-
1
-
-
0022534202
-
A yeast gene that is essential for release from glucose repression encodes a protein kinase
-
Celenza, J. L. & Carlson, M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233, 1175-1180 (1986).
-
(1986)
Science
, vol.233
, pp. 1175-1180
-
-
Celenza, J.L.1
Carlson, M.2
-
2
-
-
0026524634
-
Carbon catabolite repression in yeast
-
Gancedo, J. M. Carbon catabolite repression in yeast. Eur. J. Biochem. 206, 297-313 (1992).
-
(1992)
Eur. J. Biochem.
, vol.206
, pp. 297-313
-
-
Gancedo, J.M.1
-
3
-
-
84902259326
-
Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases
-
Crozet, P. et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front. Plant Sci. 5, 190 (2014).
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 190
-
-
Crozet, P.1
-
4
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki, K., Zhu, T. & Guan, K.-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.-L.3
-
5
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226 (2008).
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
-
6
-
-
0023642627
-
A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis
-
Carling, D., Zammit, V. A. & Hardie, D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217-222 (1987).
-
(1987)
FEBS Lett.
, vol.223
, pp. 217-222
-
-
Carling, D.1
Zammit, V.A.2
Hardie, D.G.3
-
7
-
-
0023789884
-
Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase
-
Munday, M. R., Campbell, D. G., Carling, D. & Hardie, D. G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175, 331-338 (1988).
-
(1988)
Eur. J. Biochem.
, vol.175
, pp. 331-338
-
-
Munday, M.R.1
Campbell, D.G.2
Carling, D.3
Hardie, D.G.4
-
8
-
-
33645093212
-
Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue
-
Watt, M. J. et al. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290, E500-E508 (2006).
-
(2006)
Am. J. Physiol. Endocrinol. Metab.
, vol.290
, pp. E500-E508
-
-
Watt, M.J.1
-
9
-
-
79958047295
-
Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype
-
Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739-748 (2011).
-
(2011)
Cell Metab.
, vol.13
, pp. 739-748
-
-
Ahmadian, M.1
-
10
-
-
0034687210
-
Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia
-
Marsin, A. S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247-1255 (2000).
-
(2000)
Curr. Biol.
, vol.10
, pp. 1247-1255
-
-
Marsin, A.S.1
-
11
-
-
23844517036
-
Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer
-
Bando, H. et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784-5792 (2005).
-
(2005)
Clin. Cancer Res.
, vol.11
, pp. 5784-5792
-
-
Bando, H.1
-
12
-
-
50349099779
-
Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic
-
Sakamoto, K. & Holman, G. D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29-E37 (2008).
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
, pp. E29-E37
-
-
Sakamoto, K.1
Holman, G.D.2
-
13
-
-
84875813063
-
AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1
-
Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167-1175 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 1167-1175
-
-
Wu, N.1
-
14
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
15
-
-
84954318420
-
AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
-
Toyama, E. Q. et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281 (2016).
-
(2016)
Science
, vol.351
, pp. 275-281
-
-
Toyama, E.Q.1
-
16
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
Zong, H. et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl Acad. Sci. USA 99, 15983-15987 (2002).
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 15983-15987
-
-
Zong, H.1
-
17
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017-12022 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 12017-12022
-
-
Jäger, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
18
-
-
0035914324
-
Regulation of transcription by AMP-activated protein kinase: Phosphorylation of p300 blocks its interaction with nuclear receptors
-
Yang, W. et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 276, 38341-38344 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38341-38344
-
-
Yang, W.1
-
19
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo, S.-H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111 (2005).
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.-H.1
-
20
-
-
34848861463
-
The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor
-
Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107-30119 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30107-30119
-
-
Greer, E.L.1
-
21
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437-440 (2009).
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
22
-
-
77956294919
-
Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation
-
Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201-1205 (2010).
-
(2010)
Science
, vol.329
, pp. 1201-1205
-
-
Bungard, D.1
-
23
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376-388 (2011).
-
(2011)
Cell Metab.
, vol.13
, pp. 376-388
-
-
Li, Y.1
-
24
-
-
79955815135
-
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
-
Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607-621 (2011).
-
(2011)
Cell
, vol.145
, pp. 607-621
-
-
Mihaylova, M.M.1
-
25
-
-
84975756856
-
AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy
-
Shin, H.-J. R. et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534, 553-557 (2016).
-
(2016)
Nature
, vol.534
, pp. 553-557
-
-
Shin, H.-J.R.1
-
26
-
-
84959487667
-
AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes
-
Young, N. P. et al. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev. 30, 535-552 (2016).
-
(2016)
Genes Dev.
, vol.30
, pp. 535-552
-
-
Young, N.P.1
-
27
-
-
84948412219
-
Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates
-
Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922-935 (2015).
-
(2015)
Cell Metab.
, vol.22
, pp. 922-935
-
-
Hoffman, N.J.1
-
28
-
-
84925494009
-
Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate
-
Ducommun, S. et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell. Signal. 27, 978-988 (2015).
-
(2015)
Cell. Signal.
, vol.27
, pp. 978-988
-
-
Ducommun, S.1
-
29
-
-
84948425160
-
Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction
-
Schaffer, B. E. et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 22, 907-921 (2015).
-
(2015)
Cell Metab.
, vol.22
, pp. 907-921
-
-
Schaffer, B.E.1
-
30
-
-
84958120581
-
AMPK: An energy-sensing pathway with multiple inputs and outputs
-
Hardie, D. G., Schaffer, B. E. & Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26, 190-201 (2016).
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 190-201
-
-
Hardie, D.G.1
Schaffer, B.E.2
Brunet, A.3
-
31
-
-
85013230596
-
AMPK signalling in health and disease
-
Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31-37 (2017).
-
(2017)
Curr. Opin. Cell Biol.
, vol.45
, pp. 31-37
-
-
Carling, D.1
-
32
-
-
13344285343
-
Mammalian AMP-activated protein kinase subfamily
-
Stapleton, D. et al. Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271, 611-614 (1996).
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 611-614
-
-
Stapleton, D.1
-
33
-
-
0032524622
-
Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle
-
Thornton, C, Snowden, M. A. & Carling, D. Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J. Biol. Chem. 273, 12443-12450 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 12443-12450
-
-
Thornton, C.1
Snowden, M.A.2
Carling, D.3
-
34
-
-
0034654362
-
Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding
-
Cheung, P. C, Salt, I. P., Davies, S. P., Hardie, D. G. & Carling, D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 346, 659-669 (2000).
-
(2000)
Biochem. J.
, vol.346
, pp. 659-669
-
-
Cheung, P.C.1
Salt, I.P.2
Davies, S.P.3
Hardie, D.G.4
Carling, D.5
-
35
-
-
84983252357
-
AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours
-
Ross, F. A., MacKintosh, C. & Hardie, D. G. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J. 283, 2987-3001 (2016).
-
(2016)
FEBS J.
, vol.283
, pp. 2987-3001
-
-
Ross, F.A.1
MacKintosh, C.2
Hardie, D.G.3
-
36
-
-
0038814313
-
A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias
-
Hudson, E. R. et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861-866 (2003).
-
(2003)
Curr. Biol.
, vol.13
, pp. 861-866
-
-
Hudson, E.R.1
-
37
-
-
34848840368
-
Structural basis for AMP binding to mammalian AMP-activated protein kinase
-
Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496-500 (2007).
