메뉴 건너뛰기




Volumn 19, Issue 2, 2018, Pages 121-135

AMPK: Guardian of metabolism and mitochondrial homeostasis

Author keywords

[No Author keywords available]

Indexed keywords

HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; PHOSPHOTRANSFERASE; ADENOSINE TRIPHOSPHATASE; PROTEIN SERINE THREONINE KINASE;

EID: 85041140494     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2017.95     Document Type: Review
Times cited : (2514)

References (244)
  • 1
    • 0022534202 scopus 로고
    • A yeast gene that is essential for release from glucose repression encodes a protein kinase
    • Celenza, J. L. & Carlson, M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233, 1175-1180 (1986).
    • (1986) Science , vol.233 , pp. 1175-1180
    • Celenza, J.L.1    Carlson, M.2
  • 2
    • 0026524634 scopus 로고
    • Carbon catabolite repression in yeast
    • Gancedo, J. M. Carbon catabolite repression in yeast. Eur. J. Biochem. 206, 297-313 (1992).
    • (1992) Eur. J. Biochem. , vol.206 , pp. 297-313
    • Gancedo, J.M.1
  • 3
    • 84902259326 scopus 로고    scopus 로고
    • Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases
    • Crozet, P. et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front. Plant Sci. 5, 190 (2014).
    • (2014) Front. Plant Sci. , vol.5 , pp. 190
    • Crozet, P.1
  • 4
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki, K., Zhu, T. & Guan, K.-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.-L.3
  • 5
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226 (2008).
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 6
    • 0023642627 scopus 로고
    • A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis
    • Carling, D., Zammit, V. A. & Hardie, D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217-222 (1987).
    • (1987) FEBS Lett. , vol.223 , pp. 217-222
    • Carling, D.1    Zammit, V.A.2    Hardie, D.G.3
  • 7
    • 0023789884 scopus 로고
    • Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase
    • Munday, M. R., Campbell, D. G., Carling, D. & Hardie, D. G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175, 331-338 (1988).
    • (1988) Eur. J. Biochem. , vol.175 , pp. 331-338
    • Munday, M.R.1    Campbell, D.G.2    Carling, D.3    Hardie, D.G.4
  • 8
    • 33645093212 scopus 로고    scopus 로고
    • Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue
    • Watt, M. J. et al. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290, E500-E508 (2006).
    • (2006) Am. J. Physiol. Endocrinol. Metab. , vol.290 , pp. E500-E508
    • Watt, M.J.1
  • 9
    • 79958047295 scopus 로고    scopus 로고
    • Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype
    • Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739-748 (2011).
    • (2011) Cell Metab. , vol.13 , pp. 739-748
    • Ahmadian, M.1
  • 10
    • 0034687210 scopus 로고    scopus 로고
    • Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia
    • Marsin, A. S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247-1255 (2000).
    • (2000) Curr. Biol. , vol.10 , pp. 1247-1255
    • Marsin, A.S.1
  • 11
    • 23844517036 scopus 로고    scopus 로고
    • Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer
    • Bando, H. et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784-5792 (2005).
    • (2005) Clin. Cancer Res. , vol.11 , pp. 5784-5792
    • Bando, H.1
  • 12
    • 50349099779 scopus 로고    scopus 로고
    • Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic
    • Sakamoto, K. & Holman, G. D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29-E37 (2008).
    • (2008) Am. J. Physiol. Endocrinol. Metab. , vol.295 , pp. E29-E37
    • Sakamoto, K.1    Holman, G.D.2
  • 13
    • 84875813063 scopus 로고    scopus 로고
    • AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1
    • Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167-1175 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 1167-1175
    • Wu, N.1
  • 14
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 15
    • 84954318420 scopus 로고    scopus 로고
    • AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
    • Toyama, E. Q. et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281 (2016).
    • (2016) Science , vol.351 , pp. 275-281
    • Toyama, E.Q.1
  • 16
    • 0037058977 scopus 로고    scopus 로고
    • AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
    • Zong, H. et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl Acad. Sci. USA 99, 15983-15987 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 15983-15987
    • Zong, H.1
  • 17
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
    • Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017-12022 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 12017-12022
    • Jäger, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 18
    • 0035914324 scopus 로고    scopus 로고
    • Regulation of transcription by AMP-activated protein kinase: Phosphorylation of p300 blocks its interaction with nuclear receptors
    • Yang, W. et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 276, 38341-38344 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 38341-38344
    • Yang, W.1
  • 19
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo, S.-H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111 (2005).
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.-H.1
  • 20
    • 34848861463 scopus 로고    scopus 로고
    • The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor
    • Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107-30119 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 30107-30119
    • Greer, E.L.1
  • 21
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437-440 (2009).
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1
  • 22
    • 77956294919 scopus 로고    scopus 로고
    • Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation
    • Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201-1205 (2010).
    • (2010) Science , vol.329 , pp. 1201-1205
    • Bungard, D.1
  • 23
    • 79953755370 scopus 로고    scopus 로고
    • AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
    • Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376-388 (2011).
    • (2011) Cell Metab. , vol.13 , pp. 376-388
    • Li, Y.1
  • 24
    • 79955815135 scopus 로고    scopus 로고
    • Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
    • Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607-621 (2011).
    • (2011) Cell , vol.145 , pp. 607-621
    • Mihaylova, M.M.1
  • 25
    • 84975756856 scopus 로고    scopus 로고
    • AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy
    • Shin, H.-J. R. et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534, 553-557 (2016).
    • (2016) Nature , vol.534 , pp. 553-557
    • Shin, H.-J.R.1
  • 26
    • 84959487667 scopus 로고    scopus 로고
    • AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes
    • Young, N. P. et al. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev. 30, 535-552 (2016).
    • (2016) Genes Dev. , vol.30 , pp. 535-552
    • Young, N.P.1
  • 27
    • 84948412219 scopus 로고    scopus 로고
    • Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates
    • Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922-935 (2015).
    • (2015) Cell Metab. , vol.22 , pp. 922-935
    • Hoffman, N.J.1
  • 28
    • 84925494009 scopus 로고    scopus 로고
    • Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate
    • Ducommun, S. et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell. Signal. 27, 978-988 (2015).
    • (2015) Cell. Signal. , vol.27 , pp. 978-988
    • Ducommun, S.1
  • 29
    • 84948425160 scopus 로고    scopus 로고
    • Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction
    • Schaffer, B. E. et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 22, 907-921 (2015).
    • (2015) Cell Metab. , vol.22 , pp. 907-921
    • Schaffer, B.E.1
  • 30
    • 84958120581 scopus 로고    scopus 로고
    • AMPK: An energy-sensing pathway with multiple inputs and outputs
    • Hardie, D. G., Schaffer, B. E. & Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26, 190-201 (2016).
    • (2016) Trends Cell Biol. , vol.26 , pp. 190-201
    • Hardie, D.G.1    Schaffer, B.E.2    Brunet, A.3
  • 31
    • 85013230596 scopus 로고    scopus 로고
    • AMPK signalling in health and disease
    • Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31-37 (2017).
    • (2017) Curr. Opin. Cell Biol. , vol.45 , pp. 31-37
    • Carling, D.1
  • 32
    • 13344285343 scopus 로고    scopus 로고
    • Mammalian AMP-activated protein kinase subfamily
    • Stapleton, D. et al. Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271, 611-614 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 611-614
    • Stapleton, D.1
  • 33
    • 0032524622 scopus 로고    scopus 로고
    • Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle
    • Thornton, C, Snowden, M. A. & Carling, D. Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J. Biol. Chem. 273, 12443-12450 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 12443-12450
    • Thornton, C.1    Snowden, M.A.2    Carling, D.3
  • 34
    • 0034654362 scopus 로고    scopus 로고
    • Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding
    • Cheung, P. C, Salt, I. P., Davies, S. P., Hardie, D. G. & Carling, D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 346, 659-669 (2000).
