-
1
-
-
0021077167
-
-
F. R. Blattner, Science 222, 719 (1983). Escherichia coli has been the subject of extensive monographs, the most recent of which is (2).
-
(1983)
Science
, vol.222
, pp. 719
-
-
Blattner, F.R.1
-
3
-
-
0029653518
-
-
The publicly available complete genome sequences are those of Haemophilus influenzae Rd [R. D. Fleischmann et al., Science 269, 496 (1995)], Mycoplasma genitalium [C. M. Fraser et al., ibid. 270, 397 (1995)], Methanococcus jannaschii [C. J. Bult et al., ibid. 273, 1058 (1996)], Mycoplasma pneumoniae [R. Himmelreich et al., Nucleic Acids Res. 24, 4420 (1996)], Synechocystis sp. strain PCC6803 [T. Kaneko et al., DNA Res. 3,109 (1996)], and Saccharomyces cerevisiae [A. Goffeau et al., Science 274, 546 (1996)].
-
(1995)
Science
, vol.269
, pp. 496
-
-
Fleischmann, R.D.1
-
4
-
-
0028829125
-
-
The publicly available complete genome sequences are those of Haemophilus influenzae Rd [R. D. Fleischmann et al., Science 269, 496 (1995)], Mycoplasma genitalium [C. M. Fraser et al., ibid. 270, 397 (1995)], Methanococcus jannaschii [C. J. Bult et al., ibid. 273, 1058 (1996)], Mycoplasma pneumoniae [R. Himmelreich et al., Nucleic Acids Res. 24, 4420 (1996)], Synechocystis sp. strain PCC6803 [T. Kaneko et al., DNA Res. 3,109 (1996)], and Saccharomyces cerevisiae [A. Goffeau et al., Science 274, 546 (1996)].
-
(1995)
Science
, vol.270
, pp. 397
-
-
Fraser, C.M.1
-
5
-
-
16044367245
-
-
The publicly available complete genome sequences are those of Haemophilus influenzae Rd [R. D. Fleischmann et al., Science 269, 496 (1995)], Mycoplasma genitalium [C. M. Fraser et al., ibid. 270, 397 (1995)], Methanococcus jannaschii [C. J. Bult et al., ibid. 273, 1058 (1996)], Mycoplasma pneumoniae [R. Himmelreich et al., Nucleic Acids Res. 24, 4420 (1996)], Synechocystis sp. strain PCC6803 [T. Kaneko et al., DNA Res. 3,109 (1996)], and Saccharomyces cerevisiae [A. Goffeau et al., Science 274, 546 (1996)].
-
(1996)
Science
, vol.273
, pp. 1058
-
-
Bult, C.J.1
-
6
-
-
10544255079
-
-
The publicly available complete genome sequences are those of Haemophilus influenzae Rd [R. D. Fleischmann et al., Science 269, 496 (1995)], Mycoplasma genitalium [C. M. Fraser et al., ibid. 270, 397 (1995)], Methanococcus jannaschii [C. J. Bult et al., ibid. 273, 1058 (1996)], Mycoplasma pneumoniae [R. Himmelreich et al., Nucleic Acids Res. 24, 4420 (1996)], Synechocystis sp. strain PCC6803 [T. Kaneko et al., DNA Res. 3,109 (1996)], and Saccharomyces cerevisiae [A. Goffeau et al., Science 274, 546 (1996)].
-
(1996)
Nucleic Acids Res.
, vol.24
, pp. 4420
-
-
Himmelreich, R.1
-
7
-
-
0030606607
-
-
The publicly available complete genome sequences are those of Haemophilus influenzae Rd [R. D. Fleischmann et al., Science 269, 496 (1995)], Mycoplasma genitalium [C. M. Fraser et al., ibid. 270, 397 (1995)], Methanococcus jannaschii [C. J. Bult et al., ibid. 273, 1058 (1996)], Mycoplasma pneumoniae [R. Himmelreich et al., Nucleic Acids Res. 24, 4420 (1996)], Synechocystis sp. strain PCC6803 [T. Kaneko et al., DNA Res. 3,109 (1996)], and Saccharomyces cerevisiae [A. Goffeau et al., Science 274, 546 (1996)].
-
(1996)
DNA Res.
, vol.3
, pp. 109
-
-
Kaneko, T.1
-
8
-
-
10244239321
-
-
The publicly available complete genome sequences are those of Haemophilus influenzae Rd [R. D. Fleischmann et al., Science 269, 496 (1995)], Mycoplasma genitalium [C. M. Fraser et al., ibid. 270, 397 (1995)], Methanococcus jannaschii [C. J. Bult et al., ibid. 273, 1058 (1996)], Mycoplasma pneumoniae [R. Himmelreich et al., Nucleic Acids Res. 24, 4420 (1996)], Synechocystis sp. strain PCC6803 [T. Kaneko et al., DNA Res. 3,109 (1996)], and Saccharomyces cerevisiae [A. Goffeau et al., Science 274, 546 (1996)].
-
(1996)
Science
, vol.274
, pp. 546
-
-
Goffeau, A.1
-
9
-
-
0027457409
-
-
S.-E. Chuang, D. L. Daniels, F. R. Blattner, J. Bacteriol. 175, 2026 (1993); D. J. Lockart et al., Nature Biotechnol. 14, 1675 (1996).
-
(1993)
J. Bacteriol.
, vol.175
, pp. 2026
-
-
Chuang, S.-E.1
Daniels, D.L.2
Blattner, F.R.3
-
10
-
-
10544256600
-
-
S.-E. Chuang, D. L. Daniels, F. R. Blattner, J. Bacteriol. 175, 2026 (1993); D. J. Lockart et al., Nature Biotechnol. 14, 1675 (1996).
-
(1996)
Nature Biotechnol.
, vol.14
, pp. 1675
-
-
Lockart, D.J.1
-
17
-
-
0026770691
-
-
T. Yura et al., Nucleic Acids Res. 20, 3305 (1992); N. Fujita, H. Mori, T. Yura, A. Ishihama, ibid. 22, 1637 (1994); T. Oshima et al., DNA Res. 3, 137 (1996); H. Aiba et al., ibid., p. 363; T. Itoh et al., ibid., p. 379.
-
(1992)
Nucleic Acids Res.
, vol.20
, pp. 3305
-
-
Yura, T.1
-
18
-
-
0028290288
-
-
T. Yura et al., Nucleic Acids Res. 20, 3305 (1992); N. Fujita, H. Mori, T. Yura, A. Ishihama, ibid. 22, 1637 (1994); T. Oshima et al., DNA Res. 3, 137 (1996); H. Aiba et al., ibid., p. 363; T. Itoh et al., ibid., p. 379.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 1637
-
-
Fujita, N.1
Mori, H.2
Yura, T.3
Ishihama, A.4
-
19
-
-
0030606602
-
-
T. Yura et al., Nucleic Acids Res. 20, 3305 (1992); N. Fujita, H. Mori, T. Yura, A. Ishihama, ibid. 22, 1637 (1994); T. Oshima et al., DNA Res. 3, 137 (1996); H. Aiba et al., ibid., p. 363; T. Itoh et al., ibid., p. 379.