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
-
38
-
-
80052385397
-
AMP-activated protein kinase: Also regulated by ADP?
-
Hardie, D. G., Carling, D. & Gamblin, S. J. AMP-activated protein kinase: also regulated by ADP? Trends Biochem. Sci. 36, 470-477 (2011).
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 470-477
-
-
Hardie, D.G.1
Carling, D.2
Gamblin, S.J.3
-
39
-
-
84885168009
-
AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
-
Gowans, G. J., Hawley, S. A., Ross, F. A. & Hardie, D. G. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 18, 556-566 (2013).
-
(2013)
Cell Metab.
, vol.18
, pp. 556-566
-
-
Gowans, G.J.1
Hawley, S.A.2
Ross, F.A.3
Hardie, D.G.4
-
40
-
-
84955464040
-
Differential regulation by AMP and ADP of AMPK complexes containing different y subunit isoforms
-
Ross, F. A., Jensen, T. E. & Hardie, D. G. Differential regulation by AMP and ADP of AMPK complexes containing different y subunit isoforms. Biochem. J. 473, 189-199 (2016).
-
(2016)
Biochem. J.
, vol.473
, pp. 189-199
-
-
Ross, F.A.1
Jensen, T.E.2
Hardie, D.G.3
-
41
-
-
0028845251
-
2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms
-
2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270, 27186-27191 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 27186-27191
-
-
Hawley, S.A.1
-
42
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor STRAD oc/p and MO25 ot/p are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRAD oc/p and MO25 ot/p are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).
-
(2003)
J. Biol.
, vol.2
, pp. 28
-
-
Hawley, S.A.1
-
43
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008 (2003).
-
(2003)
Curr. Biol.
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
-
44
-
-
33845949733
-
Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase
-
Suter, M. et al. Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 281, 32207-32216 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32207-32216
-
-
Suter, M.1
-
45
-
-
78650606464
-
P-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK)
-
Oakhill, J. S. et al. p-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl Acad. Sci. USA 107, 19237-19241 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 19237-19241
-
-
Oakhill, J.S.1
-
46
-
-
0029561919
-
5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Ca and native bovine protein phosphatase-2AC
-
Davies, S. P., Helps, N. R., Cohen, P. T. & Hardie, D. G. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Ca and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421-425 (1995).
-
(1995)
FEBS Lett.
, vol.377
, pp. 421-425
-
-
Davies, S.P.1
Helps, N.R.2
Cohen, P.T.3
Hardie, D.G.4
-
47
-
-
33845332346
-
Predominant a2/p2/y3 AMPK activation during exercise in human skeletal muscle
-
Birk, J. B. & Wojtaszewski, J. F. P. Predominant a2/p2/y3 AMPK activation during exercise in human skeletal muscle. J. Physiol. 577, 1021-1032 (2006).
-
(2006)
J. Physiol.
, vol.577
, pp. 1021-1032
-
-
Birk, J.B.1
Wojtaszewski, J.F.P.2
-
48
-
-
84932109475
-
PT-1 selectively activates AMPK-y1 complexes in mouse skeletal muscle, but activates all three ysubunit complexes in cultured human cells by inhibiting the respiratory chain
-
Jensen, T. E. et al. PT-1 selectively activates AMPK-y1 complexes in mouse skeletal muscle, but activates all three ysubunit complexes in cultured human cells by inhibiting the respiratory chain. Biochem. J. 467, 461-472 (2015).
-
(2015)
Biochem. J.
, vol.467
, pp. 461-472
-
-
Jensen, T.E.1
-
49
-
-
84975154466
-
Probing the enzyme kinetics, allosteric modulation and activation of a 1-and cc2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators
-
Rajamohan, F. et al. Probing the enzyme kinetics, allosteric modulation and activation of a 1-and cc2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem. J. 473, 581-592 (2016).
-
(2016)
Biochem. J.
, vol.473
, pp. 581-592
-
-
Rajamohan, F.1
-
50
-
-
0037381848
-
2 in human skeletal muscle
-
2 in human skeletal muscle. Diabetes 52, 926-928 (2003).
-
(2003)
Diabetes
, vol.52
, pp. 926-928
-
-
McGee, S.L.1
-
51
-
-
34250182374
-
Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the a2 form of AMP-activated protein kinase
-
Suzuki, A. et al. Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the a2 form of AMP-activated protein kinase. Mol. Cell. Biol. 27, 4317-4327 (2007).
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 4317-4327
-
-
Suzuki, A.1
-
52
-
-
84890124737
-
Localisation of AMPK y subunits in cardiac and skeletal muscles
-
Pinter, K., Grignani, R. T., Watkins, H. & Redwood, C. Localisation of AMPK y subunits in cardiac and skeletal muscles. J. Muscle Res. Cell Motil. 34, 369-378 (2013).
-
(2013)
J. Muscle Res. Cell Motil.
, vol.34
, pp. 369-378
-
-
Pinter, K.1
Grignani, R.T.2
Watkins, H.3
Redwood, C.4
-
53
-
-
84939426946
-
Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance
-
Liang, J. et al. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat. Commun. 6, 7926 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7926
-
-
Liang, J.1
-
54
-
-
84885142437
-
AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
-
Zhang, Y.-L. et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 18, 546-555 (2013).
-
(2013)
Cell Metab.
, vol.18
, pp. 546-555
-
-
Zhang, Y.-L.1
-
55
-
-
84907519033
-
The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
Zhang, C.-S. et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526-540 (2014).
-
(2014)
Cell Metab.
, vol.20
, pp. 526-540
-
-
Zhang, C.-S.1
-
56
-
-
85026854783
-
Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK
-
Zhang, C.-S. et al. Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112-116 (2017).
-
(2017)
Nature
, vol.548
, pp. 112-116
-
-
Zhang, C.-S.1
-
57
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329-3335 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
-
58
-
-
33747886526
-
Emerging roles of pseudokinases
-
Boudeau, J., Miranda-Saavedra, D., Barton, G. J. & Alessi, D. R. Emerging roles of pseudokinases. Trends Cell Biol. 16, 443-452 (2006).
-
(2006)
Trends Cell Biol.
, vol.16
, pp. 443-452
-
-
Boudeau, J.1
Miranda-Saavedra, D.2
Barton, G.J.3
Alessi, D.R.4
-
59
-
-
33746353046
-
LKB1-dependent signaling pathways
-
Alessi, D. R., Sakamoto, K. & Bayascas, J. R. LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137-163 (2006).
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 137-163
-
-
Alessi, D.R.1
Sakamoto, K.2
Bayascas, J.R.3
-
60
-
-
72149093508
-
Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction
-
Ikeda, Y. et al. Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J. Biol. Chem. 284, 35839-35849 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 35839-35849
-
-
Ikeda, Y.1
-
61
-
-
77953808195
-
Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function
-
Jessen, N. et al. Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function. Biochim. Biophys. Acta 1802, 593-600 (2010).
-
(2010)
Biochim. Biophys. Acta
, vol.1802
, pp. 593-600
-
-
Jessen, N.1
-
62
-
-
84921656896
-
Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles
-
Shan, T., Zhang, P., Bi, P. & Kuang, S. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles. J. Cell. Physiol. 230, 1033-1041 (2015).