    • (2000) Biochem. J. , vol.346 , pp. 659-669
    • Cheung, P.C.1    Salt, I.P.2    Davies, S.P.3    Hardie, D.G.4    Carling, D.5
  • 35
    • 84983252357 scopus 로고    scopus 로고
    • AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours
    • Ross, F. A., MacKintosh, C. & Hardie, D. G. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J. 283, 2987-3001 (2016).
    • (2016) FEBS J. , vol.283 , pp. 2987-3001
    • Ross, F.A.1    MacKintosh, C.2    Hardie, D.G.3
  • 36
    • 0038814313 scopus 로고    scopus 로고
    • A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias
    • Hudson, E. R. et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861-866 (2003).
    • (2003) Curr. Biol. , vol.13 , pp. 861-866
    • Hudson, E.R.1
  • 37
    • 34848840368 scopus 로고    scopus 로고
    • Structural basis for AMP binding to mammalian AMP-activated protein kinase
    • Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496-500 (2007).
    • (2007) Nature , vol.449 , pp. 496-500
    • Xiao, B.1
  • 38
    • 80052385397 scopus 로고    scopus 로고
    • AMP-activated protein kinase: Also regulated by ADP?
    • Hardie, D. G., Carling, D. & Gamblin, S. J. AMP-activated protein kinase: also regulated by ADP? Trends Biochem. Sci. 36, 470-477 (2011).
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 470-477
    • Hardie, D.G.1    Carling, D.2    Gamblin, S.J.3
  • 39
    • 84885168009 scopus 로고    scopus 로고
    • AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
    • Gowans, G. J., Hawley, S. A., Ross, F. A. & Hardie, D. G. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 18, 556-566 (2013).
    • (2013) Cell Metab. , vol.18 , pp. 556-566
    • Gowans, G.J.1    Hawley, S.A.2    Ross, F.A.3    Hardie, D.G.4
  • 40
    • 84955464040 scopus 로고    scopus 로고
    • Differential regulation by AMP and ADP of AMPK complexes containing different y subunit isoforms
    • Ross, F. A., Jensen, T. E. & Hardie, D. G. Differential regulation by AMP and ADP of AMPK complexes containing different y subunit isoforms. Biochem. J. 473, 189-199 (2016).
    • (2016) Biochem. J. , vol.473 , pp. 189-199
    • Ross, F.A.1    Jensen, T.E.2    Hardie, D.G.3
  • 41
    • 0028845251 scopus 로고
    • 2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms
    • 2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270, 27186-27191 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 27186-27191
    • Hawley, S.A.1
  • 42
    • 0345107247 scopus 로고    scopus 로고
    • Complexes between the LKB1 tumor suppressor STRAD oc/p and MO25 ot/p are upstream kinases in the AMP-activated protein kinase cascade
    • Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRAD oc/p and MO25 ot/p are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).
    • (2003) J. Biol. , vol.2 , pp. 28
    • Hawley, S.A.1
  • 43
    • 10744230065 scopus 로고    scopus 로고
    • LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
    • Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008 (2003).
    • (2003) Curr. Biol. , vol.13 , pp. 2004-2008
    • Woods, A.1
  • 44
    • 33845949733 scopus 로고    scopus 로고
    • Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase
    • Suter, M. et al. Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 281, 32207-32216 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 32207-32216
    • Suter, M.1
  • 45
    • 78650606464 scopus 로고    scopus 로고
    • P-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK)
    • Oakhill, J. S. et al. p-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc. Natl Acad. Sci. USA 107, 19237-19241 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 19237-19241
    • Oakhill, J.S.1
  • 46
    • 0029561919 scopus 로고
    • 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Ca and native bovine protein phosphatase-2AC
    • Davies, S. P., Helps, N. R., Cohen, P. T. & Hardie, D. G. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Ca and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421-425 (1995).
    • (1995) FEBS Lett. , vol.377 , pp. 421-425
    • Davies, S.P.1    Helps, N.R.2    Cohen, P.T.3    Hardie, D.G.4
  • 47
    • 33845332346 scopus 로고    scopus 로고
    • Predominant a2/p2/y3 AMPK activation during exercise in human skeletal muscle
    • Birk, J. B. & Wojtaszewski, J. F. P. Predominant a2/p2/y3 AMPK activation during exercise in human skeletal muscle. J. Physiol. 577, 1021-1032 (2006).
    • (2006) J. Physiol. , vol.577 , pp. 1021-1032
    • Birk, J.B.1    Wojtaszewski, J.F.P.2
  • 48
    • 84932109475 scopus 로고    scopus 로고
    • PT-1 selectively activates AMPK-y1 complexes in mouse skeletal muscle, but activates all three ysubunit complexes in cultured human cells by inhibiting the respiratory chain
    • Jensen, T. E. et al. PT-1 selectively activates AMPK-y1 complexes in mouse skeletal muscle, but activates all three ysubunit complexes in cultured human cells by inhibiting the respiratory chain. Biochem. J. 467, 461-472 (2015).
    • (2015) Biochem. J. , vol.467 , pp. 461-472
    • Jensen, T.E.1
  • 49
    • 84975154466 scopus 로고    scopus 로고
    • Probing the enzyme kinetics, allosteric modulation and activation of a 1-and cc2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators
    • Rajamohan, F. et al. Probing the enzyme kinetics, allosteric modulation and activation of a 1-and cc2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem. J. 473, 581-592 (2016).
    • (2016) Biochem. J. , vol.473 , pp. 581-592
    • Rajamohan, F.1
  • 50
    • 0037381848 scopus 로고    scopus 로고
    • 2 in human skeletal muscle
    • 2 in human skeletal muscle. Diabetes 52, 926-928 (2003).
    • (2003) Diabetes , vol.52 , pp. 926-928
    • McGee, S.L.1
  • 51
    • 34250182374 scopus 로고    scopus 로고
    • Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the a2 form of AMP-activated protein kinase
    • Suzuki, A. et al. Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the a2 form of AMP-activated protein kinase. Mol. Cell. Biol. 27, 4317-4327 (2007).
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 4317-4327
    • Suzuki, A.1
  • 53
    • 84939426946 scopus 로고    scopus 로고
    • Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance
    • Liang, J. et al. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat. Commun. 6, 7926 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7926
    • Liang, J.1
  • 54
    • 84885142437 scopus 로고    scopus 로고
    • AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
    • Zhang, Y.-L. et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 18, 546-555 (2013).
    • (2013) Cell Metab. , vol.18 , pp. 546-555
    • Zhang, Y.-L.1
  • 55
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • Zhang, C.-S. et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526-540 (2014).
    • (2014) Cell Metab. , vol.20 , pp. 526-540
    • Zhang, C.-S.1
  • 56
    • 85026854783 scopus 로고    scopus 로고
    • Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK
    • Zhang, C.-S. et al. Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112-116 (2017).
    • (2017) Nature , vol.548 , pp. 112-116
    • Zhang, C.-S.1
  • 57
    • 1542618348 scopus 로고    scopus 로고
    • The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
    • Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329-3335 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 3329-3335
    • Shaw, R.J.1
  • 60
    • 72149093508 scopus 로고    scopus 로고
    • Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction
    • Ikeda, Y. et al. Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J. Biol. Chem. 284, 35839-35849 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 35839-35849
    • Ikeda, Y.1
  • 61
    • 77953808195 scopus 로고    scopus 로고
    • Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function
    • Jessen, N. et al. Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function. Biochim. Biophys. Acta 1802, 593-600 (2010).
    • (2010) Biochim. Biophys. Acta , vol.1802 , pp. 593-600
    • Jessen, N.1
  • 62
    • 84921656896 scopus 로고    scopus 로고
    • Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles
    • Shan, T., Zhang, P., Bi, P. & Kuang, S. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles. J. Cell. Physiol. 230, 1033-1041 (2015).
