메뉴 건너뛰기




Volumn 26, Issue 10, 2016, Pages 733-744

Deciphering the Molecular Signals of PINK1/Parkin Mitophagy

Author keywords

autophagy; mitophagy; Parkin; Parkinson's disease; PINK1; ubiquitin

Indexed keywords

PARKIN; PINK1 PROTEIN; POLYUBIQUITIN; PROTEIN SERINE THREONINE KINASE; TRAF ASSOCIATED NUCLEAR FACTOR KAPPA B ACTIVATOR BINDING KINASE 1; UBIQUITIN; UNCLASSIFIED DRUG; PROTEIN KINASE; PTEN-INDUCED PUTATIVE KINASE; UBIQUITIN PROTEIN LIGASE;

EID: 84991826660     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.05.008     Document Type: Review
Times cited : (514)

References (89)
  • 1
    • 84864150600 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
    • 1 Exner, N., et al. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31 (2012), 3038–3062.
    • (2012) EMBO J. , vol.31 , pp. 3038-3062
    • Exner, N.1
  • 2
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • 2 Kitada, T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392 (1998), 605–608.
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1
  • 3
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson's disease caused by mutations in PINK1
    • 3 Valente, E.M., et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304 (2004), 1158–1160.
    • (2004) Science , vol.304 , pp. 1158-1160
    • Valente, E.M.1
  • 4
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • 4 Narendra, D.P., et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol., 8, 2010, e1000298.
    • (2010) PLoS Biol. , vol.8 , pp. e1000298
    • Narendra, D.P.1
  • 5
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    • 5 Vives-Bauza, C., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. U.S.A. 107 (2010), 378–383.
    • (2010) Proc. Natl Acad. Sci. U.S.A. , vol.107 , pp. 378-383
    • Vives-Bauza, C.1
  • 6
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • 6 Matsuda, N., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189 (2010), 211–221.
    • (2010) J. Cell Biol. , vol.189 , pp. 211-221
    • Matsuda, N.1
  • 7
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • 7 Narendra, D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183 (2008), 795–803.
    • (2008) J. Cell Biol. , vol.183 , pp. 795-803
    • Narendra, D.1
  • 8
    • 79957949190 scopus 로고    scopus 로고
    • UBCH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids
    • 8 Wenzel, D.M., et al. UBCH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids. Nature 474 (2011), 105–108.
    • (2011) Nature , vol.474 , pp. 105-108
    • Wenzel, D.M.1
  • 9
    • 84873045973 scopus 로고    scopus 로고
    • PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
    • 9 Lazarou, M., et al. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200 (2013), 163–172.
    • (2013) J. Cell Biol. , vol.200 , pp. 163-172
    • Lazarou, M.1
  • 10
    • 84881260124 scopus 로고    scopus 로고
    • Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
    • 10 Iguchi, M., et al. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288 (2013), 22019–22032.
    • (2013) J. Biol. Chem. , vol.288 , pp. 22019-22032
    • Iguchi, M.1
  • 11
    • 84879885169 scopus 로고    scopus 로고
    • Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
    • 11 Zheng, X., Hunter, T., Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23 (2013), 886–897.
    • (2013) Cell Res. , vol.23 , pp. 886-897
    • Zheng, X.1    Hunter, T.2
  • 12
    • 79960649509 scopus 로고    scopus 로고
    • Autoregulation of Parkin activity through its ubiquitin-like domain
    • 12 Chaugule, V.K., et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30 (2011), 2853–2867.
    • (2011) EMBO J. , vol.30 , pp. 2853-2867
    • Chaugule, V.K.1
  • 13
    • 84879251778 scopus 로고    scopus 로고
    • Structure of Parkin reveals mechanisms for ubiquitin ligase activation
    • 13 Trempe, J.F., et al. Structure of Parkin reveals mechanisms for ubiquitin ligase activation. Science 340 (2013), 1451–1455.
    • (2013) Science , vol.340 , pp. 1451-1455
    • Trempe, J.F.1
  • 14
    • 84881477223 scopus 로고    scopus 로고
    • Structure of the human Parkin ligase domain in an autoinhibited state
    • 14 Wauer, T., Komander, D., Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32 (2013), 2099–2112.