-
(2015)
J. Cell. Physiol.
, vol.230
, pp. 1033-1041
-
-
Shan, T.1
Zhang, P.2
Bi, P.3
Kuang, S.4
-
63
-
-
83455245205
-
The tumor suppressor kinase LKB1: Lessons from mouse models
-
Ollila, S. & Mäkelä, T P. The tumor suppressor kinase LKB1: lessons from mouse models. J. Mol. Cell. Biol. 3, 330-340 (2011).
-
(2011)
J. Mol. Cell. Biol.
, vol.3
, pp. 330-340
-
-
Ollila, S.1
Mäkelä, T.P.2
-
64
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646 (2005).
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
-
65
-
-
67749111502
-
The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
-
Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575 (2009).
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
66
-
-
23844471263
-
2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
-
2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060-29066 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 29060-29066
-
-
Hurley, R.L.1
-
67
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-p is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-p is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9-19 (2005).
-
(2005)
Cell Metab.
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
-
68
-
-
23044437445
-
2+/calmodulin-dependent protein kinase kinase-p acts upstream of AMP-activated protein kinase in mammalian cells
-
2+/calmodulin-dependent protein kinase kinase-p acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21-33 (2005).
-
(2005)
Cell Metab.
, vol.2
, pp. 21-33
-
-
Woods, A.1
-
70
-
-
42649105456
-
Hypothalamic CaMKK2 contributes to the regulation of energy balance
-
Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377-388 (2008).
-
(2008)
Cell Metab.
, vol.7
, pp. 377-388
-
-
Anderson, K.A.1
-
71
-
-
80052922112
-
Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop
-
Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992-1003 (2011).
-
(2011)
Cell
, vol.146
, pp. 992-1003
-
-
Yang, Y.1
Atasoy, D.2
Su, H.H.3
Sternson, S.M.4
-
72
-
-
33745823168
-
2+ in T lymphocytes
-
2+ in T lymphocytes. J. Exp. Med. 203, 1665-1670 (2006).
-
(2006)
J. Exp. Med.
, vol.203
, pp. 1665-1670
-
-
Tamás, P.1
-
74
-
-
41649113801
-
Thyroid hormone activates adenosine 5?-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-β
-
Yamauchi, M. et al. Thyroid hormone activates adenosine 5?-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-β. Mol. Endocrinol. 22, 893-903 (2008).
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 893-903
-
-
Yamauchi, M.1
-
75
-
-
84943753597
-
Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling
-
Sinha, R. A. et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11, 1341-1357 (2015).
-
(2015)
Autophagy
, vol.11
, pp. 1341-1357
-
-
Sinha, R.A.1
-
77
-
-
80052317552
-
Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels
-
Mungai, P. T. et al. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol. Cell. Biol. 31, 3531-3545 (2011).
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 3531-3545
-
-
Mungai, P.T.1
-
78
-
-
84990029607
-
Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α axis
-
Sallé-Lefort, S. et al. Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α axis. Int. J. Oncol. 49, 1731-1736 (2016).
-
(2016)
Int. J. Oncol.
, vol.49
, pp. 1731-1736
-
-
Sallé-Lefort, S.1
-
79
-
-
84978963527
-
Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation
-
Sundararaman, A., Amirtham, U. & Rangarajan, A. Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. J. Biol. Chem. 291, 14410-14429 (2016).
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 14410-14429
-
-
Sundararaman, A.1
Amirtham, U.2
Rangarajan, A.3
-
80
-
-
76549089547
-
2+ and AMP
-
2+ and AMP. Biochem. J. 426, 109-118 (2010).
-
(2010)
Biochem. J.
, vol.426
, pp. 109-118
-
-
Fogarty, S.1
-
81
-
-
33744514139
-
Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
-
Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403-416 (2006).
-
(2006)
Cell Metab.
, vol.3
, pp. 403-416
-
-
Cool, B.1
-
82
-
-
84890963021
-
Structural basis of AMPK regulation by small molecule activators
-
Xiao, B. et al. Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 4, 3017 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 3017
-
-
Xiao, B.1
-
83
-
-
85018985422
-
Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice
-
Cokorinos, E. C. et al. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147-1159.e10 (2017).
-
(2017)
Cell Metab.
, vol.25
, pp. 1147-1147e10
-
-
Cokorinos, E.C.1
-
84
-
-
85024504894
-
Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy
-
Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357, 507-511 (2017).
-
(2017)
Science
, vol.357
, pp. 507-511
-
-
Myers, R.W.1
-
85
-
-
84991487924
-
Treatment of nonalcoholic fatty liver disease: Role of AMPK
-
Smith, B. K. et al. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311, E730-E740 (2016).
-
(2016)
Am. J. Physiol. Endocrinol. Metab.
, vol.311
, pp. E730-E740
-
-
Smith, B.K.1
-
86
-
-
85016311226
-
Liver-specific activation of AMPK prevents steatosis on a high-fructose diet
-
Woods, A. et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. 18, 3043-3051 (2017).
-
(2017)
Cell Rep.
, vol.18
, pp. 3043-3051
-
-
Woods, A.1
-
87
-
-
84858311038
-
AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase
-
Bultot, L. et al. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem. J. 443, 193-203 (2012).
-
(2012)
Biochem. J.
, vol.443
, pp. 193-203
-
-
Bultot, L.1
-
88
-
-
60849124518
-
AMP-activated protein kinase phosphorylates glutamine: Fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity
-
Eguchi, S. et al. AMP-activated protein kinase phosphorylates glutamine: fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity. Genes Cells 14, 179-189 (2009).
-
(2009)
Genes Cells
, vol.14
, pp. 179-189
-
-
Eguchi, S.1
-
89
-
-
85016157569
-
GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis
-
Zibrova, D. et al. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem. J. 474, 983-1001 (2017).
-
(2017)
Biochem. J.
, vol.474
, pp. 983-1001
-
-
Zibrova, D.1
-
90
-
-
0037040185
-
Mechanism for fatty acid 'sparing' effect on glucose-induced transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase
-
Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T. & Uyeda, K. Mechanism for fatty acid 'sparing' effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem. 277, 3829-3835 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 3829-3835
-
-
Kawaguchi, T.1
Osatomi, K.2
Yamashita, H.3
Kabashima, T.4
Uyeda, K.5
-
91
-
-
0042847434
-
AMP-activated protein kinase regulates HNF4α transcriptional activity by inhibiting dimer formation and decreasing protein stability
-
Hong, Y. H., Varanasi, U. S., Yang, W. & Leff, T. AMP-activated protein kinase regulates HNF4α transcriptional activity by inhibiting dimer formation and decreasing protein stability. J. Biol. Chem. 278, 27495-27501 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 27495-27501
-
-
Hong, Y.H.1
Varanasi, U.S.2
Yang, W.3
Leff, T.4
-
92
-
-
84878271546
-
The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation
-
Leprivier, G. et al. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153, 1064-1079 (2013).
-
(2013)
Cell
, vol.153
, pp. 1064-1079
-
-
Leprivier, G.1
-
93
-
-
84925491509
-
MTORC1-mediated translational elongation limits intestinal tumour initiation and growth
-
Faller, W. J. et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517, 497-500 (2015).
