-
1
-
-
84864150600
-
Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
-
1 Exner, N., et al. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31 (2012), 3038–3062.
-
(2012)
EMBO J.
, vol.31
, pp. 3038-3062
-
-
Exner, N.1
-
2
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
2 Kitada, T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392 (1998), 605–608.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
-
3
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
3 Valente, E.M., et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304 (2004), 1158–1160.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
-
4
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
4 Narendra, D.P., et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol., 8, 2010, e1000298.
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
-
5
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
5 Vives-Bauza, C., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. U.S.A. 107 (2010), 378–383.
-
(2010)
Proc. Natl Acad. Sci. U.S.A.
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
-
6
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
6 Matsuda, N., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189 (2010), 211–221.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
-
7
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
7 Narendra, D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183 (2008), 795–803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
-
8
-
-
79957949190
-
UBCH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids
-
8 Wenzel, D.M., et al. UBCH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids. Nature 474 (2011), 105–108.
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
-
9
-
-
84873045973
-
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
-
9 Lazarou, M., et al. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200 (2013), 163–172.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
-
10
-
-
84881260124
-
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
-
10 Iguchi, M., et al. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288 (2013), 22019–22032.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
-
11
-
-
84879885169
-
Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
-
11 Zheng, X., Hunter, T., Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23 (2013), 886–897.
-
(2013)
Cell Res.
, vol.23
, pp. 886-897
-
-
Zheng, X.1
Hunter, T.2
-
12
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domain
-
12 Chaugule, V.K., et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30 (2011), 2853–2867.
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
-
13
-
-
84879251778
-
Structure of Parkin reveals mechanisms for ubiquitin ligase activation
-
13 Trempe, J.F., et al. Structure of Parkin reveals mechanisms for ubiquitin ligase activation. Science 340 (2013), 1451–1455.
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
-
14
-
-
84881477223
-
Structure of the human Parkin ligase domain in an autoinhibited state
-
14 Wauer, T., Komander, D., Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32 (2013), 2099–2112.
-
(2013)
EMBO J.
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
15
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
15 Shiba-Fukushima, K., et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep., 2, 2012, 1002.
-
(2012)
Sci. Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
-
16
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65
-
16 Kondapalli, C., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol., 2, 2012, 120080.
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
-
17
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
17 Kane, L.A., et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205 (2014), 143–153.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
-
18
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate Parkin
-
18 Koyano, F., et al. Ubiquitin is phosphorylated by PINK1 to activate Parkin. Nature 510 (2014), 162–166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
-
19
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
19 Kazlauskaite, A., et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460 (2014), 127–139.
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
-
20
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
20 Ordureau, A., et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56 (2014), 360–375.
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
-
21
-
-
84919629959
-
Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
-
21 Shiba-Fukushima, K., et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS genetics., 10, 2014, e1004861.
-
(2014)
PLoS genetics.
, vol.10
, pp. e1004861
-
-
Shiba-Fukushima, K.1
-
22
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
22 Okatsu, K., et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 209 (2015), 111–128.
-
(2015)
J Cell Biol.
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
-
23
-
-
84938742614
-
Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
-
23 Kazlauskaite, A., et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16 (2015), 939–954.
-
(2015)
EMBO Rep.
, vol.16
, pp. 939-954
-
-
Kazlauskaite, A.1
-
24
-
-
84959577088
-
Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation
-
24 Yamano, K., et al. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J Biol Chem. 290 (2015), 25199–25211.
-
(2015)
J Biol Chem.
, vol.290
, pp. 25199-25211
-
-
Yamano, K.1
-
25
-
-
84944441112
-
A Ubl/ubiquitin switch in the activation of Parkin
-
25 Sauve, V., et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34 (2015), 2492–2505.
-
(2015)
EMBO J.
, vol.34
, pp. 2492-2505
-
-
Sauve, V.1
-
26
-
-
84939795423
-
Mechanism of phospho-ubiquitin-induced PARKIN activation
-
26 Wauer, T., et al. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524 (2015), 370–374.
-
(2015)
Nature
, vol.524
, pp. 370-374
-
-
Wauer, T.1
-
27
-
-
84944441665
-
Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
-
27 Kumar, A., et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34 (2015), 2506–2521.
-
(2015)
EMBO J.
, vol.34
, pp. 2506-2521
-
-
Kumar, A.1
-
28
-
-
84921369563
-
The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease
-
28 Pickrell, A.M., Youle, R.J., The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease. Neuron 85 (2015), 257–273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
30
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
30 Sarraf, S.A., et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496 (2013), 372–376.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
-
31
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
31 Chan, N.C., et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20 (2011), 1726–1737.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
-
32
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
32 Lazarou, M., et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 22 (2012), 320–333.
-
(2012)
Dev. Cell.
