Coupling the CRISPR/Cas9 system to lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. AEM.01248-15 (2015). doi: 10.1128/AEM.01248-15.
    • (2015) Appl. Environ. Microbiol. AEM
    • Pyne, M.E.1    Moo-Young, M.2    Chung, D.A.3    Chou, C.P.4
  • 23
    • 84925355124 scopus 로고    scopus 로고
    • Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System
    • Jiang, Y. et al. Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System. Appl. Environ. Microbiol. 81, 2506-2514 (2015).
    • (2015) Appl. Environ. Microbiol , vol.81 , pp. 2506-2514
    • Jiang, Y.1
  • 24
    • 68149136937 scopus 로고    scopus 로고
    • Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways
    • Quan, J. & Tian, J. Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways. PLoS ONE 4, e6441 (2009).
    • (2009) PLoS ONE , vol.4
    • Quan, J.1    Tian, J.2
  • 25
    • 79957530428 scopus 로고    scopus 로고
    • Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering
    • Wang, H. H. & Church, G. M. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol. 498, 409-426 (2011).
    • (2011) Methods Enzymol , vol.498 , pp. 409-426
    • Wang, H.H.1    Church, G.M.2
  • 26
    • 78951480559 scopus 로고    scopus 로고
    • Lambda Red Recombineering in Escherichia coli Occurs Through a Fully Single- Stranded Intermediate
    • Mosberg, J. A., Lajoie, M. J. & Church, G. M. Lambda Red Recombineering in Escherichia coli Occurs Through a Fully Single- Stranded Intermediate. Genetics 186, 791-799 (2010).
    • (2010) Genetics , vol.186 , pp. 791-799
    • Mosberg, J.A.1    Lajoie, M.J.2    Church, G.M.3
  • 27
    • 77955488715 scopus 로고    scopus 로고
    • Single-stranded heteroduplex intermediates in λ Red homologous recombination
    • Maresca, M. et al. Single-stranded heteroduplex intermediates in λ Red homologous recombination. BMC Mol. Biol. 11, 54 (2010).
    • (2010) BMC Mol. Biol , vol.11 , pp. 54
    • Maresca, M.1
  • 28
    • 79955475432 scopus 로고    scopus 로고
    • Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation
    • Warren, D. J. Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal. Biochem. 413, 206-207 (2011).
    • (2011) Anal. Biochem , vol.413 , pp. 206-207
    • Warren, D.J.1
  • 29
    • 84920747663 scopus 로고    scopus 로고
    • Dynamic knockdown of E. Coli central metabolism for redirecting fluxes of primary metabolites
    • Brockman, I. M. & Prather, K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28, 104-113 (2015).
    • (2015) Metab. Eng , vol.28 , pp. 104-113
    • Brockman, I.M.1    Prather, K.L.J.2
  • 31
    • 0024605518 scopus 로고
    • Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS)
    • Newton, C. R. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503-2516 (1989).
    • (1989) Nucleic Acids Res , vol.17 , pp. 2503-2516
    • Newton, C.R.1
  • 32
    • 84903362877 scopus 로고    scopus 로고
    • Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems
    • Gomaa, A. A. et al. Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems. mBio 5, e00928-13 (2014).
    • (2014) MBio , vol.5
    • Gomaa, A.A.1
  • 33
    • 84876845227 scopus 로고    scopus 로고
    • Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands
    • Vercoe, R. B. et al. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands. PLoS Genet 9, e1003454 (2013).
    • (2011) PLoS Genet , vol.9
    • Vercoe, R.B.1
  • 34
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh, J.-H. & van Pijkeren, J.-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131-e131 (2014).
    • (2011) Nucleic Acids Res , vol.42 , pp. e131-e131
    • Oh, J.-H.1    Van Pijkeren, J.-P.2
  • 35
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression
    • Qi, L. S. et al. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 152, 1173-1183 (2013).
