-
1
-
-
33746328957
-
Signaling pathways in skeletal muscle remodeling
-
Bassel-Duby R., Olson E.N. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 2006, 75:19-37.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 19-37
-
-
Bassel-Duby, R.1
Olson, E.N.2
-
2
-
-
33746012931
-
Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli
-
Fluck M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J. Exp. Biol. 2006, 209:2239-2248.
-
(2006)
J. Exp. Biol.
, vol.209
, pp. 2239-2248
-
-
Fluck, M.1
-
3
-
-
33746009957
-
Coordination of metabolic plasticity in skeletal muscle
-
Hood D.A., et al. Coordination of metabolic plasticity in skeletal muscle. J. Exp. Biol. 2006, 209:2265-2275.
-
(2006)
J. Exp. Biol.
, vol.209
, pp. 2265-2275
-
-
Hood, D.A.1
-
4
-
-
84919621076
-
AMPK - sensing energy while talking to other signaling pathways
-
Hardie D.G. AMPK - sensing energy while talking to other signaling pathways. Cell Metab. 2014, 20:939-952.
-
(2014)
Cell Metab.
, vol.20
, pp. 939-952
-
-
Hardie, D.G.1
-
5
-
-
63849142460
-
AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?
-
Jensen T.E., et al. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?. Acta Physiol. (Oxf.) 2009, 196:155-174.
-
(2009)
Acta Physiol. (Oxf.)
, vol.196
, pp. 155-174
-
-
Jensen, T.E.1
-
6
-
-
84857664832
-
Regulation of glucose and glycogen metabolism during and after exercise
-
Jensen T.E., Richter E.A. Regulation of glucose and glycogen metabolism during and after exercise. J. Physiol. 2012, 590:1069-1076.
-
(2012)
J. Physiol.
, vol.590
, pp. 1069-1076
-
-
Jensen, T.E.1
Richter, E.A.2
-
7
-
-
84872667668
-
AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity
-
O'Neill H.M., et al. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol. Cell. Endocrinol. 2013, 366:135-151.
-
(2013)
Mol. Cell. Endocrinol.
, vol.366
, pp. 135-151
-
-
O'Neill, H.M.1
-
8
-
-
79251516447
-
Histone modifications and exercise adaptations
-
McGee S.L., Hargreaves M. Histone modifications and exercise adaptations. J. Appl. Physiol. (1985) 2011, 110:258-263.
-
(2011)
J. Appl. Physiol. (1985)
, vol.110
, pp. 258-263
-
-
McGee, S.L.1
Hargreaves, M.2
-
9
-
-
57849090443
-
The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor
-
McBride A., et al. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009, 9:23-34.
-
(2009)
Cell Metab.
, vol.9
, pp. 23-34
-
-
McBride, A.1
-
10
-
-
0037375970
-
Regulation of 5'AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle
-
Wojtaszewski J.F., et al. Regulation of 5'AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2003, 284:E813-E822.
-
(2003)
Am. J. Physiol. Endocrinol. Metab.
, vol.284
, pp. E813-E822
-
-
Wojtaszewski, J.F.1
-
11
-
-
20044370885
-
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction
-
Sakamoto K., et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005, 24:1810-1820.
-
(2005)
EMBO J.
, vol.24
, pp. 1810-1820
-
-
Sakamoto, K.1
-
12
-
-
33846003474
-
Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice
-
Thomson D.M., et al. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Am. J. Physiol. Endocrinol. Metab. 2007, 292:E196-E202.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.292
, pp. E196-E202
-
-
Thomson, D.M.1
-
13
-
-
79959338922
-
AMPK is a direct adenylate charge-regulated protein kinase
-
Oakhill J.S., et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011, 332:1433-1435.
-
(2011)
Science
, vol.332
, pp. 1433-1435
-
-
Oakhill, J.S.1
-
14
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B., et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472:230-233.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
-
15
-
-
0034654362
-
Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding
-
Cheung P.C., et al. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 2000, 346:659-669.