-
(1996)
DNA Res.
, vol.3
, pp. 137
-
-
Oshima, T.1
-
20
-
-
0026770691
-
-
T. Yura et al., Nucleic Acids Res. 20, 3305 (1992); N. Fujita, H. Mori, T. Yura, A. Ishihama, ibid. 22, 1637 (1994); T. Oshima et al., DNA Res. 3, 137 (1996); H. Aiba et al., ibid., p. 363; T. Itoh et al., ibid., p. 379.
-
DNA Res.
, pp. 363
-
-
Aiba, H.1
-
21
-
-
0026770691
-
-
T. Yura et al., Nucleic Acids Res. 20, 3305 (1992); N. Fujita, H. Mori, T. Yura, A. Ishihama, ibid. 22, 1637 (1994); T. Oshima et al., DNA Res. 3, 137 (1996); H. Aiba et al., ibid., p. 363; T. Itoh et al., ibid., p. 379.
-
DNA Res.
, pp. 379
-
-
Itoh, T.1
-
22
-
-
0027214444
-
-
V. Burland, D. L. Daniels, G. Plunkett III, F. R. Blattner, Nucleic Acids Res. 21, 3385 (1993).
-
(1993)
Nucleic Acids Res.
, vol.21
, pp. 3385
-
-
Burland, V.1
Daniels, D.L.2
Plunkett III, G.3
Blattner, F.R.4
-
23
-
-
0026754531
-
-
Six segments of the genome were sequenced using radioactive chemistry (14) [D. L. Daniels, G. Plunkett III, V. Burland, F. R. Blattner, Science 257, 771 (1992); G. Plunkett III, V. Burland, D. L. Daniels, F. R. Blattner, Nucleic Acids Res. 21, 3391 (1993); F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, ibid., p. 5408; H. J. Sofia, V. Burland, D. L Daniels, G. Plunkett III, F. R. Blattner, ibid. 22, 2576 (1994); V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, F. R. Blattner, ibid. 23, 2105 (1995)]. We determined experimentally that deoxyinosine tríphosphate (dITP) is the most effective analog for resolving G-C compressions, although it also causes premature termination. With radioactive sequencing, a dITP sequence lane must be run in addition to, rather than in place of, a deoxyguanosine triphosphate (dGTP) run. For efficiency in the areas of E. coli we sequenced radioactively, tiling software was used to select a minimal set of M13 clones for resequencing with dITP after the bulk of the assembly had been completed with dGTP. On the other hand, because prematurely terminated chains are not labeled by the fluorophore with dye-terminator fluorescent sequencing, dITP can substitute totally for dGTP and can be used for all routine data collection.
-
(1992)
Science
, vol.257
, pp. 771
-
-
Daniels, D.L.1
Plunkett III, G.2
Burland, V.3
Blattner, F.R.4
-
24
-
-
0027219606
-
-
Six segments of the genome were sequenced using radioactive chemistry (14) [D. L. Daniels, G. Plunkett III, V. Burland, F. R. Blattner, Science 257, 771 (1992); G. Plunkett III, V. Burland, D. L. Daniels, F. R. Blattner, Nucleic Acids Res. 21, 3391 (1993); F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, ibid., p. 5408; H. J. Sofia, V. Burland, D. L Daniels, G. Plunkett III, F. R. Blattner, ibid. 22, 2576 (1994); V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, F. R. Blattner, ibid. 23, 2105 (1995)]. We determined experimentally that deoxyinosine tríphosphate (dITP) is the most effective analog for resolving G-C compressions, although it also causes premature termination. With radioactive sequencing, a dITP sequence lane must be run in addition to, rather than in place of, a deoxyguanosine triphosphate (dGTP) run. For efficiency in the areas of E. coli we sequenced radioactively, tiling software was used to select a minimal set of M13 clones for resequencing with dITP after the bulk of the assembly had been completed with dGTP. On the other hand, because prematurely terminated chains are not labeled by the fluorophore with dye-terminator fluorescent sequencing, dITP can substitute totally for dGTP and can be used for all routine data collection.
-
(1993)
Nucleic Acids Res.
, vol.21
, pp. 3391
-
-
Plunkett III, G.1
Burland, V.2
Daniels, D.L.3
Blattner, F.R.4
-
25
-
-
0026754531
-
-
Six segments of the genome were sequenced using radioactive chemistry (14) [D. L. Daniels, G. Plunkett III, V. Burland, F. R. Blattner, Science 257, 771 (1992); G. Plunkett III, V. Burland, D. L. Daniels, F. R. Blattner, Nucleic Acids Res. 21, 3391 (1993); F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, ibid., p. 5408; H. J. Sofia, V. Burland, D. L Daniels, G. Plunkett III, F. R. Blattner, ibid. 22, 2576 (1994); V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, F. R. Blattner, ibid. 23, 2105 (1995)]. We determined experimentally that deoxyinosine tríphosphate (dITP) is the most effective analog for resolving G-C compressions, although it also causes premature termination. With radioactive sequencing, a dITP sequence lane must be run in addition to, rather than in place of, a deoxyguanosine triphosphate (dGTP) run. For efficiency in the areas of E. coli we sequenced radioactively, tiling software was used to select a minimal set of M13 clones for resequencing with dITP after the bulk of the assembly had been completed with dGTP. On the other hand, because prematurely terminated chains are not labeled by the fluorophore with dye-terminator fluorescent sequencing, dITP can substitute totally for dGTP and can be used for all routine data collection.
-
Nucleic Acids Res.