    • (2013) EMBO J. , vol.32 , pp. 2099-2112
    • Wauer, T.1    Komander, D.2
  • 15
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • 15 Shiba-Fukushima, K., et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep., 2, 2012, 1002.
    • (2012) Sci. Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1
  • 16
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65
    • 16 Kondapalli, C., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol., 2, 2012, 120080.
    • (2012) Open Biol. , vol.2 , pp. 120080
    • Kondapalli, C.1
  • 17
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
    • 17 Kane, L.A., et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205 (2014), 143–153.
    • (2014) J. Cell Biol. , vol.205 , pp. 143-153
    • Kane, L.A.1
  • 18
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate Parkin
    • 18 Koyano, F., et al. Ubiquitin is phosphorylated by PINK1 to activate Parkin. Nature 510 (2014), 162–166.
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 19
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
    • 19 Kazlauskaite, A., et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460 (2014), 127–139.
    • (2014) Biochem. J. , vol.460 , pp. 127-139
    • Kazlauskaite, A.1
  • 20
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
    • 20 Ordureau, A., et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56 (2014), 360–375.
    • (2014) Mol. Cell , vol.56 , pp. 360-375
    • Ordureau, A.1
  • 21
    • 84919629959 scopus 로고    scopus 로고
    • Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
    • 21 Shiba-Fukushima, K., et al. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS genetics., 10, 2014, e1004861.
    • (2014) PLoS genetics. , vol.10 , pp. e1004861
    • Shiba-Fukushima, K.1
  • 22
    • 84922794336 scopus 로고    scopus 로고
    • Phosphorylated ubiquitin chain is the genuine Parkin receptor
    • 22 Okatsu, K., et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 209 (2015), 111–128.
    • (2015) J Cell Biol. , vol.209 , pp. 111-128
    • Okatsu, K.1
  • 23
    • 84938742614 scopus 로고    scopus 로고
    • Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
    • 23 Kazlauskaite, A., et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16 (2015), 939–954.
    • (2015) EMBO Rep. , vol.16 , pp. 939-954
    • Kazlauskaite, A.1
  • 24
    • 84959577088 scopus 로고    scopus 로고
    • Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation
    • 24 Yamano, K., et al. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J Biol Chem. 290 (2015), 25199–25211.
    • (2015) J Biol Chem. , vol.290 , pp. 25199-25211
    • Yamano, K.1
  • 25
    • 84944441112 scopus 로고    scopus 로고
    • A Ubl/ubiquitin switch in the activation of Parkin
    • 25 Sauve, V., et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34 (2015), 2492–2505.
    • (2015) EMBO J. , vol.34 , pp. 2492-2505
    • Sauve, V.1
  • 26
    • 84939795423 scopus 로고    scopus 로고
    • Mechanism of phospho-ubiquitin-induced PARKIN activation
    • 26 Wauer, T., et al. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524 (2015), 370–374.
    • (2015) Nature , vol.524 , pp. 370-374
    • Wauer, T.1
  • 27
    • 84944441665 scopus 로고    scopus 로고
    • Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
    • 27 Kumar, A., et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34 (2015), 2506–2521.
    • (2015) EMBO J. , vol.34 , pp. 2506-2521
    • Kumar, A.1
  • 28
    • 84921369563 scopus 로고    scopus 로고
    • The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease
    • 28 Pickrell, A.M., Youle, R.J., The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease. Neuron 85 (2015), 257–273.
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 30
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • 30 Sarraf, S.A., et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496 (2013), 372–376.
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 31
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • 31 Chan, N.C., et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20 (2011), 1726–1737.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1726-1737
    • Chan, N.C.1
  • 32
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • 32 Lazarou, M., et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 22 (2012), 320–333.
    • (2012) Dev. Cell. , vol.22 , pp. 320-333
    • Lazarou, M.1
  • 33
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • 33 Tanaka, A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191 (2010), 1367–1380.
    • (2010) J. Cell Biol. , vol.191 , pp. 1367-1380
    • Tanaka, A.1
  • 34
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • 34 Yoshii, S.R., et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286 (2011), 19630–19640.