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 36
    • 70349964350 scopus 로고    scopus 로고
    • Automated design of synthetic ribosome binding sites to control protein expression
    • Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946-950 (2009).
    • (2009) Nat. Biotechnol , vol.27 , pp. 946-950
    • Salis, H.M.1    Mirsky, E.A.2    Voigt, C.A.3
  • 37
    • 79952002951 scopus 로고    scopus 로고
    • Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering
    • Sawitzke, J. A. et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J. Mol. Biol. 407, 45-59 (2011).
    • (2011) J. Mol. Biol , vol.407 , pp. 45-59
    • Sawitzke, J.A.1
  • 38
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNA-guided Cas9 nucleases
    • Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832 (2013).
    • (2013) Nat. Biotechnol , vol.31 , pp. 827-832
    • Hsu, P.D.1
  • 39
    • 0023749808 scopus 로고
    • Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance
    • Jin, D. J. & Gross, C. A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202, 45-58 (1988).
    • (1988) J. Mol. Biol , vol.202 , pp. 45-58
    • Jin, D.J.1    Gross, C.A.2
  • 40
    • 0346103663 scopus 로고    scopus 로고
    • Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants
    • Costantino, N. & Court, D. L. Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. 100, 15748-15753 (2003).
    • (2003) Proc. Natl. Acad. Sci , vol.100 , pp. 15748-15753
    • Costantino, N.1    Court, D.L.2
  • 41
    • 84878390744 scopus 로고    scopus 로고
    • Bacterial DNA polymerases participate in oligonucleotide recombination
    • Li, X., Thomason, L. C., Sawitzke, J. A., Costantino, N. & Court, D. L. Bacterial DNA polymerases participate in oligonucleotide recombination. Mol. Microbiol. 88, 906-920 (2013).
    • (2013) Mol. Microbiol , vol.88 , pp. 906-920
    • Li, X.1    Thomason, L.C.2    Sawitzke, J.A.3    Costantino, N.4    Court, D.L.5
  • 42
    • 84866010111 scopus 로고    scopus 로고
    • Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases
    • Mosberg, J. A., Gregg, C. J., Lajoie, M. J., Wang, H. H. & Church, G. M. Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases. PLoS ONE 7, e44638 (2012).
    • (2011) PLoS ONE , vol.7
    • Mosberg, J.A.1    Gregg, C.J.2    Lajoie, M.J.3    Wang, H.H.4    Church, G.M.5
  • 43
    • 84871247687 scopus 로고    scopus 로고
    • Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering
    • Lajoie, M. J., Gregg, C. J., Mosberg, J. A., Washington, G. C. & Church, G. M. Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering. Nucleic Acids Res. 40, e170 (2012).
    • (2011) Nucleic Acids Res , vol.40 , pp. e170
    • Lajoie, M.J.1    Gregg, C.J.2    Mosberg, J.A.3    Washington, G.C.4    Church, G.M.5
  • 44
    • 0023410420 scopus 로고
    • Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: The nature of in vivo DNA replication errors
    • Schaaper, R. M. & Dunn, R. L. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc. Natl. Acad. Sci. 84, 6220-6224 (1987).
    • (1987) Proc. Natl. Acad. Sci , vol.84 , pp. 6220-6224
    • Schaaper, R.M.1    Dunn, R.L.2
  • 45
    • 84899861853 scopus 로고    scopus 로고
    • Conditional DNA repair mutants enable highly precise genome engineering
    • Nyerges, Á. et al. Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res. gku105 (2014). doi: 10.1093/nar/gku105.
    • (2014) Nucleic Acids Res. Gku105
    • Nyerges, Á.1
  • 46
    • 67349270900 scopus 로고    scopus 로고
    • Enzymatic assembly of DNA molecules up to several hundred kilobases
    • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343-345 (2009).
    • (2009) Nat. Methods , vol.6 , pp. 343-345
    • Gibson, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.