-
(2015)
Nature
, vol.517
, pp. 497-500
-
-
Faller, W.J.1
-
94
-
-
84947038316
-
AMP-activated protein kinase directly phosphorylates and destabilizes Hedgehog pathway transcription factor GLI1 in medulloblastoma
-
Li, Y.-H. et al. AMP-activated protein kinase directly phosphorylates and destabilizes Hedgehog pathway transcription factor GLI1 in medulloblastoma. Cell Rep. 12, 599-609 (2015).
-
(2015)
Cell Rep.
, vol.12
, pp. 599-609
-
-
Li, Y.-H.1
-
95
-
-
84925970129
-
Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway
-
Mo, J.-S. et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500-510 (2015).
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 500-510
-
-
Mo, J.-S.1
-
96
-
-
84919595168
-
Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein
-
DeRan, M. et al. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 9, 495-503 (2014).
-
(2014)
Cell Rep.
, vol.9
, pp. 495-503
-
-
DeRan, M.1
-
97
-
-
84925941268
-
AMPK modulates Hippo pathway activity to regulate energy homeostasis
-
Wang, W. et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490-499 (2015).
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 490-499
-
-
Wang, W.1
-
98
-
-
84994908860
-
Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling
-
Rutherford, C. et al. Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci. Signal. 9, ra109 (2016).
-
(2016)
Sci. Signal.
, vol.9
, pp. ra109
-
-
Rutherford, C.1
-
99
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283-293 (2005).
-
(2005)
Mol. Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
-
100
-
-
84891382131
-
AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity
-
He, G. et al. AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol. Cell. Biol. 34, 148-157 (2014).
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 148-157
-
-
He, G.1
-
101
-
-
44049087531
-
Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation
-
Chavez, J. A., Roach, W. G., Keller, S. R., Lane, W. S. & Lienhard, G. E. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J. Biol. Chem. 283, 9187-9195 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 9187-9195
-
-
Chavez, J.A.1
Roach, W.G.2
Keller, S.R.3
Lane, W.S.4
Lienhard, G.E.5
-
102
-
-
77949673390
-
Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake
-
Kim, J. H. et al. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake. PLoS ONE 5, e9600 (2010).
-
(2010)
PLoS ONE
, vol.5
, pp. e9600
-
-
Kim, J.H.1
-
103
-
-
0017875758
-
Carnitine palmitoyltransferase I. the site of inhibition of hepatic fatty acid oxidation by malonyl-CoA
-
McGarry, J. D., Leatherman, G. F. & Foster, D. W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J. Biol. Chem. 253, 4128-4136 (1978).
-
(1978)
J. Biol. Chem.
, vol.253
, pp. 4128-4136
-
-
McGarry, J.D.1
Leatherman, G.F.2
Foster, D.W.3
-
104
-
-
50949087166
-
Malonyl-CoA, a key signaling molecule in mammalian cells
-
Saggerson, D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 28, 253-272 (2008).
-
(2008)
Annu. Rev. Nutr.
, vol.28
, pp. 253-272
-
-
Saggerson, D.1
-
105
-
-
84889887123
-
Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
-
Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649-1654 (2013).
-
(2013)
Nat. Med.
, vol.19
, pp. 1649-1654
-
-
Fullerton, M.D.1
-
106
-
-
84960171872
-
Mitonuclear communication in homeostasis and stress
-
Quiros, P. M., Mottis, A. & Auwerx, J. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17, 213-226 (2016).
-
(2016)
Nat. Rev. Mol. Cell Biol.
, vol.17
, pp. 213-226
-
-
Quiros, P.M.1
Mottis, A.2
Auwerx, J.3
-
107
-
-
33745196628
-
Cyclophorase system. XXIII. Correlation of cyclophorase activity and mitochondrial density in striated muscle
-
Paul, M. H. & Sperling, E. Cyclophorase system. XXIII. Correlation of cyclophorase activity and mitochondrial density in striated muscle. Proc. Soc. Exp. Biol. Med. 79, 352-354 (1952).
-
(1952)
Proc. Soc. Exp. Biol. Med.
, vol.79
, pp. 352-354
-
-
Paul, M.H.1
Sperling, E.2
-
108
-
-
79951977334
-
Regulation of mitochondrial biogenesis
-
Jornayvaz, F. R. & Shulman, G. I. Regulation of mitochondrial biogenesis. Essays Biochem. 47, 69-84 (2010).
-
(2010)
Essays Biochem.
, vol.47
, pp. 69-84
-
-
Jornayvaz, F.R.1
Shulman, G.I.2
-
109
-
-
0035665594
-
Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis
-
Bergeron, R. et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 281, E1340-E1346 (2001).
-
(2001)
Am. J. Physiol. Endocrinol. Metab.
, vol.281
, pp. E1340-E1346
-
-
Bergeron, R.1
-
110
-
-
48449094498
-
AMPK and PPARdelta agonists are exercise mimetics
-
Narkar, V. A. et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405-415 (2008).
-
(2008)
Cell
, vol.134
, pp. 405-415
-
-
Narkar, V.A.1
-
111
-
-
58149099037
-
Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle
-
Garcia-Roves, P. M., Osler, M. E., Holmström, M. H. & Zierath, J. R. Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283, 35724-35734 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35724-35734
-
-
Garcia-Roves, P.M.1
Osler, M.E.2
Holmström, M.H.3
Zierath, J.R.4
-
112
-
-
80053163909
-
AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise
-
O'Neill, H. M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl Acad. Sci. USA 108, 16092-16097 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 16092-16097
-
-
O'Neill, H.M.1
-
113
-
-
84885634581
-
Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
-
Tanner, C. B. et al. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am. J. Physiol. Endocrinol. Metab. 305, E1018-E1029 (2013).
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.305
, pp. E1018-E1029
-
-
Tanner, C.B.1
-
114
-
-
84876527763
-
LKB1 regulates lipid oxidation during exercise independently of AMPK
-
Jeppesen, J. et al. LKB1 regulates lipid oxidation during exercise independently of AMPK. Diabetes 62, 1490-1499 (2013).
-
(2013)
Diabetes
, vol.62
, pp. 1490-1499
-
-
Jeppesen, J.1
-
115
-
-
84903701510
-
AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity
-
Lantier, L. et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 28, 3211-3224 (2014).
-
(2014)
FASEB J.
, vol.28
, pp. 3211-3224
-
-
Lantier, L.1
-
116
-
-
84992374677
-
Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function
-
Mottillo, E. P. et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 24, 118-129 (2016).
-
(2016)
Cell Metab.
, vol.24
, pp. 118-129
-
-
Mottillo, E.P.1
-
117
-
-
84055190798
-
Hematopoietic AMPK p1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity
-
Galic, S. et al. Hematopoietic AMPK p1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 121, 4903-4915 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4903-4915
-
-
Galic, S.1
-
118
-
-
84896826866
-
5-Aminoimidazole-4-carboxamide-1-p-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo
-
Hasenour, C. M. et al. 5-Aminoimidazole-4-carboxamide-1-p-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J. Biol. Chem. 289, 5950-5959 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 5950-5959
-
-
Hasenour, C.M.1
-
119
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
120
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124 (1999).
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
-
121
-
-
79957944105
-
Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks
-
Eichner, L. J. & Giguère, V. Estrogen related receptors (ERRs): a new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion 11, 544-552 (2011).