    • (2011) J. Biol. Chem. , vol.286 , pp. 19630-19640
    • Yoshii, S.R.1
  • 35
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • 35 Wang, X., et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147 (2011), 893–906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1
  • 36
    • 84923167247 scopus 로고    scopus 로고
    • USP30 and Parkin homeostatically regulate atypical ubiquitin chains on mitochondria
    • 36 Cunningham, C.N., et al. USP30 and Parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17 (2015), 160–169.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 160-169
    • Cunningham, C.N.1
  • 37
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    • 37 Bingol, B., et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510 (2014), 370–375.
    • (2014) Nature , vol.510 , pp. 370-375
    • Bingol, B.1
  • 38
    • 84920892842 scopus 로고    scopus 로고
    • USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin
    • 38 Durcan, T.M., et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin. EMBO J. 33 (2014), 2473–2491.
    • (2014) EMBO J. , vol.33 , pp. 2473-2491
    • Durcan, T.M.1
  • 39
    • 84920095272 scopus 로고    scopus 로고
    • The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
    • 39 Cornelissen, T., et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23 (2014), 5227–5242.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 5227-5242
    • Cornelissen, T.1
  • 40
    • 84929676117 scopus 로고    scopus 로고
    • Deubiquitinating enzymes regulate PARK2-mediated mitophagy
    • 40 Wang, Y., et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11 (2015), 595–606.
    • (2015) Autophagy , vol.11 , pp. 595-606
    • Wang, Y.1
  • 41
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • 41 Stolz, A., et al. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 (2014), 495–501.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 495-501
    • Stolz, A.1
  • 42
    • 84908065760 scopus 로고    scopus 로고
    • Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
    • 42 Wong, Y.C., Holzbaur, E.L., Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E4439–E4448.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E4439-E4448
    • Wong, Y.C.1    Holzbaur, E.L.2
  • 43
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • 43 Lazarou, M., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 44
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1–PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
    • 44 Heo, J.M., et al. The PINK1–PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol. Cell 60 (2015), 7–20.
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.M.1
  • 45
    • 84922235969 scopus 로고    scopus 로고
    • Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
    • 45 Wauer, T., et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34 (2015), 307–325.
    • (2015) EMBO J. , vol.34 , pp. 307-325
    • Wauer, T.1
  • 46
    • 84929691103 scopus 로고    scopus 로고
    • Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
    • 46 Ordureau, A., et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 6637–6642.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 6637-6642
    • Ordureau, A.1
  • 47
    • 84963566230 scopus 로고    scopus 로고
    • Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
    • 47 Richter, B., et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), 4039–4044.
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. 4039-4044
    • Richter, B.1
  • 48
    • 84940792247 scopus 로고    scopus 로고
    • Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover
    • 48 Swaney, D.L., et al. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep. 16 (2015), 1131–1144.
    • (2015) EMBO Rep. , vol.16 , pp. 1131-1144
    • Swaney, D.L.1
  • 49
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • 49 Wild, P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 333 (2011), 228–233.
    • (2011) Science. , vol.333 , pp. 228-233
    • Wild, P.1
  • 50
    • 84940753095 scopus 로고    scopus 로고
    • TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation
    • 50 Matsumoto, G., et al. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24 (2015), 4429–4442.
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 4429-4442
    • Matsumoto, G.1
  • 51
    • 18244385269 scopus 로고    scopus 로고
    • Adult-onset primary open-angle glaucoma caused by mutations in optineurin
    • 51 Rezaie, T., et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295 (2002), 1077–1079.
    • (2002) Science , vol.295 , pp. 1077-1079
    • Rezaie, T.1
  • 52
    • 77952419246 scopus 로고    scopus 로고
    • Mutations of optineurin in amyotrophic lateral sclerosis
    • 52 Maruyama, H., et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465 (2010), 223–226.
    • (2010) Nature , vol.465 , pp. 223-226
    • Maruyama, H.1
  • 53
    • 84928695187 scopus 로고    scopus 로고
    • Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
    • 53 Freischmidt, A., et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18 (2015), 631–636.
    • (2015) Nat. Neurosci. , vol.18 , pp. 631-636
    • Freischmidt, A.1
  • 54
    • 84945749129 scopus 로고    scopus 로고
    • Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
    • 54 Cirulli, E.T., et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347 (2015), 1436–1441.