, pp. 5408
-
-
Blattner, F.R.1
Burland, V.2
Plunkett III, G.3
Sofia, H.J.4
Daniels, D.L.5
-
26
-
-
0028356059
-
-
Six segments of the genome were sequenced using radioactive chemistry (14) [D. L. Daniels, G. Plunkett III, V. Burland, F. R. Blattner, Science 257, 771 (1992); G. Plunkett III, V. Burland, D. L. Daniels, F. R. Blattner, Nucleic Acids Res. 21, 3391 (1993); F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, ibid., p. 5408; H. J. Sofia, V. Burland, D. L Daniels, G. Plunkett III, F. R. Blattner, ibid. 22, 2576 (1994); V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, F. R. Blattner, ibid. 23, 2105 (1995)]. We determined experimentally that deoxyinosine tríphosphate (dITP) is the most effective analog for resolving G-C compressions, although it also causes premature termination. With radioactive sequencing, a dITP sequence lane must be run in addition to, rather than in place of, a deoxyguanosine triphosphate (dGTP) run. For efficiency in the areas of E. coli we sequenced radioactively, tiling software was used to select a minimal set of M13 clones for resequencing with dITP after the bulk of the assembly had been completed with dGTP. On the other hand, because prematurely terminated chains are not labeled by the fluorophore with dye-terminator fluorescent sequencing, dITP can substitute totally for dGTP and can be used for all routine data collection.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 2576
-
-
Sofia, H.J.1
Burland, V.2
Daniels, D.L.3
Plunkett III, G.4
Blattner, F.R.5
-
27
-
-
0029073731
-
-
Six segments of the genome were sequenced using radioactive chemistry (14) [D. L. Daniels, G. Plunkett III, V. Burland, F. R. Blattner, Science 257, 771 (1992); G. Plunkett III, V. Burland, D. L. Daniels, F. R. Blattner, Nucleic Acids Res. 21, 3391 (1993); F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, ibid., p. 5408; H. J. Sofia, V. Burland, D. L Daniels, G. Plunkett III, F. R. Blattner, ibid. 22, 2576 (1994); V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, F. R. Blattner, ibid. 23, 2105 (1995)]. We determined experimentally that deoxyinosine tríphosphate (dITP) is the most effective analog for resolving G-C compressions, although it also causes premature termination. With radioactive sequencing, a dITP sequence lane must be run in addition to, rather than in place of, a deoxyguanosine triphosphate (dGTP) run. For efficiency in the areas of E. coli we sequenced radioactively, tiling software was used to select a minimal set of M13 clones for resequencing with dITP after the bulk of the assembly had been completed with dGTP. On the other hand, because prematurely terminated chains are not labeled by the fluorophore with dye-terminator fluorescent sequencing, dITP can substitute totally for dGTP and can be used for all routine data collection.
-
(1995)
Nucleic Acids Res.
, vol.23
, pp. 2105
-
-
Burland, V.1
Plunkett III, G.2
Sofia, H.J.3
Daniels, D.L.4
Blattner, F.R.5
-
28
-
-
0027210404
-
-
V. Burland, G. Plunkett III, D. L. Daniels, F. R. Blattner, Genomics 16, 551 (1993).
-
(1993)
Genomics
, vol.16
, pp. 551
-
-
Burland, V.1
Plunkett III, G.2
Daniels, D.L.3
Blattner, F.R.4
-
29
-
-
0344332355
-
-
K. Drlica and M. Riley, Eds. American Society for Microbiology, Washington, DC
-
D. L. Daniels, in The Bacterial Chromosome, K. Drlica and M. Riley, Eds. (American Society for Microbiology, Washington, DC, 1990), pp. 43-51. It was often necessary to resequence overlapping regions between adjacent clones, and screening to remove lambda vector sequences before sequencing was costly. Occasionally we found deleted, mismapped, or chimeric lambda clones that created unexpected gaps in genome coverage.
-
(1990)
The Bacterial Chromosome
, pp. 43-51
-
-
Daniels, D.L.1
-
30
-
-
0028245902
-
-
Although the 1-μg yield of popout plasmid [G. Pósfai et al., Nucleic Acids Res. 22, 2392 (1994)] was low for early shotgun protocols, the assemblies were successful when supplemented with lambda clone and long-range PCR data. The main problem with extending this approach was the need to specifically engineer each popout plasmid by insertional recombination into the host.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 2392
-
-
Pósfai, G.1
-
31
-
-
0027227703
-
-
I-Sce I is a site-specific intron-encoded homing endonuclease from yeast [A. Perrin, M. Buckle, B. Dujon, EMBO J. 12, 2939 (1993)], whose 18-bp non-palindromic recognition site is absent from E. coli (C. A. Bloch and C. K. Rode, unpublished data). Single I-Sce I sites were introduced into MG1655 on a transposable element to produce a mapped collection of strains, each with a unique I-Sce I site [C. K. Rode, V. H. Obreque, C. A. Bloch, Gene 166, 1 (1995); C. A. Bloch, C. K. Rode, V. H. Obreque, J. Mahillon, Biochem. Biophys. Res. Commun. 223, 104 (1996)]. P1 transduction was used to combine sites in pairs, permitting isolation of I-Sce I fragments as single bands by pulsed-field gel electrophoresis. Sequencing confirmed the expected nine-base overlap between adjacent fragments. Although the background contamination for entire I-Sce I fragment shotguns ranged from 15 to 30%, we occasionally observed individual preparative gels that seemed to have <5% background, as assessed from gel images. We therefore suspect that improvements in gel handling and electrophoretic conditions could improve the overall quality of the fragment preparations.
-
(1993)
EMBO J.
, vol.12
, pp. 2939
-
-
Perrin, A.1
Buckle, M.2
Dujon, B.3
-
32
-
-
15444355750
-
-
unpublished data
-
I-Sce I is a site-specific intron-encoded homing endonuclease from yeast [A. Perrin, M. Buckle, B. Dujon, EMBO J. 12, 2939 (1993)], whose 18-bp non-palindromic recognition site is absent from E. coli (C. A. Bloch and C. K. Rode, unpublished data). Single I-Sce I sites were introduced into MG1655 on a transposable element to produce a mapped collection of strains, each with a unique I-Sce I site [C. K. Rode, V. H. Obreque, C. A. Bloch, Gene 166, 1 (1995); C. A. Bloch, C. K. Rode, V. H. Obreque, J. Mahillon, Biochem. Biophys. Res. Commun. 223, 104 (1996)]. P1 transduction was used to combine sites in pairs, permitting isolation of I-Sce I fragments as single bands by pulsed-field gel electrophoresis. Sequencing confirmed the expected nine-base overlap between adjacent fragments. Although the background contamination for entire I-Sce I fragment shotguns ranged from 15 to 30%, we occasionally observed individual preparative gels that seemed to have <5% background, as assessed from gel images. We therefore suspect that improvements in gel handling and electrophoretic conditions could improve the overall quality of the fragment preparations.
-
-
-
Bloch, C.A.1
Rode, C.K.2
-
33
-
-
0028841353
-
-
I-Sce I is a site-specific intron-encoded homing endonuclease from yeast [A. Perrin, M. Buckle, B. Dujon, EMBO J. 12, 2939 (1993)], whose 18-bp non-palindromic recognition site is absent from E. coli (C. A. Bloch and C. K. Rode, unpublished data). Single I-Sce I sites were introduced into MG1655 on a transposable element to produce a mapped collection of strains, each with a unique I-Sce I site [C. K. Rode, V. H. Obreque, C. A. Bloch, Gene 166, 1 (1995); C. A. Bloch, C. K. Rode, V. H. Obreque, J. Mahillon, Biochem. Biophys. Res. Commun. 223, 104 (1996)]. P1 transduction was used to combine sites in pairs, permitting isolation of I-Sce I fragments as single bands by pulsed-field gel electrophoresis. Sequencing confirmed the expected nine-base overlap between adjacent fragments. Although the background contamination for entire I-Sce I fragment shotguns ranged from 15 to 30%, we occasionally observed individual preparative gels that seemed to have <5% background, as assessed from gel images. We therefore suspect that improvements in gel handling and electrophoretic conditions could improve the overall quality of the fragment preparations.