-
(2011)
Mitochondrion
, vol.11
, pp. 544-552
-
-
Eichner, L.J.1
Giguère, V.2
-
122
-
-
0037102256
-
Transcriptional co-activator PGC-1 a drives the formation of slow-twitch muscle fibres
-
Lin, J. et al. Transcriptional co-activator PGC-1 a drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
-
123
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1 a and SIRT1
-
Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1 a and SIRT1. Nature 434, 113-118 (2005).
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
124
-
-
22344440666
-
Activation of nuclear receptor coactivator PGC-1 a by arginine methylation
-
Teyssier, C, Ma, H., Emter, R., Kralli, A. & Stallcup, M. R. Activation of nuclear receptor coactivator PGC-1 a by arginine methylation. Genes Dev 19, 1466-1473 (2005).
-
(2005)
Genes Dev
, vol.19
, pp. 1466-1473
-
-
Teyssier, C.1
Ma, H.2
Emter, R.3
Kralli, A.4
Stallcup, M.R.5
-
125
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1 a transcription coactivator
-
Li, X., Monks, B., Ge, Q. & Birnbaum, M. J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1 a transcription coactivator. Nature 447, 1012-1016 (2007).
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
126
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARycoactivator-1
-
Puigserver, P. et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARycoactivator-1. Mol. Cell 8, 971-982 (2001).
-
(2001)
Mol. Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
-
127
-
-
84940002527
-
Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo
-
Wu, Y. et al. Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat. Med. 21, 373-382 (2015).
-
(2015)
Nat. Med.
, vol.21
, pp. 373-382
-
-
Wu, Y.1
-
128
-
-
0037452677
-
Regulation of peroxisome proliferator-activated receptor y coactivator 1 a (PGC-1 a) and mitochondrial function by MEF2 and HDAC5
-
Czubryt, M. P., McAnally, J., Fishman, G. I. & Olson, E. N. Regulation of peroxisome proliferator-activated receptor y coactivator 1 a (PGC-1 a) and mitochondrial function by MEF2 and HDAC5. Proc. Natl Acad. Sci. USA 100, 1711-1716 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 1711-1716
-
-
Czubryt, M.P.1
McAnally, J.2
Fishman, G.I.3
Olson, E.N.4
-
129
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060 (2009).
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
-
130
-
-
84872667668
-
AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity
-
O'Neill, H. M., Holloway, G. P. & Steinberg, G. R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol. Cell. Endocrinol. 366, 135-151 (2013).
-
(2013)
Mol. Cell. Endocrinol.
, vol.366
, pp. 135-151
-
-
O'Neill, H.M.1
Holloway, G.P.2
Steinberg, G.R.3
-
131
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658 (2013).
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
-
132
-
-
84944520909
-
AMPK promotes aberrant PGC1 p expression to support human colon tumor cell survival
-
Fisher, K. W. et al. AMPK promotes aberrant PGC1 p expression to support human colon tumor cell survival. Mol. Cell. Biol. 35, 3866-3879 (2015).
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 3866-3879
-
-
Fisher, K.W.1
-
133
-
-
85006035893
-
The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue
-
Wada, S. et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 30, 2551-2564 (2016).
-
(2016)
Genes Dev.
, vol.30
, pp. 2551-2564
-
-
Wada, S.1
-
134
-
-
84884813468
-
AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy
-
Ljubicic, V. & Jasmin, B. J. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol. Med. 19, 614-624 (2013).
-
(2013)
Trends Mol. Med.
, vol.19
, pp. 614-624
-
-
Ljubicic, V.1
Jasmin, B.J.2
-
135
-
-
85014370303
-
Sustained AMPK activation improves muscle function in a mitochondrial myopathy mouse model by promoting muscle fiber regeneration
-
Peralta, S. et al. Sustained AMPK activation improves muscle function in a mitochondrial myopathy mouse model by promoting muscle fiber regeneration. Hum. Mol. Genet. 25, 3178-3191 (2016).
-
(2016)
Hum. Mol. Genet.
, vol.25
, pp. 3178-3191
-
-
Peralta, S.1
-
136
-
-
84940439443
-
The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice
-
Marcinko, K. et al. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Mol. Metab. 4, 643-651 (2015).
-
(2015)
Mol. Metab.
, vol.4
, pp. 643-651
-
-
Marcinko, K.1
-
137
-
-
84930040691
-
Expanding roles for AMPK in skeletal muscle plasticity
-
Mounier, R., Théret, M., Lantier, L., Foretz, M. & Viollet, B. Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol. Metab. 26, 275-286 (2015).
-
(2015)
Trends Endocrinol. Metab.
, vol.26
, pp. 275-286
-
-
Mounier, R.1
Théret, M.2
Lantier, L.3
Foretz, M.4
Viollet, B.5
-
138
-
-
84930589100
-
AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging
-
Bujak, A. L. et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab. 21, 883-890 (2015).
-
(2015)
Cell Metab.
, vol.21
, pp. 883-890
-
-
Bujak, A.L.1
-
139
-
-
84959516439
-
Metabolic regulation of mitochondrial dynamics
-
Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379-387 (2016).
-
(2016)
J. Cell Biol.
, vol.212
, pp. 379-387
-
-
Mishra, P.1
Chan, D.C.2
-
140
-
-
67049089786
-
SLP-2 is required for stress-induced mitochondrial hyperfusion
-
Tondera, D. et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589-1600 (2009).
-
(2009)
EMBO J.
, vol.28
, pp. 1589-1600
-
-
Tondera, D.1
-
141
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589-598 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
142
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190-10195 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
143
-
-
84925324049
-
Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678-692 (2015).
-
(2015)
Dev. Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
144
-
-
84938660246
-
How mitochondrial dynamism orchestrates mitophagy
-
Shirihai, O. S., Song, M. & Dorn, G. W. How mitochondrial dynamism orchestrates mitophagy. Circ. Res. 116, 1835-1849 (2015).
-
(2015)
Circ. Res.
, vol.116
, pp. 1835-1849
-
-
Shirihai, O.S.1
Song, M.2
Dorn, G.W.3
-
145
-
-
84869030015
-
Fusion and fission: Interlinked processes critical for mitochondrial health
-
Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265-287 (2012).
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 265-287
-
-
Chan, D.C.1
-
146
-
-
84958850926
-
Mitochondrial dynamics and metabolic regulation
-
Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105-117 (2016).
-
(2016)
Trends Endocrinol. Metab.
, vol.27
, pp. 105-117
-
-
Wai, T.1
Langer, T.2
-
147
-
-
84897538678
-
Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
-
Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19, 630-641 (2014).
-
(2014)
Cell Metab.
, vol.19
, pp. 630-641
-
-
Mishra, P.1
Carelli, V.2
Manfredi, G.3
Chan, D.C.4
-
148
-
-
78650167618
-
Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
-
Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141-1158 (2010).
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1141-1158
-
-
Otera, H.1
-
149
-
-
84874639591
-
Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
-
Losón, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659-667 (2013).
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 659-667
-
-
Losón, O.C.1
Song, Z.2
Chen, H.3
Chan, D.C.4
-
150
-
-
0035166814
-
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
-
Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256 (2001).
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2245-2256
-
-
Smirnova, E.1
Griparic, L.2
Shurland, D.L.3
Van Der Bliek, A.M.4
-
151
-
-
84958242051
-
Cell biology: Form follows function for mitochondria
-
Wang, C. & Youle, R. Cell biology: form follows function for mitochondria. Nature 530, 288-289 (2016).