    • (2015) J. Cell. Physiol. , vol.230 , pp. 1033-1041
    • Shan, T.1    Zhang, P.2    Bi, P.3    Kuang, S.4
  • 63
    • 83455245205 scopus 로고    scopus 로고
    • The tumor suppressor kinase LKB1: Lessons from mouse models
    • Ollila, S. & Mäkelä, T P. The tumor suppressor kinase LKB1: lessons from mouse models. J. Mol. Cell. Biol. 3, 330-340 (2011).
    • (2011) J. Mol. Cell. Biol. , vol.3 , pp. 330-340
    • Ollila, S.1    Mäkelä, T.P.2
  • 64
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646 (2005).
    • (2005) Science , vol.310 , pp. 1642-1646
    • Shaw, R.J.1
  • 65
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
    • Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575 (2009).
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 66
    • 23844471263 scopus 로고    scopus 로고
    • 2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
    • 2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060-29066 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 29060-29066
    • Hurley, R.L.1
  • 67
    • 23044432463 scopus 로고    scopus 로고
    • Calmodulin-dependent protein kinase kinase-p is an alternative upstream kinase for AMP-activated protein kinase
    • Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-p is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9-19 (2005).
    • (2005) Cell Metab. , vol.2 , pp. 9-19
    • Hawley, S.A.1
  • 68
    • 23044437445 scopus 로고    scopus 로고
    • 2+/calmodulin-dependent protein kinase kinase-p acts upstream of AMP-activated protein kinase in mammalian cells
    • 2+/calmodulin-dependent protein kinase kinase-p acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21-33 (2005).
    • (2005) Cell Metab. , vol.2 , pp. 21-33
    • Woods, A.1
  • 70
    • 42649105456 scopus 로고    scopus 로고
    • Hypothalamic CaMKK2 contributes to the regulation of energy balance
    • Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377-388 (2008).
    • (2008) Cell Metab. , vol.7 , pp. 377-388
    • Anderson, K.A.1
  • 71
    • 80052922112 scopus 로고    scopus 로고
    • Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop
    • Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992-1003 (2011).
    • (2011) Cell , vol.146 , pp. 992-1003
    • Yang, Y.1    Atasoy, D.2    Su, H.H.3    Sternson, S.M.4
  • 72
    • 33745823168 scopus 로고    scopus 로고
    • 2+ in T lymphocytes
    • 2+ in T lymphocytes. J. Exp. Med. 203, 1665-1670 (2006).
    • (2006) J. Exp. Med. , vol.203 , pp. 1665-1670
    • Tamás, P.1
  • 74
    • 41649113801 scopus 로고    scopus 로고
    • Thyroid hormone activates adenosine 5?-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-β
    • Yamauchi, M. et al. Thyroid hormone activates adenosine 5?-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-β. Mol. Endocrinol. 22, 893-903 (2008).
    • (2008) Mol. Endocrinol. , vol.22 , pp. 893-903
    • Yamauchi, M.1
  • 75
    • 84943753597 scopus 로고    scopus 로고
    • Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling
    • Sinha, R. A. et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11, 1341-1357 (2015).
    • (2015) Autophagy , vol.11 , pp. 1341-1357
    • Sinha, R.A.1
  • 77
    • 80052317552 scopus 로고    scopus 로고
    • Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels
    • Mungai, P. T. et al. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol. Cell. Biol. 31, 3531-3545 (2011).
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 3531-3545
    • Mungai, P.T.1
  • 78
    • 84990029607 scopus 로고    scopus 로고
    • Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α axis
    • Sallé-Lefort, S. et al. Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α axis. Int. J. Oncol. 49, 1731-1736 (2016).
    • (2016) Int. J. Oncol. , vol.49 , pp. 1731-1736
    • Sallé-Lefort, S.1
  • 79
    • 84978963527 scopus 로고    scopus 로고
    • Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation
    • Sundararaman, A., Amirtham, U. & Rangarajan, A. Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. J. Biol. Chem. 291, 14410-14429 (2016).
    • (2016) J. Biol. Chem. , vol.291 , pp. 14410-14429
    • Sundararaman, A.1    Amirtham, U.2    Rangarajan, A.3
  • 80
    • 76549089547 scopus 로고    scopus 로고
    • 2+ and AMP
    • 2+ and AMP. Biochem. J. 426, 109-118 (2010).
    • (2010) Biochem. J. , vol.426 , pp. 109-118
    • Fogarty, S.1
  • 81
    • 33744514139 scopus 로고    scopus 로고
    • Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
    • Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403-416 (2006).
    • (2006) Cell Metab. , vol.3 , pp. 403-416
    • Cool, B.1
  • 82
    • 84890963021 scopus 로고    scopus 로고
    • Structural basis of AMPK regulation by small molecule activators
    • Xiao, B. et al. Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 4, 3017 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 3017
    • Xiao, B.1
  • 83
    • 85018985422 scopus 로고    scopus 로고
    • Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice
    • Cokorinos, E. C. et al. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147-1159.e10 (2017).
    • (2017) Cell Metab. , vol.25 , pp. 1147-1147e10
    • Cokorinos, E.C.1
  • 84
    • 85024504894 scopus 로고    scopus 로고
    • Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy
    • Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357, 507-511 (2017).
    • (2017) Science , vol.357 , pp. 507-511
    • Myers, R.W.1
  • 85
    • 84991487924 scopus 로고    scopus 로고
    • Treatment of nonalcoholic fatty liver disease: Role of AMPK
    • Smith, B. K. et al. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311, E730-E740 (2016).
    • (2016) Am. J. Physiol. Endocrinol. Metab. , vol.311 , pp. E730-E740
    • Smith, B.K.1
  • 86
    • 85016311226 scopus 로고    scopus 로고
    • Liver-specific activation of AMPK prevents steatosis on a high-fructose diet
    • Woods, A. et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. 18, 3043-3051 (2017).
    • (2017) Cell Rep. , vol.18 , pp. 3043-3051
    • Woods, A.1
  • 87
    • 84858311038 scopus 로고    scopus 로고
    • AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase
    • Bultot, L. et al. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem. J. 443, 193-203 (2012).
    • (2012) Biochem. J. , vol.443 , pp. 193-203
    • Bultot, L.1
  • 88
    • 60849124518 scopus 로고    scopus 로고
    • AMP-activated protein kinase phosphorylates glutamine: Fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity
    • Eguchi, S. et al. AMP-activated protein kinase phosphorylates glutamine: fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity. Genes Cells 14, 179-189 (2009).
    • (2009) Genes Cells , vol.14 , pp. 179-189
    • Eguchi, S.1
  • 89
    • 85016157569 scopus 로고    scopus 로고
    • GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis
    • Zibrova, D. et al. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem. J. 474, 983-1001 (2017).
    • (2017) Biochem. J. , vol.474 , pp. 983-1001
    • Zibrova, D.1
  • 90
    • 0037040185 scopus 로고    scopus 로고
    • Mechanism for fatty acid 'sparing' effect on glucose-induced transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase
    • Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T. & Uyeda, K. Mechanism for fatty acid 'sparing' effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem. 277, 3829-3835 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 3829-3835
    • Kawaguchi, T.1    Osatomi, K.2    Yamashita, H.3    Kabashima, T.4    Uyeda, K.5
  • 91
    • 0042847434 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates HNF4α transcriptional activity by inhibiting dimer formation and decreasing protein stability
    • Hong, Y. H., Varanasi, U. S., Yang, W. & Leff, T. AMP-activated protein kinase regulates HNF4α transcriptional activity by inhibiting dimer formation and decreasing protein stability. J. Biol. Chem. 278, 27495-27501 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 27495-27501
    • Hong, Y.H.1    Varanasi, U.S.2    Yang, W.3    Leff, T.4
  • 92
    • 84878271546 scopus 로고    scopus 로고
    • The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation
    • Leprivier, G. et al. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153, 1064-1079 (2013).
    • (2013) Cell , vol.153 , pp. 1064-1079
    • Leprivier, G.1
  • 93
    • 84925491509 scopus 로고    scopus 로고
    • MTORC1-mediated translational elongation limits intestinal tumour initiation and growth
    • Faller, W. J. et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517, 497-500 (2015).