-
(2000)
Biochem. J.
, vol.346
, pp. 659-669
-
-
Cheung, P.C.1
-
16
-
-
33845949733
-
Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase
-
Suter M., et al. Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 2006, 281:32207-32216.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32207-32216
-
-
Suter, M.1
-
17
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley S.A., et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005, 2:9-19.
-
(2005)
Cell Metab.
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
-
18
-
-
23044437445
-
2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
-
2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2:21-33.
-
(2005)
Cell Metab.
, vol.2
, pp. 21-33
-
-
Woods, A.1
-
19
-
-
34247603071
-
Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction
-
Jensen T.E., et al. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am. J. Physiol. Endocrinol. Metab. 2007, 292:E1308-E1317.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.292
, pp. E1308-E1317
-
-
Jensen, T.E.1
-
20
-
-
40949146900
-
Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase α1 following overload in LKB1 knockout mice
-
McGee S.L., et al. Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase α1 following overload in LKB1 knockout mice. J. Physiol. 2008, 586:1731-1741.
-
(2008)
J. Physiol.
, vol.586
, pp. 1731-1741
-
-
McGee, S.L.1
-
21
-
-
33845332346
-
Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle
-
Birk J.B., Wojtaszewski J.F. Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle. J. Physiol. 2006, 577:1021-1032.
-
(2006)
J. Physiol.
, vol.577
, pp. 1021-1032
-
-
Birk, J.B.1
Wojtaszewski, J.F.2
-
22
-
-
70349921265
-
A-769662 activates AMPK β1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle
-
Treebak J.T., et al. A-769662 activates AMPK β1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. Am. J. Physiol. Cell Physiol. 2009, 297:C1041-C1052.
-
(2009)
Am. J. Physiol. Cell Physiol.
, vol.297
, pp. C1041-C1052
-
-
Treebak, J.T.1
-
23
-
-
4644309036
-
The 5'-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle
-
Barnes B.R., et al. The 5'-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J. Biol. Chem. 2004, 279:38441-38447.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 38441-38447
-
-
Barnes, B.R.1
-
24
-
-
0034685949
-
A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle
-
Milan D., et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 2000, 288:1248-1251.
-
(2000)
Science
, vol.288
, pp. 1248-1251
-
-
Milan, D.1
-
25
-
-
41249096989
-
Gain-of-function R225W mutation in human AMPKγ3 causing increased glycogen and decreased triglyceride in skeletal muscle
-
Costford S.R., et al. Gain-of-function R225W mutation in human AMPKγ3 causing increased glycogen and decreased triglyceride in skeletal muscle. PLoS ONE 2007, 2:e903.
-
(2007)
PLoS ONE
, vol.2
, pp. e903
-
-
Costford, S.R.1
-
26
-
-
33947173689
-
AS160 phosphorylation is associated with activation of α2β2γ1- but not α2β2γ3-AMPK trimeric complex in skeletal muscle during exercise in humans
-
Treebak J.T., et al. AS160 phosphorylation is associated with activation of α2β2γ1- but not α2β2γ3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am. J. Physiol. Endocrinol. Metab. 2007, 292:E715-E722.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.292
, pp. E715-E722
-
-
Treebak, J.T.1
-
27
-
-
0037381848
-
Exercise increases nuclear AMPK α2 in human skeletal muscle
-
McGee S.L., et al. Exercise increases nuclear AMPK α2 in human skeletal muscle. Diabetes 2003, 52:926-928.
-
(2003)
Diabetes
, vol.52
, pp. 926-928
-
-
McGee, S.L.1
-
28
-
-
84892400907
-
Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle
-
Treebak J.T., et al. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J. Physiol. 2014, 592:351-375.
-
(2014)
J. Physiol.
, vol.592
, pp. 351-375
-
-
Treebak, J.T.1
-
29
-
-
0035282062
-
Post-translational modifications of the β-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization
-
Warden S.M., et al. Post-translational modifications of the β-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem. J. 2001, 354:275-283.