-
(2016)
Nature
, vol.530
, pp. 288-289
-
-
Wang, C.1
Youle, R.2
-
152
-
-
0034652297
-
The subcellular localization of acetyl-CoA carboxylase 2
-
Abu-Elheiga, L. et al. The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl Acad. Sci. USA 97, 1444-1449 (2000).
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 1444-1449
-
-
Abu-Elheiga, L.1
-
153
-
-
84904764021
-
AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice
-
O'Neill, H. M. et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57, 1693-1702 (2014).
-
(2014)
Diabetologia
, vol.57
, pp. 1693-1702
-
-
O'Neill, H.M.1
-
154
-
-
85006136251
-
Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise
-
O'Neill, H. M. et al. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiol. Rep. 3, e12444 (2015).
-
(2015)
Physiol. Rep.
, vol.3
, pp. e12444
-
-
O'Neill, H.M.1
-
155
-
-
84984866209
-
AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion
-
Cunniff, B., McKenzie, A. J., Heintz, N. H. & Howe, A. K. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol. Biol. Cell 27, 2662-2674 (2016).
-
(2016)
Mol. Biol. Cell
, vol.27
, pp. 2662-2674
-
-
Cunniff, B.1
McKenzie, A.J.2
Heintz, N.H.3
Howe, A.K.4
-
156
-
-
84973633815
-
Mammalian autophagy: How does it work?
-
Bento, C. F. et al. Mammalian autophagy: how does it work? Annu. Rev. Biochem. 85, 685-713 (2016).
-
(2016)
Annu. Rev. Biochem.
, vol.85
, pp. 685-713
-
-
Bento, C.F.1
-
157
-
-
34548482499
-
SiRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
-
Chan, E. Y. W., Kir, S. & Tooze, S. A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282, 25464-25474 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 25464-25474
-
-
Chan, E.Y.W.1
Kir, S.2
Tooze, S.A.3
-
158
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell, R. C., Yuan, H.-X. & Guan, K.-L. Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57 (2014).
-
(2014)
Cell Res.
, vol.24
, pp. 42-57
-
-
Russell, R.C.1
Yuan, H.-X.2
Guan, K.-L.3
-
159
-
-
84962675891
-
The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14
-
Park, J.-M. et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547-564 (2016).
-
(2016)
Autophagy
, vol.12
, pp. 547-564
-
-
Park, J.-M.1
-
160
-
-
84959008003
-
Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy
-
Puente, C., Hendrickson, R. C. & Jiang, X. Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy. J. Biol. Chem. 291, 6026-6035 (2016).
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 6026-6035
-
-
Puente, C.1
Hendrickson, R.C.2
Jiang, X.3
-
161
-
-
84937523899
-
Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
-
Egan, D. F. et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285-297 (2015).
-
(2015)
Mol. Cell
, vol.59
, pp. 285-297
-
-
Egan, D.F.1
-
162
-
-
80051729441
-
Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy
-
Joo, J. H. et al. Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy. Mol. Cell 43, 572-585 (2011).
-
(2011)
Mol. Cell
, vol.43
, pp. 572-585
-
-
Joo, J.H.1
-
163
-
-
85003955407
-
Regulation of mATG9 trafficking by Src-and ULK1-mediated phosphorylation in basal and starvation-induced autophagy
-
Zhou, C. et al. Regulation of mATG9 trafficking by Src-and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res. 27, 184-201 (2017).
-
(2017)
Cell Res.
, vol.27
, pp. 184-201
-
-
Zhou, C.1
-
164
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750 (2013).
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
-
165
-
-
84969135882
-
The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis
-
Joo, J. H. et al. The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Mol. Cell 62, 491-506 (2016).
-
(2016)
Mol. Cell
, vol.62
, pp. 491-506
-
-
Joo, J.H.1
-
166
-
-
85015051409
-
Canonical and noncanonical functions of ULK/Atg1
-
Wang, B. & Kundu, M. Canonical and noncanonical functions of ULK/Atg1. Curr. Opin. Cell Biol. 45, 47-54 (2017).
-
(2017)
Curr. Opin. Cell Biol.
, vol.45
, pp. 47-54
-
-
Wang, B.1
Kundu, M.2
-
167
-
-
0034898851
-
Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p
-
Wang, Z., Wilson, W. A., Fujino, M. A. & Roach, P. J. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21, 5742-5752 (2001).
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 5742-5752
-
-
Wang, Z.1
Wilson, W.A.2
Fujino, M.A.3
Roach, P.J.4
-
168
-
-
33845924783
-
AMP-activated protein kinase and the regulation of autophagic proteolysis
-
Meley, D. et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870-34879 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 34870-34879
-
-
Meley, D.1
-
169
-
-
33846189759
-
Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
-
Høyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 25, 193-205 (2007).
-
(2007)
Mol. Cell
, vol.25
, pp. 193-205
-
-
Høyer-Hansen, M.1
-
170
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J., Kundu, M., Viollet, B. & Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.-L.4
-
171
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura, E., Kishi-Itakura, C., Koyama-Honda, I. & Mizushima, N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125, 1488-1499 (2012).
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
172
-
-
84892875987
-
ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression
-
Zhu, Y. et al. ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression. Protein Cell 4, 711-721 (2013).
-
(2013)
Protein Cell
, vol.4
, pp. 711-721
-
-
Zhu, Y.1
-
173
-
-
84902007678
-
Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
-
Honda, S. et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun. 5, 4004 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 4004
-
-
Honda, S.1
-
174
-
-
84899789746
-
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
-
Wu, W. et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15, 566-575 (2014).
-
(2014)
EMBO Rep.
, vol.15
, pp. 566-575
-
-
Wu, W.1
-
175
-
-
84907171686
-
PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation
-
Zhu, H. et al. PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy 10, 1522-1534 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 1522-1534
-
-
Zhu, H.1
-
176
-
-
84941774038
-
Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy
-
Li, J. et al. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 11, 1216-1229 (2015).
-
(2015)
Autophagy
, vol.11
, pp. 1216-1229
-
-
Li, J.1
-
177
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015).
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
-
178
-
-
84899723367
-
The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy
-
Yang, C.-S. et al. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 10, 785-802 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 785-802
-
-
Yang, C.-S.1
-
179
-
-
84905472344
-
TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
-
Inokuchi-Shimizu, S. et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J. Clin. Invest. 124, 3566-3578 (2014).
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3566-3578
-
-
Inokuchi-Shimizu, S.1
-
180
-
-
84918805701
-
Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9
-
Weerasekara, V. K. et al. Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Mol. Cell. Biol. 34, 4379-4388 (2014).
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 4379-4388
-
-
Weerasekara, V.K.1
-
181
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
-
Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303 (2013).
-
(2013)
Cell
, vol.152
, pp. 290-303
-
-
Kim, J.1
-
182
-
-
84978471809
-
AMPK regulates autophagy by phosphorylating BECN1 at threonine 388
-
Zhang, D. et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12, 1447-1459 (2016).