-
(1995)
Gene
, vol.166
, pp. 1
-
-
Rode, C.K.1
Obreque, V.H.2
Bloch, C.A.3
-
34
-
-
0029896510
-
-
I-Sce I is a site-specific intron-encoded homing endonuclease from yeast [A. Perrin, M. Buckle, B. Dujon, EMBO J. 12, 2939 (1993)], whose 18-bp non-palindromic recognition site is absent from E. coli (C. A. Bloch and C. K. Rode, unpublished data). Single I-Sce I sites were introduced into MG1655 on a transposable element to produce a mapped collection of strains, each with a unique I-Sce I site [C. K. Rode, V. H. Obreque, C. A. Bloch, Gene 166, 1 (1995); C. A. Bloch, C. K. Rode, V. H. Obreque, J. Mahillon, Biochem. Biophys. Res. Commun. 223, 104 (1996)]. P1 transduction was used to combine sites in pairs, permitting isolation of I-Sce I fragments as single bands by pulsed-field gel electrophoresis. Sequencing confirmed the expected nine-base overlap between adjacent fragments. Although the background contamination for entire I-Sce I fragment shotguns ranged from 15 to 30%, we occasionally observed individual preparative gels that seemed to have <5% background, as assessed from gel images. We therefore suspect that improvements in gel handling and electrophoretic conditions could improve the overall quality of the fragment preparations.
-
(1996)
Biochem. Biophys. Res. Commun.
, vol.223
, pp. 104
-
-
Bloch, C.A.1
Rode, C.K.2
Obreque, V.H.3
Mahillon, J.4
-
36
-
-
0000241874
-
-
Codon usage statistics [M. Borodovsky and J. McIninch, Comput. Chem. 17, 123 (1993); M. Gribskov, J. Devereux, R. R. Burgess, Nucleic Acids Res. 12, 539 (1984)] were graphically displayed by means of the program Geneplot (DNASTAR). Protein searches were to SWISS-PROT release 34 [A. Bairoch and R. Apweiler, ibid. 24, 21 (1996)]. The Link database is described in A. J. Link, thesis, Harvard University (1994). Signal peptide searches used an unpublished BASIC program written by F. R. B. Predictions for ribosomal binding sites were provided by W. S. Hayes and M. Borodovsky (personal communication).
-
(1993)
Comput. Chem.
, vol.17
, pp. 123
-
-
Borodovsky, M.1
McIninch, J.2
-
37
-
-
0021760027
-
-
Codon usage statistics [M. Borodovsky and J. McIninch, Comput. Chem. 17, 123 (1993); M. Gribskov, J. Devereux, R. R. Burgess, Nucleic Acids Res. 12, 539 (1984)] were graphically displayed by means of the program Geneplot (DNASTAR). Protein searches were to SWISS-PROT release 34 [A. Bairoch and R. Apweiler, ibid. 24, 21 (1996)]. The Link database is described in A. J. Link, thesis, Harvard University (1994). Signal peptide searches used an unpublished BASIC program written by F. R. B. Predictions for ribosomal binding sites were provided by W. S. Hayes and M. Borodovsky (personal communication).
-
(1984)
Nucleic Acids Res.
, vol.12
, pp. 539
-
-
Gribskov, M.1
Devereux, J.2
Burgess, R.R.3
-
38
-
-
0029916911
-
-
Codon usage statistics [M. Borodovsky and J. McIninch, Comput. Chem. 17, 123 (1993); M. Gribskov, J. Devereux, R. R. Burgess, Nucleic Acids Res. 12, 539 (1984)] were graphically displayed by means of the program Geneplot (DNASTAR). Protein searches were to SWISS-PROT release 34 [A. Bairoch and R. Apweiler, ibid. 24, 21 (1996)]. The Link database is described in A. J. Link, thesis, Harvard University (1994). Signal peptide searches used an unpublished BASIC program written by F. R. B. Predictions for ribosomal binding sites were provided by W. S. Hayes and M. Borodovsky (personal communication).
-
(1996)
Nucleic Acids Res.
, vol.24
, pp. 21
-
-
Bairoch, A.1
Apweiler, R.2
-
39
-
-
0000241874
-
-
thesis, Harvard University
-
Codon usage statistics [M. Borodovsky and J. McIninch, Comput. Chem. 17, 123 (1993); M. Gribskov, J. Devereux, R. R. Burgess, Nucleic Acids Res. 12, 539 (1984)] were graphically displayed by means of the program Geneplot (DNASTAR). Protein searches were to SWISS-PROT release 34 [A. Bairoch and R. Apweiler, ibid. 24, 21 (1996)]. The Link database is described in A. J. Link, thesis, Harvard University (1994). Signal peptide searches used an unpublished BASIC program written by F. R. B. Predictions for ribosomal binding sites were provided by W. S. Hayes and M. Borodovsky (personal communication).
-
(1994)
-
-
Link, A.J.1
-
40
-
-
0000241874
-
-
personal communication
-
Codon usage statistics [M. Borodovsky and J. McIninch, Comput. Chem. 17, 123 (1993); M. Gribskov, J. Devereux, R. R. Burgess, Nucleic Acids Res. 12, 539 (1984)] were graphically displayed by means of the program Geneplot (DNASTAR). Protein searches were to SWISS-PROT release 34 [A. Bairoch and R. Apweiler, ibid. 24, 21 (1996)]. The Link database is described in A. J. Link, thesis, Harvard University (1994). Signal peptide searches used an unpublished BASIC program written by F. R. B. Predictions for ribosomal binding sites were provided by W. S. Hayes and M. Borodovsky (personal communication).
-
-
-
Hayes, W.S.1
Borodovsky, M.2
-
42
-
-
15444340125
-
-
P. Karp, M. Riley, S. M. Paley, A. Pellegrini-Toole, M. Krummenacker, ibid., p. 43.
-
Nucleic Acids Res.