-
(2001)
Biochem. J.
, vol.354
, pp. 275-283
-
-
Warden, S.M.1
-
30
-
-
84890124737
-
Localisation of AMPK gamma subunits in cardiac and skeletal muscles
-
Pinter K., et al. Localisation of AMPK gamma subunits in cardiac and skeletal muscles. J. Muscle Res. Cell Motil. 2013, 34:369-378.
-
(2013)
J. Muscle Res. Cell Motil.
, vol.34
, pp. 369-378
-
-
Pinter, K.1
-
31
-
-
34547610976
-
Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift
-
Rockl K.S., et al. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 2007, 56:2062-2069.
-
(2007)
Diabetes
, vol.56
, pp. 2062-2069
-
-
Rockl, K.S.1
-
32
-
-
0042423598
-
Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles
-
Suwa M., et al. Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J. Appl. Physiol. (1985) 2003, 95:960-968.
-
(2003)
J. Appl. Physiol. (1985)
, vol.95
, pp. 960-968
-
-
Suwa, M.1
-
33
-
-
84920939857
-
Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy
-
Reyes N.L., et al. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy. Proc. Natl. Acad. Sci. U.S.A. 2014, 112:424-429.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 424-429
-
-
Reyes, N.L.1
-
34
-
-
58149099037
-
Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle
-
Garcia-Roves P.M., et al. Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 2008, 283:35724-35734.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35724-35734
-
-
Garcia-Roves, P.M.1
-
35
-
-
80053163909
-
AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise
-
O'Neill H.M., et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16092-16097.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16092-16097
-
-
O'Neill, H.M.1
-
36
-
-
84903701510
-
AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity
-
Lantier L., et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 2014, 28:3211-3224.
-
(2014)
FASEB J.
, vol.28
, pp. 3211-3224
-
-
Lantier, L.1
-
37
-
-
0031425839
-
AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle
-
Merrill G.F., et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 1997, 273:E1107-E1112.
-
(1997)
Am. J. Physiol.
, vol.273
, pp. E1107-E1112
-
-
Merrill, G.F.1
-
38
-
-
0029978799
-
Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise
-
Winder W.W., Hardie D.G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 1996, 270:E299-E304.
-
(1996)
Am. J. Physiol.
, vol.270
, pp. E299-E304
-
-
Winder, W.W.1
Hardie, D.G.2
-
39
-
-
0030901556
-
Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase
-
Hutber C.A., et al. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am. J. Physiol. 1997, 272:E262-E266.
-
(1997)
Am. J. Physiol.
, vol.272
, pp. E262-E266
-
-
Hutber, C.A.1
-
40
-
-
0031009673
-
Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle
-
Vavvas D., et al. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J. Biol. Chem. 1997, 272:13255-13261.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 13255-13261
-
-
Vavvas, D.1
-
41
-
-
84904764021
-
AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice
-
O'Neill H.M., et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 2014, 57:1693-1702.
-
(2014)
Diabetologia
, vol.57
, pp. 1693-1702
-
-
O'Neill, H.M.1
-
42
-
-
11144305245
-
Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise
-
Roepstorff C., et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am. J. Physiol. Endocrinol. Metab. 2005, 288:E133-E142.
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.288
, pp. E133-E142
-
-
Roepstorff, C.1
-
43
-
-
58249096195
-
α2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise
-
Miura S., et al. α2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. Am. J. Physiol. Endocrinol. Metab. 2009, 296:E47-E55.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
, pp. E47-E55
-
-
Miura, S.1
-
44
-
-
57049097476
-
AMPK-independent pathways regulate skeletal muscle fatty acid oxidation
-
Dzamko N., et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J. Physiol. 2008, 586:5819-5831.