-
(2016)
Autophagy
, vol.12
, pp. 1447-1459
-
-
Zhang, D.1
-
183
-
-
84947333774
-
RACK1 promotes autophagy by enhancing the Atg14L-Beclin 1-Vps34-Vps15 complex formation upon phosphorylation by AMPK
-
Zhao, Y. et al. RACK1 promotes autophagy by enhancing the Atg14L-Beclin 1-Vps34-Vps15 complex formation upon phosphorylation by AMPK. Cell Rep. 13, 1407-1417 (2015).
-
(2015)
Cell Rep.
, vol.13
, pp. 1407-1417
-
-
Zhao, Y.1
-
184
-
-
84959372404
-
PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity
-
Xu, D.-Q. et al. PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. EMBO J. 35, 496-514 (2016).
-
(2016)
EMBO J.
, vol.35
, pp. 496-514
-
-
Xu, D.-Q.1
-
185
-
-
84991826660
-
Deciphering the molecular signals of PINK1/Parkin mitophagy
-
Nguyen, T. N., Padman, B. S. & Lazarou, M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 26, 733-744 (2016).
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 733-744
-
-
Nguyen, T.N.1
Padman, B.S.2
Lazarou, M.3
-
186
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
-
187
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166 (2014).
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
-
188
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143-153 (2014).
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
-
189
-
-
84934443098
-
Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy
-
Tian, W. et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 589, 1847-1854 (2015).
-
(2015)
FEBS Lett.
, vol.589
, pp. 1847-1854
-
-
Tian, W.1
-
190
-
-
84928587895
-
Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators
-
Miyamoto, T. et al. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Cell Rep. 11, 657-670 (2015).
-
(2015)
Cell Rep.
, vol.11
, pp. 657-670
-
-
Miyamoto, T.1
-
191
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446 (2008).
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
-
192
-
-
84969244054
-
PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy
-
Pryde, K. R., Smith, H. L., Chau, K.-Y. & Schapira, A. H. V. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J. Cell Biol. 2213, 163-171 (2016).
-
(2016)
J. Cell Biol.
, vol.2213
, pp. 163-171
-
-
Pryde, K.R.1
Smith, H.L.2
Chau, K.-Y.3
Schapira, A.H.V.4
-
193
-
-
34548700796
-
Unveiling the roles of autophagy in innate and adaptive immunity
-
Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 7, 767-777 (2007).
-
(2007)
Nat. Rev. Immunol.
, vol.7
, pp. 767-777
-
-
Levine, B.1
Deretic, V.2
-
194
-
-
84978492693
-
PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation
-
Xie, N. et al. PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation. Autophagy 12, 1507-1520 (2016).
-
(2016)
Autophagy
, vol.12
, pp. 1507-1520
-
-
Xie, N.1
-
195
-
-
84962616456
-
Dissection and integration of the autophagy signaling network initiated by bluetongue virus infection: Crucial candidates ERK1/2
-
Lv, S., Xu, Q.-Y., Sun, E.-C., Zhang, J.-K. & Wu, D.-L. Dissection and integration of the autophagy signaling network initiated by bluetongue virus infection: crucial candidates ERK1/2, Akt and AMPK. Sci. Rep. 6, 23130 (2016).
-
(2016)
Akt and AMPK. Sci. Rep.
, vol.6
, pp. 23130
-
-
Lv, S.1
Xu, Q.-Y.2
Sun, E.-C.3
Zhang, J.-K.4
Wu, D.-L.5
-
196
-
-
84943145461
-
Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection
-
Fan, X.-Y. et al. Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci. Rep. 5, 14728 (2015).
-
(2015)
Sci. Rep.
, vol.5
, pp. 14728
-
-
Fan, X.-Y.1
-
197
-
-
84887269499
-
Feeding uninvited guests: MTOR and AMPK set the table for intracellular pathogens
-
Brunton, J., Steele, S., Ziehr, B., Moorman, N. & Kawula, T. Feeding uninvited guests: mTOR and AMPK set the table for intracellular pathogens. PLoS Pathog. 9, e1003552 (2013).
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003552
-
-
Brunton, J.1
Steele, S.2
Ziehr, B.3
Moorman, N.4
Kawula, T.5
-
198
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472-483 (2007).
-
(2007)
Cell Metab.
, vol.6
, pp. 472-483
-
-
Zhao, J.1
-
199
-
-
84927175720
-
Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs
-
Bowman, C. J., Ayer, D. E. & Dynlacht, B. D. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat. Cell Biol. 16, 1202-1214 (2014).
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1202-1214
-
-
Bowman, C.J.1
Ayer, D.E.2
Dynlacht, B.D.3
-
200
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473-477 (2009).
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
201
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011).
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
202
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
203
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).
-
(2012)
Sci. Signal.
, vol.5
, pp. ra42
-
-
Roczniak-Ferguson, A.1
-
204
-
-
85019938699
-
Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy
-
Li, X. et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell 66, 684-697.e9 (2017).
-
(2017)
Mol. Cell
, vol.66
, pp. 684-684e9
-
-
Li, X.1
-
205
-
-
85041098700
-
Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory
-
Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 17, 1217-1386 (2017).
-
(2017)
Nature
, vol.17
, pp. 1217-1386
-
-
Mews, P.1
-
206
-
-
84899627973
-
Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells
-
Friis, R. M. N. et al. Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep. 7, 565-574 (2014).
-
(2014)
Cell Rep.
, vol.7
, pp. 565-574
-
-
Friis, R.M.N.1
-
207
-
-
10644282295
-
The AMP-activated protein kinase AAK-2 links energy levels and insulinlike signals to lifespan in C. Elegans
-
Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulinlike signals to lifespan in C. elegans. Genes Dev. 18, 3004-3009 (2004).
-
(2004)
Genes Dev.
, vol.18
, pp. 3004-3009
-
-
Apfeld, J.1
O'Connor, G.2
McDonagh, T.3
DiStefano, P.S.4
Curtis, R.5
-
208
-
-
33646926969
-
Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways
-
Curtis, R., O'Connor, G. & DiStefano, P. S. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5, 119-126 (2006).
-
(2006)
Aging Cell
, vol.5
, pp. 119-126
-
-
Curtis, R.1
O'Connor, G.2
DiStefano, P.S.3
-
209
-
-
84958212566
-
AMP-activated protein kinase regulates oxidative metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 transcriptional regulators
-
Moreno-Arriola, E., El Hafidi, M., Ortega-Cuéllar, D. & Carvajal, K. AMP-activated protein kinase regulates oxidative metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 transcriptional regulators. PLoS ONE 11, e0148089 (2016).
-
(2016)
PLoS ONE
, vol.11
, pp. e0148089
-
-
Moreno-Arriola, E.1
El Hafidi, M.2
Ortega-Cuéllar, D.3
Carvajal, K.4
-
210
-
-
28444496362
-
Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila
-
Mandal, S., Guptan, P., Owusu-Ansah, E. & Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9, 843-854 (2005).
-
(2005)
Dev. Cell
, vol.9
, pp. 843-854
-
-
Mandal, S.1
Guptan, P.2
Owusu-Ansah, E.3
Banerjee, U.4
-
211
-
-
84974815636
-
Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
-
Moore, A. S. & Holzbaur, E. L. F. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349-E3358 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E3349-E3358
-
-
Moore, A.S.1
Holzbaur, E.L.F.2
-
212
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039-4044 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
-
213
-
-
84951930787
-
The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
-
Heo, J.-M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20 (2015).