, pp. 43
-
-
Karp, P.1
Riley, M.2
Paley, S.M.3
Pellegrini-Toole, A.4
Krummenacker, M.5
-
43
-
-
0026656815
-
-
Similarity searches were conducted using both the DeCypher II hardware-software system (Time Logic Inc., Incline Village, NV) and the PepPepSearch program of the Darwin suite at Zurich, http:// cbrg.inf.ethz.ch/ [G. H. Gonnet, M. A. Cohen, S. A. Benner, Science 256, 1443 (1992)]. PepPepSearch returns up to 30 hit sequences per query, and returns each pairwise alignment and the corresponding PAM scores. For most of the cases, only matches with PAM < 200 were used. See B. Labedan and M. Riley, Mol. Biol. Evol. 12, 980 (1995).
-
(1992)
Science
, vol.256
, pp. 1443
-
-
Gonnet, G.H.1
Cohen, M.A.2
Benner, S.A.3
-
44
-
-
0028802662
-
-
Similarity searches were conducted using both the DeCypher II hardware-software system (Time Logic Inc., Incline Village, NV) and the PepPepSearch program of the Darwin suite at Zurich, http:// cbrg.inf.ethz.ch/ [G. H. Gonnet, M. A. Cohen, S. A. Benner, Science 256, 1443 (1992)]. PepPepSearch returns up to 30 hit sequences per query, and returns each pairwise alignment and the corresponding PAM scores. For most of the cases, only matches with PAM < 200 were used. See B. Labedan and M. Riley, Mol. Biol. Evol. 12, 980 (1995).
-
(1995)
Mol. Biol. Evol.
, vol.12
, pp. 980
-
-
Labedan, B.1
Riley, M.2
-
45
-
-
0025183708
-
-
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J. Mol. Biol. 215, 403 (1990).
-
(1990)
J. Mol. Biol.
, vol.215
, pp. 403
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
46
-
-
0025349185
-
-
K. Kashiwagi, Y. Yamaguchi, Y. Sakai, H. Kobayashi, K. Igarashi, J. Biol. Chem. 265, 8387 (1990).
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 8387
-
-
Kashiwagi, K.1
Yamaguchi, Y.2
Sakai, Y.3
Kobayashi, H.4
Igarashi, K.5
-
48
-
-
0030474940
-
-
Using the database of 392 known operons that we have localized in the genome sequence, we first predicted operons on the basis of the functional class conservation within genes of an operon. This gives a better prediction (68% positive prediction) than the method of predicting operons on the basis of the distance of genes inside operons versus the distance between operons (59% positive prediction). We predicted 2281 operons by functional class conservation and predicted the remainder with unclassified genes, using 50 bp as the distance criterion. The strategy found to give the highest number of positive promoter predictions (∼40% when tested with an independent set of known promoters) involves an initial search with a pair of weight matrices, one for the -10 region and one for the -35 region. Candidate promoters using a low threshold of matches and 15 to 21 bp between -10 and -35 are saved. A subset of best candidates are selected on the basis of a context measure that compares alternative candidates within a given region of 200 bp upstream of each ORF. This includes a weight preference for candidates located closer to the beginning of the gene. The method can find zero, one, or several promoters in a single region. Inside operons, we only saved promoters where regulatory sites were also found. Regulatory sites were searched with a combined weight matrix (when at least three sequences are known) and a string search that allows a fixed number of mismatches for each regulatory site. To avoid overrepresentation of particular sites, we adjusted the number of allowed mismatches such that the number of predicted sites did not exceed 10 times the number of known sites for a given regulatory protein [D. A. Rosenblueth, D. Thieffry, A. M. Huerta, H. Salgado, J. Collado-Vides, Comput. Appl. Biosci. 12, 415 (1997)].
-
(1997)
Comput. Appl. Biosci.
, vol.12
, pp. 415
-
-
Rosenblueth, D.A.1
Thieffry, D.2
Huerta, A.M.3
Salgado, H.4
Collado-Vides, J.5
-
50
-
-
0020363515
-
-
H. Grosjean and W. Fiers, Gene 18, 199 (1982); T. Ikemura, Mol. Biol. Evol. 2, 13 (1985).
-
(1982)
Gene
, vol.18
, pp. 199
-
-
Grosjean, H.1
Fiers, W.2
-
51
-
-
0021958933
-
-
H. Grosjean and W. Fiers, Gene 18, 199 (1982); T. Ikemura, Mol. Biol. Evol. 2, 13 (1985).
-
(1985)
Mol. Biol. Evol.
, vol.2
, pp. 13
-
-
Ikemura, T.1
-
52
-
-
0026332291
-
-
C. Médigue, T. Rouxel, P. Vigier, A. Henaut, A. Danchin, J. Mol. Biol. 222, 851 (1991).
-
(1991)
J. Mol. Biol.
, vol.222
, pp. 851
-
-
Médigue, C.1
Rouxel, T.2
Vigier, P.3
Henaut, A.4
Danchin, A.5
-
53
-
-
15444352827
-
-
note
-
The zero reference (0/100, formerly 0/60) of the map was originally defined as the position of the first marker (thr) transferred by E. coli Hfr H, which was used in genetic mapping by interrupted mating, and a convention has arisen of using the first residue of the thrA gene as residue 1. However, this results in placing the regulatory region of the thr operon at the opposite end of the 4.6-Mb sequence from the operon itself. We therefore defined nucleotide 1 as the A residue 189 nucleotides upstream of the initiation codon for thrL, the first gene on the genetic map. We did not detect any feature spanning this point.
-
-
-
-
54
-
-
0002791604
-
-
K. Drlica and M. Riley, Eds. American Society for Microbiology, Washington, DC
-
B. J. Brewer, in The Bacterial Chromosome, K. Drlica and M. Riley, Eds. (American Society for Microbiology, Washington, DC, 1990), pp. 61-83.
-
(1990)
The Bacterial Chromosome
, pp. 61-83
-
-
Brewer, B.J.1
-
55
-
-
0023653121
-
-
C.-l. Wu and N. Maeda, Nature 327, 169 (1987); N. T. Perna and T. D. Kocher, J. Mol. Evol. 41, 353 (1995).
-
(1987)
Nature
, vol.327
, pp. 169
-
-
Wu, C.-L.1
Maeda, N.2
-
58
-
-
0029938912
-
-
J. R. Lobry, Mol. Biol. Evol. 13, 660 (1996); Science 272, 745 (1996).
-
(1996)
Science
, vol.272
, pp. 745
-
-
-
59
-
-
0027293240
-
-
L. R. Cardon, C. Burge, G. A. Schachtel, B. E. Blaisdell, S. Karlin, Nucleic Acids Res. 21, 3875 (1993); B. E. Blaisdell, K. E. Rudd, A. Matin, S. Karlin, J. Mol. Biol. 229, 833 (1993).
-
(1993)
Nucleic Acids Res.