-
(2008)
J. Physiol.
, vol.586
, pp. 5819-5831
-
-
Dzamko, N.1
-
45
-
-
84876527763
-
LKB1 regulates lipid oxidation during exercise independently of AMPK
-
Jeppesen J., et al. LKB1 regulates lipid oxidation during exercise independently of AMPK. Diabetes 2013, 62:1490-1499.
-
(2013)
Diabetes
, vol.62
, pp. 1490-1499
-
-
Jeppesen, J.1
-
46
-
-
79953297052
-
Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent
-
Jeppesen J., et al. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent. J. Lipid Res. 2011, 52:699-711.
-
(2011)
J. Lipid Res.
, vol.52
, pp. 699-711
-
-
Jeppesen, J.1
-
47
-
-
84930606183
-
AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice
-
Published online January 21, 2015
-
Fentz J., et al. AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice. FASEB J. 2015, Published online January 21, 2015. 10.1096/fj.14-266650.
-
(2015)
FASEB J.
-
-
Fentz, J.1
-
48
-
-
84880949120
-
Exercise, GLUT4, and skeletal muscle glucose uptake
-
Richter E.A., Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93:993-1017.
-
(2013)
Physiol. Rev.
, vol.93
, pp. 993-1017
-
-
Richter, E.A.1
Hargreaves, M.2
-
49
-
-
84865152468
-
The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism
-
Szekeres F., et al. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2012, 303:E524-E533.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.303
, pp. E524-E533
-
-
Szekeres, F.1
-
50
-
-
84962050593
-
Deletion of both Rab-GTPase-activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport
-
Chadt A., et al. Deletion of both Rab-GTPase-activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport. Diabetes 2015, 64:746-759.
-
(2015)
Diabetes
, vol.64
, pp. 746-759
-
-
Chadt, A.1
-
51
-
-
84981543785
-
The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle
-
Published online January 9, 2015
-
Stockli J., et al. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle. Diabetes 2015, Published online January 9, 2015. 10.2337/db13-1489.
-
(2015)
Diabetes
-
-
Stockli, J.1
-
52
-
-
0035039274
-
AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise
-
Musi N., et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 2001, 50:921-927.
-
(2001)
Diabetes
, vol.50
, pp. 921-927
-
-
Musi, N.1
-
53
-
-
0036299982
-
Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes
-
Musi N., et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002, 51:2074-2081.
-
(2002)
Diabetes
, vol.51
, pp. 2074-2081
-
-
Musi, N.1
-
54
-
-
0031849916
-
Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
-
Hayashi T., et al. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998, 47:1369-1373.
-
(1998)
Diabetes
, vol.47
, pp. 1369-1373
-
-
Hayashi, T.1
-
55
-
-
0345832116
-
Knockout of the α2 but not α1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle
-
Jorgensen S.B., et al. Knockout of the α2 but not α1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 2004, 279:1070-1079.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 1070-1079
-
-
Jorgensen, S.B.1
-
56
-
-
84901725138
-
A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators
-
Lai Y.C., et al. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem. J. 2014, 460:363-375.
-
(2014)
Biochem. J.
, vol.460
, pp. 363-375
-
-
Lai, Y.C.1
-
57
-
-
69049099087
-
Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle
-
Pehmoller C., et al. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E665-E675.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
, pp. E665-E675
-
-
Pehmoller, C.1
-
58
-
-
33745194515
-
AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits
-
Treebak J.T., et al. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 2006, 55:2051-2058.
-
(2006)
Diabetes
, vol.55
, pp. 2051-2058
-
-
Treebak, J.T.1
-
59
-
-
19444387591
-
2+-dependent mechanism in slow-twitch rat soleus muscle
-
2+-dependent mechanism in slow-twitch rat soleus muscle. Am. J. Physiol. Endocrinol. Metab. 2005, 288:E1062-E1066.
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.288
, pp. E1062-E1066
-
-
Wright, D.C.1
-
61
-
-
76849083600
-
AMPK-mediated regulation of transcription in skeletal muscle
-
McGee S.L., Hargreaves M. AMPK-mediated regulation of transcription in skeletal muscle. Clin. Sci. (Lond.) 2010, 118:507-518.