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
-
33
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
33 Tanaka, A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191 (2010), 1367–1380.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
-
34
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
34 Yoshii, S.R., et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286 (2011), 19630–19640.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
-
35
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
35 Wang, X., et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147 (2011), 893–906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
-
36
-
-
84923167247
-
USP30 and Parkin homeostatically regulate atypical ubiquitin chains on mitochondria
-
36 Cunningham, C.N., et al. USP30 and Parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17 (2015), 160–169.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 160-169
-
-
Cunningham, C.N.1
-
37
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
37 Bingol, B., et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510 (2014), 370–375.
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
-
38
-
-
84920892842
-
USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin
-
38 Durcan, T.M., et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin. EMBO J. 33 (2014), 2473–2491.
-
(2014)
EMBO J.
, vol.33
, pp. 2473-2491
-
-
Durcan, T.M.1
-
39
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
39 Cornelissen, T., et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23 (2014), 5227–5242.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5227-5242
-
-
Cornelissen, T.1
-
40
-
-
84929676117
-
Deubiquitinating enzymes regulate PARK2-mediated mitophagy
-
40 Wang, Y., et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11 (2015), 595–606.
-
(2015)
Autophagy
, vol.11
, pp. 595-606
-
-
Wang, Y.1
-
41
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
41 Stolz, A., et al. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 (2014), 495–501.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 495-501
-
-
Stolz, A.1
-
42
-
-
84908065760
-
Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
-
42 Wong, Y.C., Holzbaur, E.L., Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E4439–E4448.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E4439-E4448
-
-
Wong, Y.C.1
Holzbaur, E.L.2
-
43
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
43 Lazarou, M., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
-
44
-
-
84951930787
-
The PINK1–PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
-
44 Heo, J.M., et al. The PINK1–PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol. Cell 60 (2015), 7–20.
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
-
45
-
-
84922235969
-
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
-
45 Wauer, T., et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34 (2015), 307–325.
-
(2015)
EMBO J.
, vol.34
, pp. 307-325
-
-
Wauer, T.1
-
46
-
-
84929691103
-
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
-
46 Ordureau, A., et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 6637–6642.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 6637-6642
-
-
Ordureau, A.1
-
47
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
47 Richter, B., et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), 4039–4044.
-
(2016)
Proc. Natl. Acad. Sci. U.S.A.
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
-
48
-
-
84940792247
-
Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover
-
48 Swaney, D.L., et al. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep. 16 (2015), 1131–1144.
-
(2015)
EMBO Rep.
, vol.16
, pp. 1131-1144
-
-
Swaney, D.L.1
-
49
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
49 Wild, P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 333 (2011), 228–233.
-
(2011)
Science.
, vol.333
, pp. 228-233
-
-
Wild, P.1
-
50
-
-
84940753095
-
TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation
-
50 Matsumoto, G., et al. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24 (2015), 4429–4442.
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. 4429-4442
-
-
Matsumoto, G.1
-
51
-
-
18244385269
-
Adult-onset primary open-angle glaucoma caused by mutations in optineurin
-
51 Rezaie, T., et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295 (2002), 1077–1079.
-
(2002)
Science
, vol.295
, pp. 1077-1079
-
-
Rezaie, T.1
-
52
-
-
77952419246
-
Mutations of optineurin in amyotrophic lateral sclerosis
-
52 Maruyama, H., et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465 (2010), 223–226.
-
(2010)
Nature
, vol.465
, pp. 223-226
-
-
Maruyama, H.1
-
53
-
-
84928695187
-
Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
-
53 Freischmidt, A., et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18 (2015), 631–636.
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 631-636
-
-
Freischmidt, A.1
-
54
-
-
84945749129
-
Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
-
54 Cirulli, E.T., et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347 (2015), 1436–1441.
-
(2015)
Science
, vol.347
, pp. 1436-1441
-
-
Cirulli, E.T.1
-
55
-
-
79956006929
-
Copy number variations on chromosome 12q14 in patients with normal tension glaucoma
-
55 Fingert, J.H., et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum. Mol. Genet. 20 (2011), 2482–2494.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 2482-2494
-
-
Fingert, J.H.1
-
56
-
-
84860650335
-
Mitochondrial dysfunction in ALS
-
56 Cozzolino, M., Carri, M.T., Mitochondrial dysfunction in ALS. Prog. Neurobiol. 97 (2012), 54–66.
-
(2012)
Prog. Neurobiol.
, vol.97
, pp. 54-66
-
-
Cozzolino, M.1
Carri, M.T.2
-
57
-
-
84871328016
-
Oxidative stress and mitochondrial dysfunction in glaucoma
-
57 Chrysostomou, V., et al. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr. Opin. Pharmacol. 13 (2013), 12–15.
-
(2013)
Curr. Opin. Pharmacol.
, vol.13
, pp. 12-15
-
-
Chrysostomou, V.1
-
58
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
58 Thurston, T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10 (2009), 1215–1221.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
-
59
-
-
34547924464
-
Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP
-
59 Zhu, G., et al. Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 17 (2007), 1438–1443.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1438-1443
-
-
Zhu, G.1
-
60
-
-
0034665047
-
Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription
-
60 Bonnard, M., et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J. 19 (2000), 4976–4985.
-
(2000)
EMBO J.