, vol.21
, pp. 3875
-
-
Cardon, L.R.1
Burge, C.2
Schachtel, G.A.3
Blaisdell, B.E.4
Karlin, S.5
-
60
-
-
0027466453
-
-
L. R. Cardon, C. Burge, G. A. Schachtel, B. E. Blaisdell, S. Karlin, Nucleic Acids Res. 21, 3875 (1993); B. E. Blaisdell, K. E. Rudd, A. Matin, S. Karlin, J. Mol. Biol. 229, 833 (1993).
-
(1993)
J. Mol. Biol.
, vol.229
, pp. 833
-
-
Blaisdell, B.E.1
Rudd, K.E.2
Matin, A.3
Karlin, S.4
-
61
-
-
0023733709
-
-
K. Yoda, H. Yasuda, X. W. Xiang, T. Okazaki, Nucleic Acids Res. 16, 6531 (1988); H. Hiasa et al., Gene 84, 9 (1989); K. Yoda and T. Okazaki, Mol. Gen. Genet. 227, 1 (1991); J. R. Swart and M. A. Griep, J. Biol. Chem. 268, 12970 (1993).
-
(1988)
Nucleic Acids Res.
, vol.16
, pp. 6531
-
-
Yoda, K.1
Yasuda, H.2
Xiang, X.W.3
Okazaki, T.4
-
62
-
-
0024806757
-
-
K. Yoda, H. Yasuda, X. W. Xiang, T. Okazaki, Nucleic Acids Res. 16, 6531 (1988); H. Hiasa et al., Gene 84, 9 (1989); K. Yoda and T. Okazaki, Mol. Gen. Genet. 227, 1 (1991); J. R. Swart and M. A. Griep, J. Biol. Chem. 268, 12970 (1993).
-
(1989)
Gene
, vol.84
, pp. 9
-
-
Hiasa, H.1
-
63
-
-
0025782760
-
-
K. Yoda, H. Yasuda, X. W. Xiang, T. Okazaki, Nucleic Acids Res. 16, 6531 (1988); H. Hiasa et al., Gene 84, 9 (1989); K. Yoda and T. Okazaki, Mol. Gen. Genet. 227, 1 (1991); J. R. Swart and M. A. Griep, J. Biol. Chem. 268, 12970 (1993).
-
(1991)
Mol. Gen. Genet.
, vol.227
, pp. 1
-
-
Yoda, K.1
Okazaki, T.2
-
64
-
-
0027160455
-
-
K. Yoda, H. Yasuda, X. W. Xiang, T. Okazaki, Nucleic Acids Res. 16, 6531 (1988); H. Hiasa et al., Gene 84, 9 (1989); K. Yoda and T. Okazaki, Mol. Gen. Genet. 227, 1 (1991); J. R. Swart and M. A. Griep, J. Biol. Chem. 268, 12970 (1993).
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 12970
-
-
Swart, J.R.1
Griep, M.A.2
-
66
-
-
0028240631
-
-
T.-C. V. Wang and S.-H. Chen, Biochem. Biophys. Res. Commun. 184, 1496 (1992); ibid. 198, 844 (1994).
-
(1994)
Biochem. Biophys. Res. Commun.
, vol.198
, pp. 844
-
-
-
67
-
-
0028833043
-
-
see also (38)
-
The major recombination pathway in E. Coli is the RecBCD pathway, so called because of the central involvement of the enzyme encoded by the recBCD genes. For a review of RecBCD-mediated recombination, see F. Stahl and R. Myers, J. Hered. 86, 327 (1995); see also (38). For a review of recombination-deficient variants of Chi, see D. W. Schultz, J. Swindle, G. R. Smith, J. Mol. Biol. 146, 275 (1981).
-
(1995)
J. Hered.
, vol.86
, pp. 327
-
-
Stahl, F.1
Myers, R.2
-
68
-
-
0019471654
-
-
The major recombination pathway in E. Coli is the RecBCD pathway, so called because of the central involvement of the enzyme encoded by the recBCD genes. For a review of RecBCD-mediated recombination, see F. Stahl and R. Myers, J. Hered. 86, 327 (1995); see also (38). For a review of recombination-deficient variants of Chi, see D. W. Schultz, J. Swindle, G. R. Smith, J. Mol. Biol. 146, 275 (1981).
-
(1981)
J. Mol. Biol.
, vol.146
, pp. 275
-
-
Schultz, D.W.1
Swindle, J.2
Smith, G.R.3
-
70
-
-
0026502711
-
-
C. Burge, A. M. Campbell, S. Karlin, Proc. Natl. Acad. Sci. U.S.A. 89, 1358 (1992); M. McClelland and A. S. Bhagwat, Nature 355, 595 (1992); A. S. Bhagwat and M. McClelland, Nucleic Acids Res. 20, 1663 (1992); R. Merkl, M. Kroger, P. Rice, H. J. Fritz, ibid., p. 1657; S. Karlin and L. R. Cardon, Annu. Rev. Microbiol. 48, 619 (1994).
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 1358
-
-
Burge, C.1
Campbell, A.M.2
Karlin, S.3
-
71
-
-
0026571427
-
-
C. Burge, A. M. Campbell, S. Karlin, Proc. Natl. Acad. Sci. U.S.A. 89, 1358 (1992); M. McClelland and A. S. Bhagwat, Nature 355, 595 (1992); A. S. Bhagwat and M. McClelland, Nucleic Acids Res. 20, 1663 (1992); R. Merkl, M. Kroger, P. Rice, H. J. Fritz, ibid., p. 1657; S. Karlin and L. R. Cardon, Annu. Rev. Microbiol. 48, 619 (1994).
-
(1992)
Nature
, vol.355
, pp. 595
-
-
McClelland, M.1
Bhagwat, A.S.2
-
72
-
-
0026552754
-
-
C. Burge, A. M. Campbell, S. Karlin, Proc. Natl. Acad. Sci. U.S.A. 89, 1358 (1992); M. McClelland and A. S. Bhagwat, Nature 355, 595 (1992); A. S. Bhagwat and M. McClelland, Nucleic Acids Res. 20, 1663 (1992); R. Merkl, M. Kroger, P. Rice, H. J. Fritz, ibid., p. 1657; S. Karlin and L. R. Cardon, Annu. Rev. Microbiol. 48, 619 (1994).
-
(1992)
Nucleic Acids Res.
, vol.20
, pp. 1663
-
-
Bhagwat, A.S.1
McClelland, M.2
-
73
-
-
0026502711
-
-
C. Burge, A. M. Campbell, S. Karlin, Proc. Natl. Acad. Sci. U.S.A. 89, 1358 (1992); M. McClelland and A. S. Bhagwat, Nature 355, 595 (1992); A. S. Bhagwat and M. McClelland, Nucleic Acids Res. 20, 1663 (1992); R. Merkl, M. Kroger, P. Rice, H. J. Fritz, ibid., p. 1657; S. Karlin and L. R. Cardon, Annu. Rev. Microbiol. 48, 619 (1994).