    • (2015) Nature , vol.517 , pp. 497-500
    • Faller, W.J.1
  • 94
    • 84947038316 scopus 로고    scopus 로고
    • AMP-activated protein kinase directly phosphorylates and destabilizes Hedgehog pathway transcription factor GLI1 in medulloblastoma
    • Li, Y.-H. et al. AMP-activated protein kinase directly phosphorylates and destabilizes Hedgehog pathway transcription factor GLI1 in medulloblastoma. Cell Rep. 12, 599-609 (2015).
    • (2015) Cell Rep. , vol.12 , pp. 599-609
    • Li, Y.-H.1
  • 95
    • 84925970129 scopus 로고    scopus 로고
    • Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway
    • Mo, J.-S. et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17, 500-510 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 500-510
    • Mo, J.-S.1
  • 96
    • 84919595168 scopus 로고    scopus 로고
    • Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein
    • DeRan, M. et al. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 9, 495-503 (2014).
    • (2014) Cell Rep. , vol.9 , pp. 495-503
    • DeRan, M.1
  • 97
    • 84925941268 scopus 로고    scopus 로고
    • AMPK modulates Hippo pathway activity to regulate energy homeostasis
    • Wang, W. et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17, 490-499 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 490-499
    • Wang, W.1
  • 98
    • 84994908860 scopus 로고    scopus 로고
    • Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling
    • Rutherford, C. et al. Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci. Signal. 9, ra109 (2016).
    • (2016) Sci. Signal. , vol.9 , pp. ra109
    • Rutherford, C.1
  • 99
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283-293 (2005).
    • (2005) Mol. Cell , vol.18 , pp. 283-293
    • Jones, R.G.1
  • 100
    • 84891382131 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity
    • He, G. et al. AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol. Cell. Biol. 34, 148-157 (2014).
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 148-157
    • He, G.1
  • 101
    • 44049087531 scopus 로고    scopus 로고
    • Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation
    • Chavez, J. A., Roach, W. G., Keller, S. R., Lane, W. S. & Lienhard, G. E. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J. Biol. Chem. 283, 9187-9195 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 9187-9195
    • Chavez, J.A.1    Roach, W.G.2    Keller, S.R.3    Lane, W.S.4    Lienhard, G.E.5
  • 102
    • 77949673390 scopus 로고    scopus 로고
    • Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake
    • Kim, J. H. et al. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake. PLoS ONE 5, e9600 (2010).
    • (2010) PLoS ONE , vol.5 , pp. e9600
    • Kim, J.H.1
  • 103
    • 0017875758 scopus 로고
    • Carnitine palmitoyltransferase I. the site of inhibition of hepatic fatty acid oxidation by malonyl-CoA
    • McGarry, J. D., Leatherman, G. F. & Foster, D. W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J. Biol. Chem. 253, 4128-4136 (1978).
    • (1978) J. Biol. Chem. , vol.253 , pp. 4128-4136
    • McGarry, J.D.1    Leatherman, G.F.2    Foster, D.W.3
  • 104
    • 50949087166 scopus 로고    scopus 로고
    • Malonyl-CoA, a key signaling molecule in mammalian cells
    • Saggerson, D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 28, 253-272 (2008).
    • (2008) Annu. Rev. Nutr. , vol.28 , pp. 253-272
    • Saggerson, D.1
  • 105
    • 84889887123 scopus 로고    scopus 로고
    • Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
    • Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649-1654 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 1649-1654
    • Fullerton, M.D.1
  • 106
    • 84960171872 scopus 로고    scopus 로고
    • Mitonuclear communication in homeostasis and stress
    • Quiros, P. M., Mottis, A. & Auwerx, J. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17, 213-226 (2016).
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 213-226
    • Quiros, P.M.1    Mottis, A.2    Auwerx, J.3
  • 107
    • 33745196628 scopus 로고
    • Cyclophorase system. XXIII. Correlation of cyclophorase activity and mitochondrial density in striated muscle
    • Paul, M. H. & Sperling, E. Cyclophorase system. XXIII. Correlation of cyclophorase activity and mitochondrial density in striated muscle. Proc. Soc. Exp. Biol. Med. 79, 352-354 (1952).
    • (1952) Proc. Soc. Exp. Biol. Med. , vol.79 , pp. 352-354
    • Paul, M.H.1    Sperling, E.2
  • 108
    • 79951977334 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis
    • Jornayvaz, F. R. & Shulman, G. I. Regulation of mitochondrial biogenesis. Essays Biochem. 47, 69-84 (2010).
    • (2010) Essays Biochem. , vol.47 , pp. 69-84
    • Jornayvaz, F.R.1    Shulman, G.I.2
  • 109
    • 0035665594 scopus 로고    scopus 로고
    • Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis
    • Bergeron, R. et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 281, E1340-E1346 (2001).
    • (2001) Am. J. Physiol. Endocrinol. Metab. , vol.281 , pp. E1340-E1346
    • Bergeron, R.1
  • 110
    • 48449094498 scopus 로고    scopus 로고
    • AMPK and PPARdelta agonists are exercise mimetics
    • Narkar, V. A. et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405-415 (2008).
    • (2008) Cell , vol.134 , pp. 405-415
    • Narkar, V.A.1
  • 111
    • 58149099037 scopus 로고    scopus 로고
    • Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle
    • Garcia-Roves, P. M., Osler, M. E., Holmström, M. H. & Zierath, J. R. Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283, 35724-35734 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 35724-35734
    • Garcia-Roves, P.M.1    Osler, M.E.2    Holmström, M.H.3    Zierath, J.R.4
  • 112
    • 80053163909 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise
    • O'Neill, H. M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl Acad. Sci. USA 108, 16092-16097 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 16092-16097
    • O'Neill, H.M.1
  • 113
    • 84885634581 scopus 로고    scopus 로고
    • Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
    • Tanner, C. B. et al. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am. J. Physiol. Endocrinol. Metab. 305, E1018-E1029 (2013).
    • (2013) Am. J. Physiol. Endocrinol. Metab. , vol.305 , pp. E1018-E1029
    • Tanner, C.B.1
  • 114
    • 84876527763 scopus 로고    scopus 로고
    • LKB1 regulates lipid oxidation during exercise independently of AMPK
    • Jeppesen, J. et al. LKB1 regulates lipid oxidation during exercise independently of AMPK. Diabetes 62, 1490-1499 (2013).
    • (2013) Diabetes , vol.62 , pp. 1490-1499
    • Jeppesen, J.1
  • 115
    • 84903701510 scopus 로고    scopus 로고
    • AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity
    • Lantier, L. et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 28, 3211-3224 (2014).
    • (2014) FASEB J. , vol.28 , pp. 3211-3224
    • Lantier, L.1
  • 116
    • 84992374677 scopus 로고    scopus 로고
    • Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function
    • Mottillo, E. P. et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 24, 118-129 (2016).
    • (2016) Cell Metab. , vol.24 , pp. 118-129
    • Mottillo, E.P.1
  • 117
    • 84055190798 scopus 로고    scopus 로고
    • Hematopoietic AMPK p1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity
    • Galic, S. et al. Hematopoietic AMPK p1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 121, 4903-4915 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 4903-4915
    • Galic, S.1
  • 118
    • 84896826866 scopus 로고    scopus 로고
    • 5-Aminoimidazole-4-carboxamide-1-p-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo
    • Hasenour, C. M. et al. 5-Aminoimidazole-4-carboxamide-1-p-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J. Biol. Chem. 289, 5950-5959 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 5950-5959
    • Hasenour, C.M.1
  • 119
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 120
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124 (1999).
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1
  • 121
    • 79957944105 scopus 로고    scopus 로고
    • Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks
    • Eichner, L. J. & Giguère, V. Estrogen related receptors (ERRs): a new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion 11, 544-552 (2011).