, vol.19
, pp. 4976-4985
-
-
Bonnard, M.1
-
61
-
-
79951642032
-
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
-
61 Nakahira, K., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12 (2011), 222–230.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 222-230
-
-
Nakahira, K.1
-
62
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
62 Itakura, E., et al. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125:Pt 6 (2012), 1488–1499.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
-
63
-
-
78649300971
-
p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
63 Narendra, D., et al. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6 (2010), 1090–1106.
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
-
64
-
-
84898652320
-
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
-
64 Yamano, K., et al. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife, 3, 2014, e01612.
-
(2014)
Elife
, vol.3
, pp. e01612
-
-
Yamano, K.1
-
65
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
65 Itakura, E., et al. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151 (2012), 1256–1269.
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
-
66
-
-
84901381389
-
The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
-
66 Jiang, P., et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25 (2014), 1327–1337.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1327-1337
-
-
Jiang, P.1
-
67
-
-
84901308155
-
Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila
-
67 Takats, S., et al. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell 25 (2014), 1338–1354.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1338-1354
-
-
Takats, S.1
-
68
-
-
84928550400
-
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
68 Diao, J., et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520 (2015), 563–566.
-
(2015)
Nature
, vol.520
, pp. 563-566
-
-
Diao, J.1
-
69
-
-
84920448565
-
PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
69 McEwan, D.G., et al. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell. 57 (2015), 39–54.
-
(2015)
Mol. Cell.
, vol.57
, pp. 39-54
-
-
McEwan, D.G.1
-
70
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
70 Itakura, E., et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19 (2008), 5360–5372.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
-
71
-
-
84920984853
-
PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection
-
71 McEwan, D.G., et al. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe. 17 (2015), 58–71.
-
(2015)
Cell Host Microbe.
, vol.17
, pp. 58-71
-
-
McEwan, D.G.1
-
72
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
72 Sardiello, M., et al. A gene network regulating lysosomal biogenesis and function. Science 325 (2009), 473–477.
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
73
-
-
84939820927
-
MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5
-
73 Nezich, C.L., et al. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210 (2015), 435–450.
-
(2015)
J. Cell Biol.
, vol.210
, pp. 435-450
-
-
Nezich, C.L.1
-
74
-
-
84954393355
-
Mitochondrial and lysosomal biogenesis are activated following PINK1/Parkin-mediated mitophagy
-
74 Ivankovic, D., et al. Mitochondrial and lysosomal biogenesis are activated following PINK1/Parkin-mediated mitophagy. J. Neurochem. 136 (2016), 388–402.
-
(2016)
J. Neurochem.
, vol.136
, pp. 388-402
-
-
Ivankovic, D.1
-
75
-
-
84948991793
-
Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice
-
75 Gong, G., et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 350, 2015, aad2459.
-
(2015)
Science
, vol.350
, pp. aad2459
-
-
Gong, G.1
-
76
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
76 Chen, Y., Dorn, G.W. 2nd, PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340 (2013), 471–475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
77
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin
-
77 Clark, I.E., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin. Nature 441 (2006), 1162–1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
-
78
-
-
84940776745
-
(Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation
-
78 Fiesel, F.C., et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 16 (2015), 1114–1130.
-
(2015)
EMBO Rep
, vol.16
, pp. 1114-1130
-
-
Fiesel, F.C.1
-
79
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
79 McLelland, G.L., et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33 (2014), 282–295.
-
(2014)
EMBO J.
, vol.33
, pp. 282-295
-
-
McLelland, G.L.1
-
80
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
80 Greene, A.W., et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13 (2012), 378–385.
-
(2012)
EMBO Rep.
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
-
81
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
81 Deas, E., et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20 (2011), 867–879.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 867-879
-
-
Deas, E.1
-
82
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
82 Jin, S.M., et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191 (2010), 933–942.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
-
83
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
-
83 Meissner, C., et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117 (2011), 856–867.
-
(2011)
J. Neurochem.
, vol.117
, pp. 856-867
-
-
Meissner, C.1
-
84
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
84 Yamano, K., Youle, R.J., PINK1 is degraded through the N-end rule pathway. Autophagy 9 (2013), 1758–1769.
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
85
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
-
85 Jin, S.M., Youle, R.J., The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9 (2013), 1750–1757.
-
(2013)
Autophagy
, vol.9
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
86
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
86 Hasson, S.A., et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504 (2013), 291–295.
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
-
87
-
-
84911946743
-
Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder
-
87 Lu, W., et al. Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat. Commun., 5, 2014, 4930.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4930
-
-
Lu, W.1
-
88
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
88 Okatsu, K., et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun., 3, 2012, 1016.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1016
-
-
Okatsu, K.1
-
89
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
89 Lamb, C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14 (2013), 759–774.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
|