-
(2010)
Clin. Sci. (Lond.)
, vol.118
, pp. 507-518
-
-
McGee, S.L.1
Hargreaves, M.2
-
62
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
Jager S., et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12017-12022.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
-
63
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto C., et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11:213-219.
-
(2010)
Cell Metab.
, vol.11
, pp. 213-219
-
-
Canto, C.1
-
64
-
-
0034597816
-
Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation
-
McKinsey T.A., et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000, 408:106-111.
-
(2000)
Nature
, vol.408
, pp. 106-111
-
-
McKinsey, T.A.1
-
65
-
-
84905281352
-
Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress
-
McGee S.L., et al. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress. FASEB J. 2014, 28:3384-3395.
-
(2014)
FASEB J.
, vol.28
, pp. 3384-3395
-
-
McGee, S.L.1
-
66
-
-
38949196761
-
PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle
-
Leick L., et al. PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 294:E463-E474.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.294
, pp. E463-E474
-
-
Leick, L.1
-
67
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
Zong H., et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:15983-15987.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 15983-15987
-
-
Zong, H.1
-
68
-
-
33846580517
-
Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis
-
Reznick R.M., et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007, 5:151-156.
-
(2007)
Cell Metab.
, vol.5
, pp. 151-156
-
-
Reznick, R.M.1
-
69
-
-
84885634581
-
Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
-
Tanner C.B., et al. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am. J. Physiol. Endocrinol. Metab. 2013, 305:E1018-E1029.
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.305
, pp. E1018-E1029
-
-
Tanner, C.B.1
-
70
-
-
0033949848
-
Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle
-
Winder W.W., et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. (1985) 2000, 88:2219-2226.
-
(2000)
J. Appl. Physiol. (1985)
, vol.88
, pp. 2219-2226
-
-
Winder, W.W.1
-
71
-
-
69949129312
-
Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo
-
Lee-Young R.S., et al. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J. Biol. Chem. 2009, 284:23925-23934.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 23925-23934
-
-
Lee-Young, R.S.1
-
72
-
-
0035947235
-
A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle
-
Mu J., et al. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 2001, 7:1085-1094.
-
(2001)
Mol. Cell
, vol.7
, pp. 1085-1094
-
-
Mu, J.1
-
73
-
-
82855169509
-
Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles
-
Grumati P., et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 2011, 7:1415-1423.
-
(2011)
Autophagy
, vol.7
, pp. 1415-1423
-
-
Grumati, P.1
-
74
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
-
He C., et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012, 481:511-515.
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
-
75
-
-
84855532023
-
AMPK promotes skeletal muscle autophagy through activation of Forkhead FoxO3a and interaction with Ulk1
-
Sanchez A.M., et al. AMPK promotes skeletal muscle autophagy through activation of Forkhead FoxO3a and interaction with Ulk1. J. Cell. Biochem. 2012, 113:695-710.
-
(2012)
J. Cell. Biochem.
, vol.113
, pp. 695-710
-
-
Sanchez, A.M.1
-
76
-
-
84919765112
-
Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity
-
Lo Verso F., et al. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 2014, 10:1883-1894.
-
(2014)
Autophagy
, vol.10
, pp. 1883-1894
-
-
Lo Verso, F.1
-
77
-
-
84882645143
-
Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration
-
Saclier M., et al. Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS J. 2013, 280:4118-4130.
-
(2013)
FEBS J.
, vol.280
, pp. 4118-4130
-
-
Saclier, M.1
-
78
-
-
84874301759
-
Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration
-
Saclier M., et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 2013, 31:384-396.
