메뉴 건너뛰기




Volumn 110, Issue 6, 2013, Pages 1726-1734

Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate

Author keywords

5 aminovalerate; Biomonomer; Bioplastic; Glutarate; Nylon; Polyamide

Indexed keywords

5-AMINOVALERATE; BIOMONOMER; BIOPLASTICS; GLUTARATE; NYLON;

EID: 84876762221     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.24828     Document Type: Article
Times cited : (83)

References (32)
  • 1
    • 84875788751 scopus 로고    scopus 로고
    • Engineering microbial chemical factories to produce renewable "biomonomers.
    • Adkins J, Pugh S, McKenna R, Nielsen DR. 2012. Engineering microbial chemical factories to produce renewable "biomonomers." Front Microbiol 3: 313.
    • (2012) Front Microbiol , vol.3 , pp. 313
    • Adkins, J.1    Pugh, S.2    McKenna, R.3    Nielsen, D.R.4
  • 3
    • 0034623249 scopus 로고    scopus 로고
    • Comparison of lamellar crystal structure and morphology of nylon 46 and nylon 5
    • Bermudez M, Leon S, Aleman C, Munoz-Guerra S. 2000. Comparison of lamellar crystal structure and morphology of nylon 46 and nylon 5. Polymer 41(25): 8961-8973.
    • (2000) Polymer , vol.41 , Issue.25 , pp. 8961-8973
    • Bermudez, M.1    Leon, S.2    Aleman, C.3    Munoz-Guerra, S.4
  • 4
    • 0030044990 scopus 로고    scopus 로고
    • Substrate specificity of the Escherichia coli 4-aminobutyrate carrier encoded by gabP. Uptake and counterflow of structurally diverse molecules
    • Brechtel CE, Hu L, King SC. 1996. Substrate specificity of the Escherichia coli 4-aminobutyrate carrier encoded by gabP. Uptake and counterflow of structurally diverse molecules. J Biol Chem 271(2): 783-788.
    • (1996) J Biol Chem , vol.271 , Issue.2 , pp. 783-788
    • Brechtel, C.E.1    Hu, L.2    King, S.C.3
  • 5
    • 84862207929 scopus 로고    scopus 로고
    • Expanding the chemical palate of cells by combining systems biology and metabolic engineering
    • Curran KA, Alper HS. 2012. Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 14(4): 289-297.
    • (2012) Metab Eng , vol.14 , Issue.4 , pp. 289-297
    • Curran, K.A.1    Alper, H.S.2
  • 6
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12): 6640-6645.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.12 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 7
    • 84856030065 scopus 로고    scopus 로고
    • Perspective on opportunities in industrial biotechnology in renewable chemicals
    • Erickson B, Nelson JE, Winters P. 2012. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7(2): 176-185.
    • (2012) Biotechnol J , vol.7 , Issue.2 , pp. 176-185
    • Erickson, B.1    Nelson, J.E.2    Winters, P.3
  • 8
    • 2242464893 scopus 로고    scopus 로고
    • Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere
    • Espinosa-Urgel M, Ramos JL. 2001. Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl Environ Microbiol 67(11): 5219-5224.
    • (2001) Appl Environ Microbiol , vol.67 , Issue.11 , pp. 5219-5224
    • Espinosa-Urgel, M.1    Ramos, J.L.2
  • 10
    • 0016192568 scopus 로고
    • Purification and properties of L-lysine monooxygenase from Pseudomonas fluorescens
    • Flashner MI, Massey V. 1974. Purification and properties of L-lysine monooxygenase from Pseudomonas fluorescens. J Biol Chem 249(8): 2579-2586.
    • (1974) J Biol Chem , vol.249 , Issue.8 , pp. 2579-2586
    • Flashner, M.I.1    Massey, V.2
  • 11
    • 22144432623 scopus 로고    scopus 로고
    • Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli
    • Imaizumi A, Takikawa R, Koseki C, Usuda Y, Yasueda H, Kojima H, Matsui K, Sugimoto S. 2005. Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. J Biotechnol 117(1): 111-118.