-
Nucleic Acids Res.
, pp. 1657
-
-
Merkl, R.1
Kroger, M.2
Rice, P.3
Fritz, H.J.4
-
74
-
-
0028028028
-
-
C. Burge, A. M. Campbell, S. Karlin, Proc. Natl. Acad. Sci. U.S.A. 89, 1358 (1992); M. McClelland and A. S. Bhagwat, Nature 355, 595 (1992); A. S. Bhagwat and M. McClelland, Nucleic Acids Res. 20, 1663 (1992); R. Merkl, M. Kroger, P. Rice, H. J. Fritz, ibid., p. 1657; S. Karlin and L. R. Cardon, Annu. Rev. Microbiol. 48, 619 (1994).
-
(1994)
Annu. Rev. Microbiol.
, vol.48
, pp. 619
-
-
Karlin, S.1
Cardon, L.R.2
-
75
-
-
0026046977
-
-
C. Médigue, A. Viari, A. Hénaut, A. Danchin, Mol. Microbiol. 5, 2629 (1991).
-
(1991)
Mol. Microbiol.
, vol.5
, pp. 2629
-
-
Médigue, C.1
Viari, A.2
Hénaut, A.3
Danchin, A.4
-
76
-
-
0022483943
-
-
R. P. Burlingame, L. Wyman, P. J. Chapman, J. Bacteriol. 168, 55 (1986); T. D. H. Bugg, Biochim. Biophys. Acta 1202, 258 (1993); E. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, T. Bugg, J. Bacteriol. 178, 5249 (1996).
-
(1986)
J. Bacteriol.
, vol.168
, pp. 55
-
-
Burlingame, R.P.1
Wyman, L.2
Chapman, P.J.3
-
77
-
-
0027431230
-
-
R. P. Burlingame, L. Wyman, P. J. Chapman, J. Bacteriol. 168, 55 (1986); T. D. H. Bugg, Biochim. Biophys. Acta 1202, 258 (1993); E. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, T. Bugg, J. Bacteriol. 178, 5249 (1996).
-
(1993)
Biochim. Biophys. Acta
, vol.1202
, pp. 258
-
-
Bugg, T.D.H.1
-
78
-
-
0029789393
-
-
R. P. Burlingame, L. Wyman, P. J. Chapman, J. Bacteriol. 168, 55 (1986); T. D. H. Bugg, Biochim. Biophys. Acta 1202, 258 (1993); E. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, T. Bugg, J. Bacteriol. 178, 5249 (1996).
-
(1996)
J. Bacteriol.
, vol.178
, pp. 5249
-
-
Spence, E.1
Kawamukai, M.2
Sanvoisin, J.3
Braven, H.4
Bugg, T.5
-
79
-
-
0027203859
-
-
H. M. Tan, H. Y. Tang, C. L. Joannou, N. H. Abdel-Wahab, J. R. Manson, Gene 130, 33 (1993).
-
(1993)
Gene
, vol.130
, pp. 33
-
-
Tan, H.M.1
Tang, H.Y.2
Joannou, C.L.3
Abdel-Wahab, N.H.4
Manson, J.R.5
-
80
-
-
0000887786
-
-
R. M. Macnab, in (2), vol. 2, pp. 123-145; M. Homma, D. J. DeRosier, R. M. Macnab, J. Mol. Bol. 213, 819 (1990); K. Ohnishi, Y. Ohto, S. Aizawa, R. M. Macnab, T. Iino, J. Bacteriol. 176, 2272 (1994); For a discussion of mviM and mviN, see K. Kutsukake, T. Okada, T. Yokoseki, T. Iino, Gene 143, 49 (1994).
-
Escherichia Coli and Salmonella Cellular and Molecular Biology
, vol.2
, pp. 123-145
-
-
Macnab, R.M.1
-
81
-
-
0025367437
-
-
R. M. Macnab, in (2), vol. 2, pp. 123-145; M. Homma, D. J. DeRosier, R. M. Macnab, J. Mol. Bol. 213, 819 (1990); K. Ohnishi, Y. Ohto, S. Aizawa, R. M. Macnab, T. Iino, J. Bacteriol. 176, 2272 (1994); For a discussion of mviM and mviN, see K. Kutsukake, T. Okada, T. Yokoseki, T. Iino, Gene 143, 49 (1994).
-
(1990)
J. Mol. Bol.
, vol.213
, pp. 819
-
-
Homma, M.1
DeRosier, D.J.2
Macnab, R.M.3
-
82
-
-
0028329280
-
-
R. M. Macnab, in (2), vol. 2, pp. 123-145; M. Homma, D. J. DeRosier, R. M. Macnab, J. Mol. Bol. 213, 819 (1990); K. Ohnishi, Y. Ohto, S. Aizawa, R. M. Macnab, T. Iino, J. Bacteriol. 176, 2272 (1994); For a discussion of mviM and mviN, see K. Kutsukake, T. Okada, T. Yokoseki, T. Iino, Gene 143, 49 (1994).
-
(1994)
J. Bacteriol.
, vol.176
, pp. 2272
-
-
Ohnishi, K.1
Ohto, Y.2
Aizawa, S.3
Macnab, R.M.4
Iino, T.5
-
83
-
-
0028224924
-
-
R. M. Macnab, in (2), vol. 2, pp. 123-145; M. Homma, D. J. DeRosier, R. M. Macnab, J. Mol. Bol. 213, 819 (1990); K. Ohnishi, Y. Ohto, S. Aizawa, R. M. Macnab, T. Iino, J. Bacteriol. 176, 2272 (1994); For a discussion of mviM and mviN, see K. Kutsukake, T. Okada, T. Yokoseki, T. Iino, Gene 143, 49 (1994).
-
(1994)
Gene
, vol.143
, pp. 49
-
-
Kutsukake, K.1
Okada, T.2
Yokoseki, T.3
Iino, T.4
-
84
-
-
0020338446
-
-
For a discussion of ATT start in infC, see C. Sacerdot et al., EMBO J. 1, 311 (1982); for a discussion of CTG start in htgA, see D. Missiakas, C. Georgopoulos, S. Raina, J. Bacteriol. 175, 2613 (1993).
-
(1982)
EMBO J.
, vol.1
, pp. 311
-
-
Sacerdot, C.1
-
85
-
-
0027229503
-
-
For a discussion of ATT start in infC, see C. Sacerdot et al., EMBO J. 1, 311 (1982); for a discussion of CTG start in htgA, see D. Missiakas, C. Georgopoulos, S. Raina, J. Bacteriol. 175, 2613 (1993).