-
(2013)
Stem Cells
, vol.31
, pp. 384-396
-
-
Saclier, M.1
-
79
-
-
34248997759
-
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
-
Arnold L., et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007, 204:1057-1069.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1057-1069
-
-
Arnold, L.1
-
80
-
-
65649108647
-
Berberine suppresses proinflammatory responses through AMPK activation in macrophages
-
Jeong H.W., et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 2009, 296:E955-E964.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
, pp. E955-E964
-
-
Jeong, H.W.1
-
81
-
-
58849115949
-
Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype
-
Sag D., et al. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 2008, 181:8633-8641.
-
(2008)
J. Immunol.
, vol.181
, pp. 8633-8641
-
-
Sag, D.1
-
82
-
-
52649141738
-
Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury
-
Zhao X., et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295:L497-L504.
-
(2008)
Am. J. Physiol. Lung Cell. Mol. Physiol.
, vol.295
, pp. L497-L504
-
-
Zhao, X.1
-
83
-
-
84874544167
-
Inhibition of AMP-activated protein kinase accentuates lipopolysaccharide-induced lung endothelial barrier dysfunction and lung injury in vivo
-
Xing J., et al. Inhibition of AMP-activated protein kinase accentuates lipopolysaccharide-induced lung endothelial barrier dysfunction and lung injury in vivo. Am. J. Pathol. 2013, 182:1021-1030.
-
(2013)
Am. J. Pathol.
, vol.182
, pp. 1021-1030
-
-
Xing, J.1
-
84
-
-
84881356321
-
AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
-
Mounier R., et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013, 18:251-264.
-
(2013)
Cell Metab.
, vol.18
, pp. 251-264
-
-
Mounier, R.1
-
85
-
-
84862517728
-
Cancer stem cells: current status and evolving complexities
-
Visvader J.E., Lindeman G.J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012, 10:717-728.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 717-728
-
-
Visvader, J.E.1
Lindeman, G.J.2
-
86
-
-
84872281980
-
Satellite cells and the muscle stem cell niche
-
Yin H., et al. Satellite cells and the muscle stem cell niche. Physiol. Rev. 2013, 93:23-67.
-
(2013)
Physiol. Rev.
, vol.93
, pp. 23-67
-
-
Yin, H.1
-
87
-
-
84907899129
-
Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis
-
Shan T., et al. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 2014, 32:2893-2907.
-
(2014)
Stem Cells
, vol.32
, pp. 2893-2907
-
-
Shan, T.1
-
88
-
-
84898023111
-
FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal
-
Gopinath S.D., et al. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep. 2014, 2:414-426.
-
(2014)
Stem Cell Rep.
, vol.2
, pp. 414-426
-
-
Gopinath, S.D.1
-
89
-
-
34247264995
-
Muscle satellite cells and endothelial cells: close neighbors and privileged partners
-
Christov C., et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 2007, 18:1397-1409.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 1397-1409
-
-
Christov, C.1
-
90
-
-
69249249201
-
Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal
-
Abou-Khalil R., et al. Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 2009, 5:298-309.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 298-309
-
-
Abou-Khalil, R.1
-
91
-
-
0035903028
-
Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice
-
Ylikorkala A., et al. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 2001, 293:1323-1326.
-
(2001)
Science
, vol.293
, pp. 1323-1326
-
-
Ylikorkala, A.1
-
92
-
-
77956205122
-
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
-
Simsek T., et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010, 7:380-390.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 380-390
-
-
Simsek, T.1
-
93
-
-
84874708595
-
Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate
-
Rafalski V.A., et al. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell Sci. 2012, 125:5597-5608.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 5597-5608
-
-
Rafalski, V.A.1
-
94
-
-
84924857323
-
+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells
-
+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015, 16:171-183.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 171-183
-
-
Ryall, J.G.1
-
95
-
-
84891352333
-
Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells
-
de Meester C., et al. Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovasc. Res. 2014, 101:20-29.
-
(2014)
Cardiovasc. Res.
, vol.101
, pp. 20-29
-
-
de Meester, C.1
-
96
-
-
80051845830
-
Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation
-
Zhu Z., et al. Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation. PLoS ONE 2011, 6:e23554.