    • (2011) Mitochondrion , vol.11 , pp. 544-552
    • Eichner, L.J.1    Giguère, V.2
  • 122
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 a drives the formation of slow-twitch muscle fibres
    • Lin, J. et al. Transcriptional co-activator PGC-1 a drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1
  • 123
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1 a and SIRT1
    • Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1 a and SIRT1. Nature 434, 113-118 (2005).
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 124
    • 22344440666 scopus 로고    scopus 로고
    • Activation of nuclear receptor coactivator PGC-1 a by arginine methylation
    • Teyssier, C, Ma, H., Emter, R., Kralli, A. & Stallcup, M. R. Activation of nuclear receptor coactivator PGC-1 a by arginine methylation. Genes Dev 19, 1466-1473 (2005).
    • (2005) Genes Dev , vol.19 , pp. 1466-1473
    • Teyssier, C.1    Ma, H.2    Emter, R.3    Kralli, A.4    Stallcup, M.R.5
  • 125
    • 34250740323 scopus 로고    scopus 로고
    • Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1 a transcription coactivator
    • Li, X., Monks, B., Ge, Q. & Birnbaum, M. J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1 a transcription coactivator. Nature 447, 1012-1016 (2007).
    • (2007) Nature , vol.447 , pp. 1012-1016
    • Li, X.1    Monks, B.2    Ge, Q.3    Birnbaum, M.J.4
  • 126
    • 18244399631 scopus 로고    scopus 로고
    • Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARycoactivator-1
    • Puigserver, P. et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARycoactivator-1. Mol. Cell 8, 971-982 (2001).
    • (2001) Mol. Cell , vol.8 , pp. 971-982
    • Puigserver, P.1
  • 127
    • 84940002527 scopus 로고    scopus 로고
    • Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo
    • Wu, Y. et al. Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat. Med. 21, 373-382 (2015).
    • (2015) Nat. Med. , vol.21 , pp. 373-382
    • Wu, Y.1
  • 128
    • 0037452677 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-activated receptor y coactivator 1 a (PGC-1 a) and mitochondrial function by MEF2 and HDAC5
    • Czubryt, M. P., McAnally, J., Fishman, G. I. & Olson, E. N. Regulation of peroxisome proliferator-activated receptor y coactivator 1 a (PGC-1 a) and mitochondrial function by MEF2 and HDAC5. Proc. Natl Acad. Sci. USA 100, 1711-1716 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 1711-1716
    • Czubryt, M.P.1    McAnally, J.2    Fishman, G.I.3    Olson, E.N.4
  • 129
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060 (2009).
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Cantó, C.1
  • 130
    • 84872667668 scopus 로고    scopus 로고
    • AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity
    • O'Neill, H. M., Holloway, G. P. & Steinberg, G. R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol. Cell. Endocrinol. 366, 135-151 (2013).
    • (2013) Mol. Cell. Endocrinol. , vol.366 , pp. 135-151
    • O'Neill, H.M.1    Holloway, G.P.2    Steinberg, G.R.3
  • 131
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 132
    • 84944520909 scopus 로고    scopus 로고
    • AMPK promotes aberrant PGC1 p expression to support human colon tumor cell survival
    • Fisher, K. W. et al. AMPK promotes aberrant PGC1 p expression to support human colon tumor cell survival. Mol. Cell. Biol. 35, 3866-3879 (2015).
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 3866-3879
    • Fisher, K.W.1
  • 133
    • 85006035893 scopus 로고    scopus 로고
    • The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue
    • Wada, S. et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 30, 2551-2564 (2016).
    • (2016) Genes Dev. , vol.30 , pp. 2551-2564
    • Wada, S.1
  • 134
    • 84884813468 scopus 로고    scopus 로고
    • AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy
    • Ljubicic, V. & Jasmin, B. J. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol. Med. 19, 614-624 (2013).
    • (2013) Trends Mol. Med. , vol.19 , pp. 614-624
    • Ljubicic, V.1    Jasmin, B.J.2
  • 135
    • 85014370303 scopus 로고    scopus 로고
    • Sustained AMPK activation improves muscle function in a mitochondrial myopathy mouse model by promoting muscle fiber regeneration
    • Peralta, S. et al. Sustained AMPK activation improves muscle function in a mitochondrial myopathy mouse model by promoting muscle fiber regeneration. Hum. Mol. Genet. 25, 3178-3191 (2016).
    • (2016) Hum. Mol. Genet. , vol.25 , pp. 3178-3191
    • Peralta, S.1
  • 136
    • 84940439443 scopus 로고    scopus 로고
    • The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice
    • Marcinko, K. et al. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Mol. Metab. 4, 643-651 (2015).
    • (2015) Mol. Metab. , vol.4 , pp. 643-651
    • Marcinko, K.1
  • 138
    • 84930589100 scopus 로고    scopus 로고
    • AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging
    • Bujak, A. L. et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab. 21, 883-890 (2015).
    • (2015) Cell Metab. , vol.21 , pp. 883-890
    • Bujak, A.L.1
  • 139
    • 84959516439 scopus 로고    scopus 로고
    • Metabolic regulation of mitochondrial dynamics
    • Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379-387 (2016).
    • (2016) J. Cell Biol. , vol.212 , pp. 379-387
    • Mishra, P.1    Chan, D.C.2
  • 140
    • 67049089786 scopus 로고    scopus 로고
    • SLP-2 is required for stress-induced mitochondrial hyperfusion
    • Tondera, D. et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589-1600 (2009).
    • (2009) EMBO J. , vol.28 , pp. 1589-1600
    • Tondera, D.1
  • 141
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589-598 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 589-598
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 142
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190-10195 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 10190-10195
    • Rambold, A.S.1    Kostelecky, B.2    Elia, N.3    Lippincott-Schwartz, J.4
  • 143
    • 84925324049 scopus 로고    scopus 로고
    • Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
    • Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678-692 (2015).
    • (2015) Dev. Cell , vol.32 , pp. 678-692
    • Rambold, A.S.1    Cohen, S.2    Lippincott-Schwartz, J.3
  • 144
    • 84938660246 scopus 로고    scopus 로고
    • How mitochondrial dynamism orchestrates mitophagy
    • Shirihai, O. S., Song, M. & Dorn, G. W. How mitochondrial dynamism orchestrates mitophagy. Circ. Res. 116, 1835-1849 (2015).
    • (2015) Circ. Res. , vol.116 , pp. 1835-1849
    • Shirihai, O.S.1    Song, M.2    Dorn, G.W.3
  • 145
    • 84869030015 scopus 로고    scopus 로고
    • Fusion and fission: Interlinked processes critical for mitochondrial health
    • Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265-287 (2012).
    • (2012) Annu. Rev. Genet. , vol.46 , pp. 265-287
    • Chan, D.C.1
  • 146
    • 84958850926 scopus 로고    scopus 로고
    • Mitochondrial dynamics and metabolic regulation
    • Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105-117 (2016).
    • (2016) Trends Endocrinol. Metab. , vol.27 , pp. 105-117
    • Wai, T.1    Langer, T.2
  • 147
    • 84897538678 scopus 로고    scopus 로고
    • Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
    • Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19, 630-641 (2014).
    • (2014) Cell Metab. , vol.19 , pp. 630-641
    • Mishra, P.1    Carelli, V.2    Manfredi, G.3    Chan, D.C.4
  • 148
    • 78650167618 scopus 로고    scopus 로고
    • Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
    • Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141-1158 (2010).
    • (2010) J. Cell Biol. , vol.191 , pp. 1141-1158
    • Otera, H.1
  • 149
    • 84874639591 scopus 로고    scopus 로고
    • Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
    • Losón, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659-667 (2013).
    • (2013) Mol. Biol. Cell , vol.24 , pp. 659-667
    • Losón, O.C.1    Song, Z.2    Chen, H.3    Chan, D.C.4
  • 150
    • 0035166814 scopus 로고    scopus 로고
    • Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
    • Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256 (2001).