    • (2005) J Biotechnol , vol.117 , Issue.1 , pp. 111-118
    • Imaizumi, A.1    Takikawa, R.2    Koseki, C.3    Usuda, Y.4    Yasueda, H.5    Kojima, H.6    Matsui, K.7    Sugimoto, S.8
  • 12
    • 77953231876 scopus 로고    scopus 로고
    • Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane
    • Kind S, Jeong WK, Schroder H, Wittmann C. 2010. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12(4): 341-351.
    • (2010) Metab Eng , vol.12 , Issue.4 , pp. 341-351
    • Kind, S.1    Jeong, W.K.2    Schroder, H.3    Wittmann, C.4
  • 13
    • 0027112180 scopus 로고
    • Metabolic characterization of a L-lysine-producing strain by continuous culture
    • Kiss RD, Stephanopoulos G. 1992. Metabolic characterization of a L-lysine-producing strain by continuous culture. Biotechnol Bioeng 39(5): 565-574.
    • (1992) Biotechnol Bioeng , vol.39 , Issue.5 , pp. 565-574
    • Kiss, R.D.1    Stephanopoulos, G.2
  • 14
    • 82755189684 scopus 로고    scopus 로고
    • Microbial production of building block chemicals and polymers
    • Lee JW, Kim HU, Choi S, Yi J, Lee SY. 2011. Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22(6): 758-767.
    • (2011) Curr Opin Biotechnol , vol.22 , Issue.6 , pp. 758-767
    • Lee, J.W.1    Kim, H.U.2    Choi, S.3    Yi, J.4    Lee, S.Y.5
  • 15
    • 0031931695 scopus 로고    scopus 로고
    • Expression of the second lysine decarboxylase gene of Escherichia coli
    • Lemonnier M, Lane D. 1998. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144(Pt 3): 751-760.
    • (1998) Microbiology , vol.144 , Issue.PART 3 , pp. 751-760
    • Lemonnier, M.1    Lane, D.2
  • 16
    • 36148935215 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation
    • Mimitsuka T, Sawai H, Hatsu M, Yamada K. 2007. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9): 2130-2135.
    • (2007) Biosci Biotechnol Biochem , vol.71 , Issue.9 , pp. 2130-2135
    • Mimitsuka, T.1    Sawai, H.2    Hatsu, M.3    Yamada, K.4
  • 17
    • 0035349372 scopus 로고    scopus 로고
    • Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in L-threonine production
    • Ogawa-Miyata Y, Kojima H, Sano K. 2001. Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in L-threonine production. Biosci Biotechnol Biochem 65(5): 1149-1154.
    • (2001) Biosci Biotechnol Biochem , vol.65 , Issue.5 , pp. 1149-1154
    • Ogawa-Miyata, Y.1    Kojima, H.2    Sano, K.3
  • 18
    • 70350508288 scopus 로고    scopus 로고
    • Metabolic engineering of escherichia coli for the production of putrescine: A four carbon diamine
    • Qian ZG, Xia XX, Lee SY. 2009. Metabolic engineering of escherichia coli for the production of putrescine: A four carbon diamine. Biotechnol Bioeng 104(4): 651-662.
    • (2009) Biotechnol Bioeng , vol.104 , Issue.4 , pp. 651-662
    • Qian, Z.G.1    Xia, X.X.2    Lee, S.Y.3
  • 19
    • 78649434619 scopus 로고    scopus 로고
    • Metabolic engineering of escherichia coli for the production of cadaverine: A five carbon diamine
    • Qian ZG, Xia XX, Lee SY. 2011. Metabolic engineering of escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnol Bioeng 108(1): 93-103.
    • (2011) Biotechnol Bioeng , vol.108 , Issue.1 , pp. 93-103
    • Qian, Z.G.1    Xia, X.X.2    Lee, S.Y.3
  • 20
    • 0014799743 scopus 로고
    • Delta-aminovaleramidase of Pseudomonas putida
    • Reitz MS, Rodwell VW. 1970. Delta-aminovaleramidase of Pseudomonas putida. J Biol Chem 245(12): 3091-3096.
    • (1970) J Biol Chem , vol.245 , Issue.12 , pp. 3091-3096
    • Reitz, M.S.1    Rodwell, V.W.2
  • 21