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.-M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
214
-
-
84956657033
-
Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential
-
Luchsinger, L. L., de Almeida, M. J., Corrigan, D. J., Mumau, M. & Snoeck, H.-W. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529, 528-531 (2016).
-
(2016)
Nature
, vol.529
, pp. 528-531
-
-
Luchsinger, L.L.1
De Almeida, M.J.2
Corrigan, D.J.3
Mumau, M.4
Snoeck, H.-W.5
-
215
-
-
85015223506
-
Autophagy maintains the metabolism and function of young and old stem cells
-
Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205-210 (2017).
-
(2017)
Nature
, vol.543
, pp. 205-210
-
-
Ho, T.T.1
-
216
-
-
84952360959
-
Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics
-
Forni, M. F., Peloggia, J., Trudeau, K., Shirihai, O. & Kowaltowski, A. J. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells 34, 743-755 (2016).
-
(2016)
Stem Cells
, vol.34
, pp. 743-755
-
-
Forni, M.F.1
Peloggia, J.2
Trudeau, K.3
Shirihai, O.4
Kowaltowski, A.J.5
-
217
-
-
84928537166
-
Mitochondrial DNA stress primes the antiviral innate immune response
-
West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553-557 (2015).
-
(2015)
Nature
, vol.520
, pp. 553-557
-
-
West, A.P.1
-
218
-
-
84976478216
-
Mitochondrial dynamics controls T cell fate through metabolic programming
-
Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63-76 (2016).
-
(2016)
Cell
, vol.166
, pp. 63-76
-
-
Buck, M.D.1
-
219
-
-
84975744759
-
Current understanding of metformin effect on the control of hyperglycemia in diabetes
-
An, H. & He, L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J. Endocrinol. 228, R97-R106 (2016).
-
(2016)
J. Endocrinol.
, vol.228
, pp. R97-R106
-
-
An, H.1
He, L.2
-
220
-
-
84903273250
-
AMPK activation: A therapeutic target for type 2 diabetes?
-
Coughlan, K. A., Valentine, R. J., Ruderman, N. B. & Saha, A. K. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab. Syndr. Obes. 7, 241-253 (2014).
-
(2014)
Diabetes Metab. Syndr. Obes.
, vol.7
, pp. 241-253
-
-
Coughlan, K.A.1
Valentine, R.J.2
Ruderman, N.B.3
Saha, A.K.4
-
221
-
-
85021851489
-
AMPK as a pro-longevity target
-
Burkewitz, K., Weir, H. J. M. & Mair, W. B. AMPK as a pro-longevity target. EXS 107, 227-256 (2016).
-
(2016)
EXS
, vol.107
, pp. 227-256
-
-
Burkewitz, K.1
Weir, H.J.M.2
Mair, W.B.3
-
222
-
-
84904038165
-
AMPK at the nexus of energetics and aging
-
Burkewitz, K., Zhang, Y. & Mair, W. B. AMPK at the nexus of energetics and aging. Cell Metab. 20, 10-25 (2014).
-
(2014)
Cell Metab.
, vol.20
, pp. 10-25
-
-
Burkewitz, K.1
Zhang, Y.2
Mair, W.B.3
-
223
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174 (2001).
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
-
224
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355-2369 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
-
225
-
-
85009495519
-
Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex
-
Howell, J. J. et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 25, 463-471 (2017).
-
(2017)
Cell Metab.
, vol.25
, pp. 463-471
-
-
Howell, J.J.1
-
226
-
-
84883165443
-
Repositioning metformin for cancer prevention and treatment
-
Quinn, B. J., Kitagawa, H., Memmott, R. M., Gills, J. J. & Dennis, P. A. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol. Metab. 24, 469-480 (2013).
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 469-480
-
-
Quinn, B.J.1
Kitagawa, H.2
Memmott, R.M.3
Gills, J.J.4
Dennis, P.A.5
-
227
-
-
84988411272
-
Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models
-
Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108-1119 (2016).
-
(2016)
Nat. Med.
, vol.22
, pp. 1108-1119
-
-
Svensson, R.U.1
-
228
-
-
84873584845
-
LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
-
Shackelford, D. B. et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143-158 (2013).
-
(2013)
Cancer Cell
, vol.23
, pp. 143-158
-
-
Shackelford, D.B.1
-
229
-
-
85011269383
-
A UBE2O-AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy
-
Vila, I. K. et al. A UBE2O-AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy. Cancer Cell 31, 208-224 (2017).
-
(2017)
Cancer Cell
, vol.31
, pp. 208-224
-
-
Vila, I.K.1
-
230
-
-
84922689340
-
Degradation of AMPK by a cancer-specific ubiquitin ligase
-
Pineda, C. T. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-728 (2015).
-
(2015)
Cell
, vol.160
, pp. 715-728
-
-
Pineda, C.T.1
-
231
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17, 113-124 (2013).
-
(2013)
Cell Metab.
, vol.17
, pp. 113-124
-
-
Faubert, B.1
-
232
-
-
84898601973
-
A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis
-
Zadra, G. et al. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med. 6, 519-538 (2014).
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 519-538
-
-
Zadra, G.1
-
233
-
-
80655125020
-
Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator
-
Lee, K.-H. et al. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J. Biol. Chem. 286, 39247-39258 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 39247-39258
-
-
Lee, K.-H.1
-
234
-
-
44449103256
-
Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice
-
Huang, X. et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 412, 211-221 (2008).
-
(2008)
Biochem. J.
, vol.412
, pp. 211-221
-
-
Huang, X.1
-
235
-
-
84947749584
-
AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow
-
Saito, Y., Chapple, R. H., Lin, A., Kitano, A. & Nakada, D. AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell 17, 585-596 (2015).
-
(2015)
Cell Stem Cell
, vol.17
, pp. 585-596
-
-
Saito, Y.1
Chapple, R.H.2
Lin, A.3
Kitano, A.4
Nakada, D.5
-
236
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon, S.-M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661-665 (2012).
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.-M.1
Chandel, N.S.2
Hay, N.3
-
237
-
-
85016160442
-
Metabolic gatekeeper function of B-lymphoid transcription factors
-
Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542, 479-483 (2017).
-
(2017)
Nature
, vol.542
, pp. 479-483
-
-
Chan, L.N.1
-
238
-
-
84963704497
-
AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival
-
Kishton, R. J. et al. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 23, 649-662 (2016).
-
(2016)
Cell Metab.
, vol.23
, pp. 649-662
-
-
Kishton, R.J.1
-
239
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174 (1993).
-
(1993)
FEBS Lett.
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
240
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395-398 (1998).
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
-
241
-
-
84891745088
-
Historical landmarks of autophagy research
-
Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9-23 (2014).
-
(2014)
Cell Res.
, vol.24
, pp. 9-23
-
-
Ohsumi, Y.1
-
242
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
-
243
-
-
84883414890
-
The LIR motif-crucial for selective autophagy
-
Birgisdottir, Å. B., Lamark, T. & Johansen, T. The LIR motif-crucial for selective autophagy. J. Cell Sci. 126, 3237-3247 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 3237-3247
-
-
Birgisdottir, Å.B.1
Lamark, T.2
Johansen, T.3
-
244
-
-
85029481023
-
Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy
-
Laker, R. C. et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat. Commun. 8, 548 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 548
-
-
Laker, R.C.1
|