    • (2001) Mol. Biol. Cell , vol.12 , pp. 2245-2256
    • Smirnova, E.1    Griparic, L.2    Shurland, D.L.3    Van Der Bliek, A.M.4
  • 151
    • 84958242051 scopus 로고    scopus 로고
    • Cell biology: Form follows function for mitochondria
    • Wang, C. & Youle, R. Cell biology: form follows function for mitochondria. Nature 530, 288-289 (2016).
    • (2016) Nature , vol.530 , pp. 288-289
    • Wang, C.1    Youle, R.2
  • 152
    • 0034652297 scopus 로고    scopus 로고
    • The subcellular localization of acetyl-CoA carboxylase 2
    • Abu-Elheiga, L. et al. The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl Acad. Sci. USA 97, 1444-1449 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 1444-1449
    • Abu-Elheiga, L.1
  • 153
    • 84904764021 scopus 로고    scopus 로고
    • AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice
    • O'Neill, H. M. et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57, 1693-1702 (2014).
    • (2014) Diabetologia , vol.57 , pp. 1693-1702
    • O'Neill, H.M.1
  • 154
    • 85006136251 scopus 로고    scopus 로고
    • Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise
    • O'Neill, H. M. et al. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiol. Rep. 3, e12444 (2015).
    • (2015) Physiol. Rep. , vol.3 , pp. e12444
    • O'Neill, H.M.1
  • 155
    • 84984866209 scopus 로고    scopus 로고
    • AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion
    • Cunniff, B., McKenzie, A. J., Heintz, N. H. & Howe, A. K. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol. Biol. Cell 27, 2662-2674 (2016).
    • (2016) Mol. Biol. Cell , vol.27 , pp. 2662-2674
    • Cunniff, B.1    McKenzie, A.J.2    Heintz, N.H.3    Howe, A.K.4
  • 156
    • 84973633815 scopus 로고    scopus 로고
    • Mammalian autophagy: How does it work?
    • Bento, C. F. et al. Mammalian autophagy: how does it work? Annu. Rev. Biochem. 85, 685-713 (2016).
    • (2016) Annu. Rev. Biochem. , vol.85 , pp. 685-713
    • Bento, C.F.1
  • 157
    • 34548482499 scopus 로고    scopus 로고
    • SiRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
    • Chan, E. Y. W., Kir, S. & Tooze, S. A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282, 25464-25474 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 25464-25474
    • Chan, E.Y.W.1    Kir, S.2    Tooze, S.A.3
  • 158
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell, R. C., Yuan, H.-X. & Guan, K.-L. Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57 (2014).
    • (2014) Cell Res. , vol.24 , pp. 42-57
    • Russell, R.C.1    Yuan, H.-X.2    Guan, K.-L.3
  • 159
    • 84962675891 scopus 로고    scopus 로고
    • The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14
    • Park, J.-M. et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547-564 (2016).
    • (2016) Autophagy , vol.12 , pp. 547-564
    • Park, J.-M.1
  • 160
    • 84959008003 scopus 로고    scopus 로고
    • Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy
    • Puente, C., Hendrickson, R. C. & Jiang, X. Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy. J. Biol. Chem. 291, 6026-6035 (2016).
    • (2016) J. Biol. Chem. , vol.291 , pp. 6026-6035
    • Puente, C.1    Hendrickson, R.C.2    Jiang, X.3
  • 161
    • 84937523899 scopus 로고    scopus 로고
    • Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
    • Egan, D. F. et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285-297 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 285-297
    • Egan, D.F.1
  • 162
    • 80051729441 scopus 로고    scopus 로고
    • Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy
    • Joo, J. H. et al. Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy. Mol. Cell 43, 572-585 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 572-585
    • Joo, J.H.1
  • 163
    • 85003955407 scopus 로고    scopus 로고
    • Regulation of mATG9 trafficking by Src-and ULK1-mediated phosphorylation in basal and starvation-induced autophagy
    • Zhou, C. et al. Regulation of mATG9 trafficking by Src-and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res. 27, 184-201 (2017).
    • (2017) Cell Res. , vol.27 , pp. 184-201
    • Zhou, C.1
  • 164
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 741-750
    • Russell, R.C.1
  • 165
    • 84969135882 scopus 로고    scopus 로고
    • The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis
    • Joo, J. H. et al. The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Mol. Cell 62, 491-506 (2016).
    • (2016) Mol. Cell , vol.62 , pp. 491-506
    • Joo, J.H.1
  • 166
    • 85015051409 scopus 로고    scopus 로고
    • Canonical and noncanonical functions of ULK/Atg1
    • Wang, B. & Kundu, M. Canonical and noncanonical functions of ULK/Atg1. Curr. Opin. Cell Biol. 45, 47-54 (2017).
    • (2017) Curr. Opin. Cell Biol. , vol.45 , pp. 47-54
    • Wang, B.1    Kundu, M.2
  • 167
    • 0034898851 scopus 로고    scopus 로고
    • Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p
    • Wang, Z., Wilson, W. A., Fujino, M. A. & Roach, P. J. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21, 5742-5752 (2001).
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 5742-5752
    • Wang, Z.1    Wilson, W.A.2    Fujino, M.A.3    Roach, P.J.4
  • 168
    • 33845924783 scopus 로고    scopus 로고
    • AMP-activated protein kinase and the regulation of autophagic proteolysis
    • Meley, D. et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870-34879 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 34870-34879
    • Meley, D.1
  • 169
    • 33846189759 scopus 로고    scopus 로고
    • Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
    • Høyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 25, 193-205 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 193-205
    • Høyer-Hansen, M.1
  • 170
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim, J., Kundu, M., Viollet, B. & Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.-L.4
  • 171
    • 84857850213 scopus 로고    scopus 로고
    • Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
    • Itakura, E., Kishi-Itakura, C., Koyama-Honda, I. & Mizushima, N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125, 1488-1499 (2012).
    • (2012) J. Cell Sci. , vol.125 , pp. 1488-1499
    • Itakura, E.1    Kishi-Itakura, C.2    Koyama-Honda, I.3    Mizushima, N.4
  • 172
    • 84892875987 scopus 로고    scopus 로고
    • ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression
    • Zhu, Y. et al. ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression. Protein Cell 4, 711-721 (2013).
    • (2013) Protein Cell , vol.4 , pp. 711-721
    • Zhu, Y.1
  • 173
    • 84902007678 scopus 로고    scopus 로고
    • Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
    • Honda, S. et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun. 5, 4004 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4004
    • Honda, S.1
  • 174
    • 84899789746 scopus 로고    scopus 로고
    • ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
    • Wu, W. et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15, 566-575 (2014).
    • (2014) EMBO Rep. , vol.15 , pp. 566-575
    • Wu, W.1
  • 175
    • 84907171686 scopus 로고    scopus 로고
    • PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation
    • Zhu, H. et al. PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy 10, 1522-1534 (2014).
    • (2014) Autophagy , vol.10 , pp. 1522-1534
    • Zhu, H.1
  • 176
    • 84941774038 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy
    • Li, J. et al. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 11, 1216-1229 (2015).
    • (2015) Autophagy , vol.11 , pp. 1216-1229
    • Li, J.1
  • 177
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015).
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 178
    • 84899723367 scopus 로고    scopus 로고
    • The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy
    • Yang, C.-S. et al. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 10, 785-802 (2014).
    • (2014) Autophagy , vol.10 , pp. 785-802
    • Yang, C.-S.1
  • 179
    • 84905472344 scopus 로고    scopus 로고
    • TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
    • Inokuchi-Shimizu, S. et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J. Clin. Invest. 124, 3566-3578 (2014).
    • (2014) J. Clin. Invest. , vol.124 , pp. 3566-3578
    • Inokuchi-Shimizu, S.1
  • 180
    • 84918805701 scopus 로고    scopus 로고
    • Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9
    • Weerasekara, V. K. et al. Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Mol. Cell. Biol. 34, 4379-4388 (2014).
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 4379-4388
    • Weerasekara, V.K.1
  • 181
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303 (2013).