-
(2011)
PLoS ONE
, vol.6
, pp. e23554
-
-
Zhu, Z.1
-
97
-
-
84903149534
-
Alert
-
Alert. Nature 2014, 510:393-396.
-
(2014)
Nature
, vol.510
, pp. 393-396
-
-
Rodgers, J.T.1
-
98
-
-
68549106237
-
Important role for AMPKα1 in limiting skeletal muscle cell hypertrophy
-
Mounier R., et al. Important role for AMPKα1 in limiting skeletal muscle cell hypertrophy. FASEB J. 2009, 23:2264-2273.
-
(2009)
FASEB J.
, vol.23
, pp. 2264-2273
-
-
Mounier, R.1
-
99
-
-
77956623574
-
Coordinated maintenance of muscle cell size control by AMP-activated protein kinase
-
Lantier L., et al. Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J. 2010, 24:3555-3561.
-
(2010)
FASEB J.
, vol.24
, pp. 3555-3561
-
-
Lantier, L.1
-
100
-
-
80051711502
-
Antagonistic control of muscle cell size by AMPK and mTORC1
-
Mounier R., et al. Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 2011, 10:2640-2646.
-
(2011)
Cell Cycle
, vol.10
, pp. 2640-2646
-
-
Mounier, R.1
-
101
-
-
84864283300
-
Muscles, exercise and obesity: skeletal muscle as a secretory organ
-
Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8:457-465.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 457-465
-
-
Pedersen, B.K.1
Febbraio, M.A.2
-
102
-
-
33750859187
-
Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase
-
Carey A.L., et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 2006, 55:2688-2697.
-
(2006)
Diabetes
, vol.55
, pp. 2688-2697
-
-
Carey, A.L.1
-
103
-
-
79959568294
-
The effect of exercise induced cytokines on insulin stimulated glucose transport in C2C12 cells
-
Gray S.R., Kamolrat T. The effect of exercise induced cytokines on insulin stimulated glucose transport in C2C12 cells. Cytokine 2011, 55:221-228.
-
(2011)
Cytokine
, vol.55
, pp. 221-228
-
-
Gray, S.R.1
Kamolrat, T.2
-
104
-
-
84910010990
-
Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation
-
Huh J.Y., et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J. Clin. Endocrinol. Metab. 2014, 99:E2154-E2161.
-
(2014)
J. Clin. Endocrinol. Metab.
, vol.99
, pp. E2154-E2161
-
-
Huh, J.Y.1
-
105
-
-
84877147751
-
Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle
-
Shan T., et al. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J. 2013, 27:1981-1989.
-
(2013)
FASEB J.
, vol.27
, pp. 1981-1989
-
-
Shan, T.1
-
106
-
-
59649119311
-
Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle
-
Glund S., et al. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle. Endocrinology 2009, 150:600-606.
-
(2009)
Endocrinology
, vol.150
, pp. 600-606
-
-
Glund, S.1
-
107
-
-
84887393333
-
Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo
-
Lauritzen H.P., et al. Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo. Diabetes 2013, 62:3081-3092.
-
(2013)
Diabetes
, vol.62
, pp. 3081-3092
-
-
Lauritzen, H.P.1
-
108
-
-
84884813468
-
AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy
-
Ljubicic V., Jasmin B.J. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol. Med. 2013, 19:614-624.
-
(2013)
Trends Mol. Med.
, vol.19
, pp. 614-624
-
-
Ljubicic, V.1
Jasmin, B.J.2
-
109
-
-
84867920817
-
Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model
-
Jahnke V.E., et al. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model. Skelet. Muscle 2012, 2:16.
-
(2012)
Skelet. Muscle
, vol.2
, pp. 16
-
-
Jahnke, V.E.1
-
110
-
-
84860902605
-
A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy
-
Desguerre I., et al. A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy. Muscle Nerve 2012, 45:803-814.