    • (2015) Science , vol.347 , pp. 1436-1441
    • Cirulli, E.T.1
  • 55
    • 79956006929 scopus 로고    scopus 로고
    • Copy number variations on chromosome 12q14 in patients with normal tension glaucoma
    • 55 Fingert, J.H., et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum. Mol. Genet. 20 (2011), 2482–2494.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 2482-2494
    • Fingert, J.H.1
  • 56
    • 84860650335 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in ALS
    • 56 Cozzolino, M., Carri, M.T., Mitochondrial dysfunction in ALS. Prog. Neurobiol. 97 (2012), 54–66.
    • (2012) Prog. Neurobiol. , vol.97 , pp. 54-66
    • Cozzolino, M.1    Carri, M.T.2
  • 57
    • 84871328016 scopus 로고    scopus 로고
    • Oxidative stress and mitochondrial dysfunction in glaucoma
    • 57 Chrysostomou, V., et al. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr. Opin. Pharmacol. 13 (2013), 12–15.
    • (2013) Curr. Opin. Pharmacol. , vol.13 , pp. 12-15
    • Chrysostomou, V.1
  • 58
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • 58 Thurston, T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10 (2009), 1215–1221.
    • (2009) Nat. Immunol. , vol.10 , pp. 1215-1221
    • Thurston, T.L.1
  • 59
    • 34547924464 scopus 로고    scopus 로고
    • Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP
    • 59 Zhu, G., et al. Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 17 (2007), 1438–1443.
    • (2007) Curr. Biol. , vol.17 , pp. 1438-1443
    • Zhu, G.1
  • 60
    • 0034665047 scopus 로고    scopus 로고
    • Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription
    • 60 Bonnard, M., et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J. 19 (2000), 4976–4985.
    • (2000) EMBO J. , vol.19 , pp. 4976-4985
    • Bonnard, M.1
  • 61
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • 61 Nakahira, K., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12 (2011), 222–230.
    • (2011) Nat. Immunol. , vol.12 , pp. 222-230
    • Nakahira, K.1
  • 62
    • 84857850213 scopus 로고    scopus 로고
    • Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
    • 62 Itakura, E., et al. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125:Pt 6 (2012), 1488–1499.
    • (2012) J. Cell Sci. , vol.125 , pp. 1488-1499
    • Itakura, E.1
  • 63
    • 78649300971 scopus 로고    scopus 로고
    • p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
    • 63 Narendra, D., et al. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6 (2010), 1090–1106.
    • (2010) Autophagy , vol.6 , pp. 1090-1106
    • Narendra, D.1
  • 64
    • 84898652320 scopus 로고    scopus 로고
    • Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
    • 64 Yamano, K., et al. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife, 3, 2014, e01612.
    • (2014) Elife , vol.3 , pp. e01612
    • Yamano, K.1
  • 65
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • 65 Itakura, E., et al. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151 (2012), 1256–1269.
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1
  • 66
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
    • 66 Jiang, P., et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25 (2014), 1327–1337.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1327-1337
    • Jiang, P.1
  • 67
    • 84901308155 scopus 로고    scopus 로고
    • Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila
    • 67 Takats, S., et al. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell 25 (2014), 1338–1354.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1338-1354
    • Takats, S.1
  • 68
    • 84928550400 scopus 로고    scopus 로고
    • ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
    • 68 Diao, J., et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520 (2015), 563–566.
    • (2015) Nature , vol.520 , pp. 563-566
    • Diao, J.1
  • 69
    • 84920448565 scopus 로고    scopus 로고
    • PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins
    • 69 McEwan, D.G., et al. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell. 57 (2015), 39–54.
    • (2015) Mol. Cell. , vol.57 , pp. 39-54
    • McEwan, D.G.1
  • 70
    • 59249089394 scopus 로고    scopus 로고
    • Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
    • 70 Itakura, E., et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19 (2008), 5360–5372.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5360-5372
    • Itakura, E.1
  • 71
    • 84920984853 scopus 로고    scopus 로고
    • PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection
    • 71 McEwan, D.G., et al. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe. 17 (2015), 58–71.
    • (2015) Cell Host Microbe. , vol.17 , pp. 58-71
    • McEwan, D.G.1
  • 72
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • 72 Sardiello, M., et al. A gene network regulating lysosomal biogenesis and function. Science 325 (2009), 473–477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 73
    • 84939820927 scopus 로고    scopus 로고
    • MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5
    • 73 Nezich, C.L., et al. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210 (2015), 435–450.