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1
  • 182
    • 84978471809 scopus 로고    scopus 로고
    • AMPK regulates autophagy by phosphorylating BECN1 at threonine 388
    • Zhang, D. et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12, 1447-1459 (2016).
    • (2016) Autophagy , vol.12 , pp. 1447-1459
    • Zhang, D.1
  • 183
    • 84947333774 scopus 로고    scopus 로고
    • RACK1 promotes autophagy by enhancing the Atg14L-Beclin 1-Vps34-Vps15 complex formation upon phosphorylation by AMPK
    • Zhao, Y. et al. RACK1 promotes autophagy by enhancing the Atg14L-Beclin 1-Vps34-Vps15 complex formation upon phosphorylation by AMPK. Cell Rep. 13, 1407-1417 (2015).
    • (2015) Cell Rep. , vol.13 , pp. 1407-1417
    • Zhao, Y.1
  • 184
    • 84959372404 scopus 로고    scopus 로고
    • PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity
    • Xu, D.-Q. et al. PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. EMBO J. 35, 496-514 (2016).
    • (2016) EMBO J. , vol.35 , pp. 496-514
    • Xu, D.-Q.1
  • 185
    • 84991826660 scopus 로고    scopus 로고
    • Deciphering the molecular signals of PINK1/Parkin mitophagy
    • Nguyen, T. N., Padman, B. S. & Lazarou, M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 26, 733-744 (2016).
    • (2016) Trends Cell Biol. , vol.26 , pp. 733-744
    • Nguyen, T.N.1    Padman, B.S.2    Lazarou, M.3
  • 186
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).
    • (2010) PLoS Biol. , vol.8 , pp. e1000298
    • Narendra, D.P.1
  • 187
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162-166 (2014).
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 188
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
    • Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143-153 (2014).
    • (2014) J. Cell Biol. , vol.205 , pp. 143-153
    • Kane, L.A.1
  • 189
    • 84934443098 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy
    • Tian, W. et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 589, 1847-1854 (2015).
    • (2015) FEBS Lett. , vol.589 , pp. 1847-1854
    • Tian, W.1
  • 190
    • 84928587895 scopus 로고    scopus 로고
    • Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators
    • Miyamoto, T. et al. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Cell Rep. 11, 657-670 (2015).
    • (2015) Cell Rep. , vol.11 , pp. 657-670
    • Miyamoto, T.1
  • 191
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446 (2008).
    • (2008) EMBO J. , vol.27 , pp. 433-446
    • Twig, G.1
  • 192
    • 84969244054 scopus 로고    scopus 로고
    • PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy
    • Pryde, K. R., Smith, H. L., Chau, K.-Y. & Schapira, A. H. V. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J. Cell Biol. 2213, 163-171 (2016).
    • (2016) J. Cell Biol. , vol.2213 , pp. 163-171
    • Pryde, K.R.1    Smith, H.L.2    Chau, K.-Y.3    Schapira, A.H.V.4
  • 193
    • 34548700796 scopus 로고    scopus 로고
    • Unveiling the roles of autophagy in innate and adaptive immunity
    • Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 7, 767-777 (2007).
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 767-777
    • Levine, B.1    Deretic, V.2
  • 194
    • 84978492693 scopus 로고    scopus 로고
    • PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation
    • Xie, N. et al. PRKAA/AMPK restricts HBV replication through promotion of autophagic degradation. Autophagy 12, 1507-1520 (2016).
    • (2016) Autophagy , vol.12 , pp. 1507-1520
    • Xie, N.1
  • 195
    • 84962616456 scopus 로고    scopus 로고
    • Dissection and integration of the autophagy signaling network initiated by bluetongue virus infection: Crucial candidates ERK1/2
    • Lv, S., Xu, Q.-Y., Sun, E.-C., Zhang, J.-K. & Wu, D.-L. Dissection and integration of the autophagy signaling network initiated by bluetongue virus infection: crucial candidates ERK1/2, Akt and AMPK. Sci. Rep. 6, 23130 (2016).
    • (2016) Akt and AMPK. Sci. Rep. , vol.6 , pp. 23130
    • Lv, S.1    Xu, Q.-Y.2    Sun, E.-C.3    Zhang, J.-K.4    Wu, D.-L.5
  • 196
    • 84943145461 scopus 로고    scopus 로고
    • Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection
    • Fan, X.-Y. et al. Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci. Rep. 5, 14728 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 14728
    • Fan, X.-Y.1
  • 197
    • 84887269499 scopus 로고    scopus 로고
    • Feeding uninvited guests: MTOR and AMPK set the table for intracellular pathogens
    • Brunton, J., Steele, S., Ziehr, B., Moorman, N. & Kawula, T. Feeding uninvited guests: mTOR and AMPK set the table for intracellular pathogens. PLoS Pathog. 9, e1003552 (2013).
    • (2013) PLoS Pathog. , vol.9 , pp. e1003552
    • Brunton, J.1    Steele, S.2    Ziehr, B.3    Moorman, N.4    Kawula, T.5
  • 198
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472-483 (2007).
    • (2007) Cell Metab. , vol.6 , pp. 472-483
    • Zhao, J.1
  • 199
    • 84927175720 scopus 로고    scopus 로고
    • Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs
    • Bowman, C. J., Ayer, D. E. & Dynlacht, B. D. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat. Cell Biol. 16, 1202-1214 (2014).
    • (2014) Nat. Cell Biol. , vol.16 , pp. 1202-1214
    • Bowman, C.J.1    Ayer, D.E.2    Dynlacht, B.D.3
  • 200
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473-477 (2009).
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 201
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011).
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 202
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
    • (2012) EMBO J. , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 203
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).
    • (2012) Sci. Signal. , vol.5 , pp. ra42
    • Roczniak-Ferguson, A.1
  • 204
    • 85019938699 scopus 로고    scopus 로고
    • Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy
    • Li, X. et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell 66, 684-697.e9 (2017).
    • (2017) Mol. Cell , vol.66 , pp. 684-684e9
    • Li, X.1
  • 205
    • 85041098700 scopus 로고    scopus 로고
    • Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory
    • Mews, P. et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 17, 1217-1386 (2017).
    • (2017) Nature , vol.17 , pp. 1217-1386
    • Mews, P.1
  • 206
    • 84899627973 scopus 로고    scopus 로고
    • Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells
    • Friis, R. M. N. et al. Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep. 7, 565-574 (2014).
    • (2014) Cell Rep. , vol.7 , pp. 565-574
    • Friis, R.M.N.1
  • 207
    • 10644282295 scopus 로고    scopus 로고
    • The AMP-activated protein kinase AAK-2 links energy levels and insulinlike signals to lifespan in C. Elegans
    • Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulinlike signals to lifespan in C. elegans. Genes Dev. 18, 3004-3009 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 3004-3009
    • Apfeld, J.1    O'Connor, G.2    McDonagh, T.3    DiStefano, P.S.4    Curtis, R.5
  • 208
    • 33646926969 scopus 로고    scopus 로고
    • Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways
    • Curtis, R., O'Connor, G. & DiStefano, P. S. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5, 119-126 (2006).
    • (2006) Aging Cell , vol.5 , pp. 119-126
    • Curtis, R.1    O'Connor, G.2    DiStefano, P.S.3
  • 209
    • 84958212566 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates oxidative metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 transcriptional regulators
    • Moreno-Arriola, E., El Hafidi, M., Ortega-Cuéllar, D. & Carvajal, K. AMP-activated protein kinase regulates oxidative metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 transcriptional regulators. PLoS ONE 11, e0148089 (2016).
    • (2016) PLoS ONE , vol.11 , pp. e0148089
    • Moreno-Arriola, E.1    El Hafidi, M.2    Ortega-Cuéllar, D.3    Carvajal, K.4
  • 210
    • 28444496362 scopus 로고    scopus 로고
    • Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila
    • Mandal, S., Guptan, P., Owusu-Ansah, E. & Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9, 843-854 (2005).