-
(1993)
J. Bacteriol.
, vol.175
, pp. 2613
-
-
Missiakas, D.1
Georgopoulos, C.2
Raina, S.3
-
86
-
-
0020260966
-
-
D. L. Daniels, F. Sanger, A. R. Coulson, Cold Spring Harbor Symp. Quant. Biol. 47, 1009 (1983); F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen, J. Mol. Biol. 162, 729 (1982).
-
(1983)
Cold Spring Harbor Symp. Quant. Biol.
, vol.47
, pp. 1009
-
-
Daniels, D.L.1
Sanger, F.2
Coulson, A.R.3
-
87
-
-
0020465927
-
-
D. L. Daniels, F. Sanger, A. R. Coulson, Cold Spring Harbor Symp. Quant. Biol. 47, 1009 (1983); F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen, J. Mol. Biol. 162, 729 (1982).
-
(1982)
J. Mol. Biol.
, vol.162
, pp. 729
-
-
Sanger, F.1
Coulson, A.R.2
Hong, G.F.3
Hill, D.F.4
Petersen, G.B.5
-
88
-
-
0003475277
-
-
ASM Press, Washington, DC
-
A number of bacterial proteins have been implicated in mediating the invasion of host cells by pathogens. Attaching and effacing proteins are involved in eliciting an extensive rearrangement of host cell actin by enteropathogenic E coli strains, whereas invasins are bacterial surface proteins that provoke the endocytic uptake of Yersinia and Salmonella spp. by host cells. For an overview of bacterial pathogenesis, including virulence factors, see A. A. Salyers and D. D. Whitt, Bacterial Pathogenesis: A Molecular Approach (ASM Press, Washington, DC, 1994).
-
(1994)
Bacterial Pathogenesis: A Molecular Approach
-
-
Salyers, A.A.1
Whitt, D.D.2
-
92
-
-
0030111235
-
-
A previous estimate of 1128 Haemophilus influenzae orthologs among 75% of the complete E. coli genome [R. L. Tatusov et al., Curr. Biol. 6, 279 (1996)] is based on less restrictive criteria and includes sequences with as little as 18% identity.
-
(1996)
Curr. Biol.
, vol.6
, pp. 279
-
-
Tatusov, R.L.1
-
96
-
-
0000117110
-
-
S. Bachellier, E. Gilson, M. Hofnung, C. W. Hill, in (2), vol. 2, pp. 2012-2040.
-
Escherichia Coli and Salmonella Cellular and Molecular Biology
, vol.2
, pp. 2012-2040
-
-
Bachellier, S.1
Gilson, E.2
Hofnung, M.3
Hill, C.W.4
-
102
-
-
0000996211
-
-
For a review of K-12 prophage, see A. M. Campbell, in (2), vol. 2, pp. 2041-2046. CP4-57 is described in D. M. Retallack. L. L. Johnson, D. I. Friedman, J. Bacteriol. 176, 2082 (1994); J. E. Kirby, J. E. Trempy, S. Gottesman, ibid., p. 2068.
-
Escherichia Coli and Salmonella Cellular and Molecular Biology
, vol.2
, pp. 2041-2046
-
-
Campbell, A.M.1
-
103
-
-
0028215041
-
-
For a review of K-12 prophage, see A. M. Campbell, in (2), vol. 2, pp. 2041-2046. CP4-57 is described in D. M. Retallack. L. L. Johnson, D. I. Friedman, J. Bacteriol. 176, 2082 (1994); J. E. Kirby, J. E. Trempy, S. Gottesman, ibid., p. 2068.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 2082
-
-
Retallack, D.M.1
Johnson, L.L.2
Friedman, D.I.3
-
104
-
-
15444345294
-
-
For a review of K-12 prophage, see A. M. Campbell, in (2), vol. 2, pp. 2041-2046. CP4-57 is described in D. M. Retallack. L. L. Johnson, D. I. Friedman, J. Bacteriol. 176, 2082 (1994); J. E. Kirby, J. E. Trempy, S. Gottesman, ibid., p. 2068.
-
J. Bacteriol.
, pp. 2068
-
-
Kirby, J.E.1
Trempy, J.E.2
Gottesman, S.3
-
105
-
-
0026645252
-
-
P22 [D. F. Lindsey, C. Martinez, J. R. Walker, J. Bacteriol. 174, 3834 (1992)] and a phage from a clinical isolate [D. Lim, Mol. Microbiol. 6, 3531 (1992)] also integrate into thrW.
-
(1992)
J. Bacteriol.
, vol.174
, pp. 3834
-
-
Lindsey, D.F.1
Martinez, C.2
Walker, J.R.3
-
106
-
-
0026677545
-
-
P22 [D. F. Lindsey, C. Martinez, J. R. Walker, J. Bacteriol. 174, 3834 (1992)] and a phage from a clinical isolate [D. Lim, Mol. Microbiol. 6, 3531 (1992)] also integrate into thrW.
-
(1992)
Mol. Microbiol.
, vol.6
, pp. 3531
-
-
Lim, D.1
-
108
-
-
15444358938
-
-
personal communication
-
E. Kofoid and J. Roth, personal communication.
-
-
-
Kofoid, E.1
Roth, J.2
-
109
-
-
15444350407
-
-
note
-
This is Laboratory of Genetics paper 3487. We thank the entire E. coli community for their support, encouragement, and sharing of data, and especially D. L. Daniels and N. Peterson, who were present at the creation. We also thank R. Straussburg and M. Guyer, our program administrators; R. R. Burgess and M. Sussman for critical reading of the manuscript; M. Borodovsky and W. S. Hayes for application of a new version of the GeneMark program to the analysis of the sequence; K. Rudd for his Ecoseq7 melds of GenBank data; J. Mahillon for providing I-Sce I strains; J. Roth and E. Kofoid for unpublished Salmonella data; the Japanese group under H. Mori and T. Horiuchi for cooperative competition; G. Pósfai and W. Szybalski for the popout strains; S. Baldwin, C. Allex, N. Manola, G. Bouriakov, and J. Schroeder of DNASTAR for extraordinary software; A. Huerta, H. Salgado, and D. Thieffry for help with promoter, operon, and regulatory site identification; T. Thiesen for Postscript illustrations; H. Kijenski, G. Peyrot, P. Soni, G. Diarra, E. Grotbeck, T. Forsythe, M. Maguire, M. Federle, S. Subramanian, and K. Kadner for excellent technical work; and 169 University of Wisconsin undergraduates who participated over the last decade. Supported by NIH grants P01 HG01428 (from the Human Genome Project) and S10 RR10379 (for ABI machines from the National Center for Research Resources-Biomedical Research Support Shared Instrumentation Grant). We thank IBM for the gift of workstations, the State of Wisconsin for remodeling support, and especially SmithKline Beecham Pharmaceutical and Genome Therapeutics Corp. for financial support of the annotation of this sequence. N.P. is an NSF fellow in molecular evolution.
-
-
-
|