-
(2012)
Muscle Nerve
, vol.45
, pp. 803-814
-
-
Desguerre, I.1
-
111
-
-
0025347389
-
Muscle fibre type and aetiology of obesity
-
Wade A.J., et al. Muscle fibre type and aetiology of obesity. Lancet 1990, 335:805-808.
-
(1990)
Lancet
, vol.335
, pp. 805-808
-
-
Wade, A.J.1
-
112
-
-
0030882263
-
Muscle fibre type composition in infant and adult populations and relationships with obesity
-
Kriketos A.D., et al. Muscle fibre type composition in infant and adult populations and relationships with obesity. Int. J. Obes. Relat. Metab. Disord. 1997, 21:796-801.
-
(1997)
Int. J. Obes. Relat. Metab. Disord.
, vol.21
, pp. 796-801
-
-
Kriketos, A.D.1
-
113
-
-
0034481551
-
A decade of aerobic endurance training: histological evidence for fibre type transformation
-
Thayer R., et al. A decade of aerobic endurance training: histological evidence for fibre type transformation. J. Sports Med. Phys. Fitness 2000, 40:284-289.
-
(2000)
J. Sports Med. Phys. Fitness
, vol.40
, pp. 284-289
-
-
Thayer, R.1
-
114
-
-
0031978984
-
Exercise, glucose transport, and insulin sensitivity
-
Goodyear L.J., Kahn B.B. Exercise, glucose transport, and insulin sensitivity. Annu. Rev. Med. 1998, 49:235-261.
-
(1998)
Annu. Rev. Med.
, vol.49
, pp. 235-261
-
-
Goodyear, L.J.1
Kahn, B.B.2
-
115
-
-
0034219151
-
American College of Sports Medicine position stand. Exercise and type 2 diabetes
-
Albright A., et al. American College of Sports Medicine position stand. Exercise and type 2 diabetes. Med. Sci. Sports Exerc. 2000, 32:1345-1360.
-
(2000)
Med. Sci. Sports Exerc.
, vol.32
, pp. 1345-1360
-
-
Albright, A.1
-
116
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
-
Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006, 127:1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
-
117
-
-
77950348878
-
AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol
-
Um J.H., et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010, 59:554-563.
-
(2010)
Diabetes
, vol.59
, pp. 554-563
-
-
Um, J.H.1
-
118
-
-
48449094498
-
AMPK and PPARδ agonists are exercise mimetics
-
Narkar V.A., et al. AMPK and PPARδ agonists are exercise mimetics. Cell 2008, 134:405-415.
-
(2008)
Cell
, vol.134
, pp. 405-415
-
-
Narkar, V.A.1
-
119
-
-
84906853694
-
Metabolic modulators of the exercise response: doping control analysis of an agonist of the peroxisome proliferator-activated receptor delta (GW501516) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)
-
Pokrywka A., et al. Metabolic modulators of the exercise response: doping control analysis of an agonist of the peroxisome proliferator-activated receptor delta (GW501516) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). J. Physiol. Pharmacol. 2014, 65:469-476.
-
(2014)
J. Physiol. Pharmacol.
, vol.65
, pp. 469-476
-
-
Pokrywka, A.1
-
120
-
-
84899874179
-
The effects of age and muscle contraction on AMPK activity and heterotrimer composition
-
Hardman S.E., et al. The effects of age and muscle contraction on AMPK activity and heterotrimer composition. Exp. Gerontol. 2014, 55:120-128.
-
(2014)
Exp. Gerontol.
, vol.55
, pp. 120-128
-
-
Hardman, S.E.1
-
121
-
-
84904799195
-
Reduced skeletal muscle AMPK and mitochondrial markers do not promote age-induced insulin resistance
-
Bujak A.L., et al. Reduced skeletal muscle AMPK and mitochondrial markers do not promote age-induced insulin resistance. J. Appl. Physiol. (1985) 2014, 117:171-179.
-
(2014)
J. Appl. Physiol. (1985)
, vol.117
, pp. 171-179
-
-
Bujak, A.L.1
|