    • (2005) Dev. Cell , vol.9 , pp. 843-854
    • Mandal, S.1    Guptan, P.2    Owusu-Ansah, E.3    Banerjee, U.4
  • 211
    • 84974815636 scopus 로고    scopus 로고
    • Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy
    • Moore, A. S. & Holzbaur, E. L. F. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349-E3358 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E3349-E3358
    • Moore, A.S.1    Holzbaur, E.L.F.2
  • 212
    • 84963566230 scopus 로고    scopus 로고
    • Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
    • Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039-4044 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 4039-4044
    • Richter, B.1
  • 213
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
    • Heo, J.-M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.-M.1    Ordureau, A.2    Paulo, J.A.3    Rinehart, J.4    Harper, J.W.5
  • 214
    • 84956657033 scopus 로고    scopus 로고
    • Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential
    • Luchsinger, L. L., de Almeida, M. J., Corrigan, D. J., Mumau, M. & Snoeck, H.-W. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529, 528-531 (2016).
    • (2016) Nature , vol.529 , pp. 528-531
    • Luchsinger, L.L.1    De Almeida, M.J.2    Corrigan, D.J.3    Mumau, M.4    Snoeck, H.-W.5
  • 215
    • 85015223506 scopus 로고    scopus 로고
    • Autophagy maintains the metabolism and function of young and old stem cells
    • Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205-210 (2017).
    • (2017) Nature , vol.543 , pp. 205-210
    • Ho, T.T.1
  • 216
    • 84952360959 scopus 로고    scopus 로고
    • Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics
    • Forni, M. F., Peloggia, J., Trudeau, K., Shirihai, O. & Kowaltowski, A. J. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells 34, 743-755 (2016).
    • (2016) Stem Cells , vol.34 , pp. 743-755
    • Forni, M.F.1    Peloggia, J.2    Trudeau, K.3    Shirihai, O.4    Kowaltowski, A.J.5
  • 217
    • 84928537166 scopus 로고    scopus 로고
    • Mitochondrial DNA stress primes the antiviral innate immune response
    • West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553-557 (2015).
    • (2015) Nature , vol.520 , pp. 553-557
    • West, A.P.1
  • 218
    • 84976478216 scopus 로고    scopus 로고
    • Mitochondrial dynamics controls T cell fate through metabolic programming
    • Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63-76 (2016).
    • (2016) Cell , vol.166 , pp. 63-76
    • Buck, M.D.1
  • 219
    • 84975744759 scopus 로고    scopus 로고
    • Current understanding of metformin effect on the control of hyperglycemia in diabetes
    • An, H. & He, L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J. Endocrinol. 228, R97-R106 (2016).
    • (2016) J. Endocrinol. , vol.228 , pp. R97-R106
    • An, H.1    He, L.2
  • 221
    • 85021851489 scopus 로고    scopus 로고
    • AMPK as a pro-longevity target
    • Burkewitz, K., Weir, H. J. M. & Mair, W. B. AMPK as a pro-longevity target. EXS 107, 227-256 (2016).
    • (2016) EXS , vol.107 , pp. 227-256
    • Burkewitz, K.1    Weir, H.J.M.2    Mair, W.B.3
  • 222
    • 84904038165 scopus 로고    scopus 로고
    • AMPK at the nexus of energetics and aging
    • Burkewitz, K., Zhang, Y. & Mair, W. B. AMPK at the nexus of energetics and aging. Cell Metab. 20, 10-25 (2014).
    • (2014) Cell Metab. , vol.20 , pp. 10-25
    • Burkewitz, K.1    Zhang, Y.2    Mair, W.B.3
  • 223
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174 (2001).
    • (2001) J. Clin. Invest. , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 224
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355-2369 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 2355-2369
    • Foretz, M.1
  • 225
    • 85009495519 scopus 로고    scopus 로고
    • Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex
    • Howell, J. J. et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 25, 463-471 (2017).
    • (2017) Cell Metab. , vol.25 , pp. 463-471
    • Howell, J.J.1
  • 227
    • 84988411272 scopus 로고    scopus 로고
    • Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models
    • Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108-1119 (2016).
    • (2016) Nat. Med. , vol.22 , pp. 1108-1119
    • Svensson, R.U.1
  • 228
    • 84873584845 scopus 로고    scopus 로고
    • LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
    • Shackelford, D. B. et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143-158 (2013).
    • (2013) Cancer Cell , vol.23 , pp. 143-158
    • Shackelford, D.B.1
  • 229
    • 85011269383 scopus 로고    scopus 로고
    • A UBE2O-AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy
    • Vila, I. K. et al. A UBE2O-AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy. Cancer Cell 31, 208-224 (2017).
    • (2017) Cancer Cell , vol.31 , pp. 208-224
    • Vila, I.K.1
  • 230
    • 84922689340 scopus 로고    scopus 로고
    • Degradation of AMPK by a cancer-specific ubiquitin ligase
    • Pineda, C. T. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-728 (2015).
    • (2015) Cell , vol.160 , pp. 715-728
    • Pineda, C.T.1
  • 231
    • 84872159532 scopus 로고    scopus 로고
    • AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
    • Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17, 113-124 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 113-124
    • Faubert, B.1
  • 232
    • 84898601973 scopus 로고    scopus 로고
    • A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis
    • Zadra, G. et al. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med. 6, 519-538 (2014).
    • (2014) EMBO Mol. Med. , vol.6 , pp. 519-538
    • Zadra, G.1
  • 233
    • 80655125020 scopus 로고    scopus 로고
    • Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator
    • Lee, K.-H. et al. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J. Biol. Chem. 286, 39247-39258 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 39247-39258
    • Lee, K.-H.1
  • 234
    • 44449103256 scopus 로고    scopus 로고
    • Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice
    • Huang, X. et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 412, 211-221 (2008).
    • (2008) Biochem. J. , vol.412 , pp. 211-221
    • Huang, X.1
  • 235
    • 84947749584 scopus 로고    scopus 로고
    • AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow
    • Saito, Y., Chapple, R. H., Lin, A., Kitano, A. & Nakada, D. AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell 17, 585-596 (2015).
    • (2015) Cell Stem Cell , vol.17 , pp. 585-596
    • Saito, Y.1    Chapple, R.H.2    Lin, A.3    Kitano, A.4    Nakada, D.5
  • 236
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon, S.-M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661-665 (2012).
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.-M.1    Chandel, N.S.2    Hay, N.3
  • 237
    • 85016160442 scopus 로고    scopus 로고
    • Metabolic gatekeeper function of B-lymphoid transcription factors
    • Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542, 479-483 (2017).
    • (2017) Nature , vol.542 , pp. 479-483
    • Chan, L.N.1
  • 238
    • 84963704497 scopus 로고    scopus 로고
    • AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival
    • Kishton, R. J. et al. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 23, 649-662 (2016).
    • (2016) Cell Metab. , vol.23 , pp. 649-662
    • Kishton, R.J.1
  • 239
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
    • Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174 (1993).
    • (1993) FEBS Lett. , vol.333 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 240
    • 0032563798 scopus 로고    scopus 로고
    • A protein conjugation system essential for autophagy
    • Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395-398 (1998).
    • (1998) Nature , vol.395 , pp. 395-398
    • Mizushima, N.1
  • 241
    • 84891745088 scopus 로고    scopus 로고
    • Historical landmarks of autophagy research
    • Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9-23 (2014).
    • (2014) Cell Res. , vol.24 , pp. 9-23
    • Ohsumi, Y.1
  • 242
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1
  • 243
    • 84883414890 scopus 로고    scopus 로고
    • The LIR motif-crucial for selective autophagy
    • Birgisdottir, Å. B., Lamark, T. & Johansen, T. The LIR motif-crucial for selective autophagy. J. Cell Sci. 126, 3237-3247 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 3237-3247
    • Birgisdottir, Å.B.1    Lamark, T.2    Johansen, T.3
  • 244
    • 85029481023 scopus 로고    scopus 로고
    • Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy
    • Laker, R. C. et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat. Commun. 8, 548 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 548
    • Laker, R.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.