    • 27144458111 scopus 로고    scopus 로고
    • Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440
    • Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. 2005. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187(21): 7500-7510.
    • (2005) J Bacteriol , vol.187 , Issue.21 , pp. 7500-7510
    • Revelles, O.1    Espinosa-Urgel, M.2    Fuhrer, T.3    Sauer, U.4    Ramos, J.L.5
  • 22
    • 2442654058 scopus 로고    scopus 로고
    • The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid
    • Revelles O, Espinosa-Urgel M, Molin S, Ramos JL. 2004. The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid. J Bacteriol 186(11): 3439-3446.
    • (2004) J Bacteriol , vol.186 , Issue.11 , pp. 3439-3446
    • Revelles, O.1    Espinosa-Urgel, M.2    Molin, S.3    Ramos, J.L.4
  • 23
    • 34147144484 scopus 로고    scopus 로고
    • Identification of the initial steps in d-Lysine catabolism in pseudomonas putida
    • Revelles O, Wittich R-M, Ramos JL. 2007. Identification of the initial steps in d-Lysine catabolism in pseudomonas putida. J Bacteriol 189(7): 2787-2792.
    • (2007) J Bacteriol , vol.189 , Issue.7 , pp. 2787-2792
    • Revelles, O.1    Wittich, R.-M.2    Ramos, J.L.3
  • 24
    • 0015957627 scopus 로고
    • Purification and physical properties of inducible Escherichia coli lysine decarboxylase
    • Sabo DL, Boeker EA, Byers B, Waron H, Fischer EH. 1974. Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry 13(4): 662-670.
    • (1974) Biochemistry , vol.13 , Issue.4 , pp. 662-670
    • Sabo, D.L.1    Boeker, E.A.2    Byers, B.3    Waron, H.4    Fischer, E.H.5
  • 26
    • 79959256632 scopus 로고    scopus 로고
    • Biotechnological production of polyamines by Bacteria: Recent achievements and future perspectives
    • Schneider J, Wendisch VF. 2011. Biotechnological production of polyamines by Bacteria: Recent achievements and future perspectives. Appl Microbiol Biotechnol 91(1): 17-30.
    • (2011) Appl Microbiol Biotechnol , vol.91 , Issue.1 , pp. 17-30
    • Schneider, J.1    Wendisch, V.F.2
  • 27
    • 81155152491 scopus 로고    scopus 로고
    • Synthesis of gamma-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032
    • Shi F, Li Y. 2011. Synthesis of gamma-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett 33(12): 2469-2474.
    • (2011) Biotechnol Lett , vol.33 , Issue.12 , pp. 2469-2474
    • Shi, F.1    Li, Y.2
  • 28
    • 33747280991 scopus 로고    scopus 로고
    • Production of succinic acid by bacterial fermentation
    • Song H, Lee SY. 2006. Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39(3): 352-361.
    • (2006) Enzyme Microb Technol , vol.39 , Issue.3 , pp. 352-361
    • Song, H.1    Lee, S.Y.2
  • 29
    • 84863100643 scopus 로고    scopus 로고
    • Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli
    • Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A. 2012. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 51(3): 171-176.
    • (2012) Enzyme Microb Technol , vol.51 , Issue.3 , pp. 171-176
    • Takahashi, C.1    Shirakawa, J.2    Tsuchidate, T.3    Okai, N.4    Hatada, K.5    Nakayama, H.6    Tateno, T.7    Ogino, C.8    Kondo, A.9
  • 30
    • 58549095930 scopus 로고    scopus 로고
    • Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase
    • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A. 2009. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82(1): 115-121.
    • (2009) Appl Microbiol Biotechnol , vol.82 , Issue.1 , pp. 115-121
    • Tateno, T.1    Okada, Y.2    Tsuchidate, T.3    Tanaka, T.4    Fukuda, H.5    Kondo, A.6
  • 32


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.