    • (2015) J. Cell Biol. , vol.210 , pp. 435-450
    • Nezich, C.L.1
  • 74
    • 84954393355 scopus 로고    scopus 로고
    • Mitochondrial and lysosomal biogenesis are activated following PINK1/Parkin-mediated mitophagy
    • 74 Ivankovic, D., et al. Mitochondrial and lysosomal biogenesis are activated following PINK1/Parkin-mediated mitophagy. J. Neurochem. 136 (2016), 388–402.
    • (2016) J. Neurochem. , vol.136 , pp. 388-402
    • Ivankovic, D.1
  • 75
    • 84948991793 scopus 로고    scopus 로고
    • Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice
    • 75 Gong, G., et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 350, 2015, aad2459.
    • (2015) Science , vol.350 , pp. aad2459
    • Gong, G.1
  • 76
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • 76 Chen, Y., Dorn, G.W. 2nd, PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340 (2013), 471–475.
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 77
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin
    • 77 Clark, I.E., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin. Nature 441 (2006), 1162–1166.
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1
  • 78
    • 84940776745 scopus 로고    scopus 로고
    • (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation
    • 78 Fiesel, F.C., et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 16 (2015), 1114–1130.
    • (2015) EMBO Rep , vol.16 , pp. 1114-1130
    • Fiesel, F.C.1
  • 79
    • 84897863239 scopus 로고    scopus 로고
    • Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
    • 79 McLelland, G.L., et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33 (2014), 282–295.
    • (2014) EMBO J. , vol.33 , pp. 282-295
    • McLelland, G.L.1
  • 80
    • 84859428688 scopus 로고    scopus 로고
    • Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
    • 80 Greene, A.W., et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13 (2012), 378–385.
    • (2012) EMBO Rep. , vol.13 , pp. 378-385
    • Greene, A.W.1
  • 81
    • 79551574736 scopus 로고    scopus 로고
    • PINK1 cleavage at position A103 by the mitochondrial protease PARL
    • 81 Deas, E., et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20 (2011), 867–879.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 867-879
    • Deas, E.1
  • 82
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • 82 Jin, S.M., et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191 (2010), 933–942.
    • (2010) J. Cell Biol. , vol.191 , pp. 933-942
    • Jin, S.M.1
  • 83
    • 79955667485 scopus 로고    scopus 로고
    • The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
    • 83 Meissner, C., et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117 (2011), 856–867.
    • (2011) J. Neurochem. , vol.117 , pp. 856-867
    • Meissner, C.1
  • 84
    • 84887453820 scopus 로고    scopus 로고
    • PINK1 is degraded through the N-end rule pathway
    • 84 Yamano, K., Youle, R.J., PINK1 is degraded through the N-end rule pathway. Autophagy 9 (2013), 1758–1769.
    • (2013) Autophagy , vol.9 , pp. 1758-1769
    • Yamano, K.1    Youle, R.J.2
  • 85
    • 84887486172 scopus 로고    scopus 로고
    • The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
    • 85 Jin, S.M., Youle, R.J., The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9 (2013), 1750–1757.
    • (2013) Autophagy , vol.9 , pp. 1750-1757
    • Jin, S.M.1    Youle, R.J.2
  • 86
    • 84890429468 scopus 로고    scopus 로고
    • High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
    • 86 Hasson, S.A., et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504 (2013), 291–295.
    • (2013) Nature , vol.504 , pp. 291-295
    • Hasson, S.A.1
  • 87
    • 84911946743 scopus 로고    scopus 로고
    • Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder
    • 87 Lu, W., et al. Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat. Commun., 5, 2014, 4930.
    • (2014) Nat. Commun. , vol.5 , pp. 4930
    • Lu, W.1
  • 88
    • 84866072587 scopus 로고    scopus 로고
    • PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
    • 88 Okatsu, K., et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun., 3, 2012, 1016.
    • (2012) Nat. Commun. , vol.3 , pp. 1016
    • Okatsu, K.1
  • 89
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • 89 Lamb, C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14 (2013), 759–774.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 759-774
    • Lamb, C.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.