메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 685-713

Mammalian Autophagy: How Does It Work?

Author keywords

Autophagosome biogenesis; Autophagy; Endocytosis; Lysosome; Membrane trafficking; Structural biology

Indexed keywords

CARGO RECEPTOR; MEMBRANE TETHERING FACTOR; PHOSPHATIDYLINOSITOL 3 KINASE; RAB PROTEIN; RECEPTOR; REGULATOR PROTEIN; SNARE PROTEIN; UBIQUITIN; UNCLASSIFIED DRUG; WIPI PROTEIN; AUTOPHAGY RELATED PROTEIN;

EID: 84973633815     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060815-014556     Document Type: Article
Times cited : (555)

References (174)
  • 1
    • 84940457605 scopus 로고    scopus 로고
    • Therapeutic targeting of autophagy in neurodegenerative and infectious diseases
    • Rubinsztein DC, Bento CF, Deretic V. 2015. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J. Exp. Med. 212:979-90
    • (2015) J. Exp. Med. , vol.212 , pp. 979-990
    • Rubinsztein, D.C.1    Bento, C.F.2    Deretic, V.3
  • 3
    • 84866122688 scopus 로고    scopus 로고
    • Autophagy modulation as a potential therapeutic target for diverse diseases
    • Rubinsztein DC, Codogno P, Levine B. 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11:709-30
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 709-730
    • Rubinsztein, D.C.1    Codogno, P.2    Levine, B.3
  • 4
    • 84891745088 scopus 로고    scopus 로고
    • Historical landmarks of autophagy research
    • Ohsumi Y. 2014. Historical landmarks of autophagy research. Cell Res. 24:9-23
    • (2014) Cell Res. , vol.24 , pp. 9-23
    • Ohsumi, Y.1
  • 5
    • 84877323647 scopus 로고    scopus 로고
    • Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2
    • McAlpine F, Williamson LE, Tooze SA, Chan EY. 2013. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9:361-73
    • (2013) Autophagy , vol.9 , pp. 361-373
    • McAlpine, F.1    Williamson, L.E.2    Tooze, S.A.3    Chan, E.Y.4
  • 6
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
    • Itakura E, Mizushima N. 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764-76
    • (2010) Autophagy , vol.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 7
    • 0005677775 scopus 로고
    • 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
    • Seglen PO, Gordon PB. 1982. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. PNAS 79:1889-92
    • (1982) PNAS , vol.79 , pp. 1889-1892
    • Seglen, P.O.1    Gordon, P.B.2
  • 8
    • 84911906578 scopus 로고    scopus 로고
    • A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
    • Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, et al. 2014. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10:1013-19
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 1013-1019
    • Ronan, B.1    Flamand, O.2    Vescovi, L.3    Dureuil, C.4    Durand, L.5
  • 9
    • 84908466248 scopus 로고    scopus 로고
    • SelectiveVPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
    • DowdleWE, Nyfeler B, Nagel J, EllingRA, Liu S, et al. 2014. SelectiveVPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16:1069-79
    • (2014) Nat. Cell Biol. , vol.16 , pp. 1069-1079
    • Dowdle, W.E.1    Nyfeler, B.2    Nagel, J.3    Elling, R.A.4    Liu, S.5
  • 10
    • 84904575441 scopus 로고    scopus 로고
    • WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
    • Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. 2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55:238-52
    • (2014) Mol. Cell , vol.55 , pp. 238-252
    • Dooley, H.C.1    Razi, M.2    Polson, H.E.3    Girardin, S.E.4    Wilson, M.I.5    Tooze, S.A.6
  • 11
    • 0032563798 scopus 로고    scopus 로고
    • A protein conjugation system essential for autophagy
    • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, et al. 1998. A protein conjugation system essential for autophagy. Nature 395:395-98
    • (1998) Nature , vol.395 , pp. 395-398
    • Mizushima, N.1    Noda, T.2    Yoshimori, T.3    Tanaka, Y.4    Ishii, T.5
  • 13
    • 0032701984 scopus 로고    scopus 로고
    • Formation process of autophagosome is traced with Apg8/Aut7p in yeast
    • Kirisako T, BabaM, Ishihara N, Miyazawa K, OhsumiM, et al. 1999. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147:435-46
    • (1999) J. Cell Biol. , vol.147 , pp. 435-446
    • Kirisako, T.1    Baba, M.2    Ishihara, N.3    Miyazawa, K.4    Ohsumi, M.5
  • 14
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/ GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. 2010. LC3 and GATE-16/ GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29:1792-802
    • (2010) EMBO J. , vol.29 , pp. 1792-1802
    • Weidberg, H.1    Shvets, E.2    Shpilka, T.3    Shimron, F.4    Shinder, V.5    Elazar, Z.6
  • 15
    • 84861158462 scopus 로고    scopus 로고
    • Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
    • Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, et al. 2012. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23:1860-73
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1860-1873
    • Orsi, A.1    Razi, M.2    Dooley, H.C.3    Robinson, D.4    Weston, A.E.5
  • 16
    • 33750366092 scopus 로고    scopus 로고
    • Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
    • Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, et al. 2006. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:3888-900
    • (2006) J. Cell Sci. , vol.119 , pp. 3888-3900
    • Young, A.R.1    Chan, E.Y.2    Hu, X.W.3    Kochl, R.4    Crawshaw, S.G.5
  • 17
    • 84884220705 scopus 로고    scopus 로고
    • Diverse autophagosome membrane sources coalesce in recycling endosomes
    • Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. 2013. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154:1285-99
    • (2013) Cell , vol.154 , pp. 1285-1299
    • Puri, C.1    Renna, M.2    Bento, C.F.3    Moreau, K.4    Rubinsztein, D.C.5
  • 18
    • 84898631586 scopus 로고    scopus 로고
    • TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy
    • Popovic D, Dikic I. 2014. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 15:392-401
    • (2014) EMBO Rep. , vol.15 , pp. 392-401
    • Popovic, D.1    Dikic, I.2
  • 20
    • 79960774898 scopus 로고    scopus 로고
    • Autophagosome precursor maturation requires homotypic fusion
    • Moreau K, RavikumarB, RennaM, Puri C, RubinszteinDC. 2011. Autophagosome precursor maturation requires homotypic fusion. Cell 146:303-17
    • (2011) Cell , vol.146 , pp. 303-317
    • Moreau, K.1    Ravikumar, B.2    Renna, M.3    Puri, C.4    Rubinsztein, D.C.5
  • 21
    • 84903935184 scopus 로고    scopus 로고
    • Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells
    • Pfisterer SG, BakulaD, Frickey T, Cezanne A, BriggerD, et al. 2014. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. J. Lipid Res. 55:1267-78
    • (2014) J. Lipid Res. , vol.55 , pp. 1267-1278
    • Pfisterer, S.G.1    Bakula, D.2    Frickey, T.3    Cezanne, A.4    Brigger, D.5
  • 22
    • 84857844643 scopus 로고    scopus 로고
    • Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
    • Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N. 2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23:896-909
    • (2012) Mol. Biol. Cell , vol.23 , pp. 896-909
    • Velikkakath, A.K.1    Nishimura, T.2    Oita, E.3    Ishihara, N.4    Mizushima, N.5
  • 23
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132-41
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 24
    • 80053476420 scopus 로고    scopus 로고
    • The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
    • Egan D, Kim J, Shaw RJ, Guan KL. 2011. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643-44
    • (2011) Autophagy , vol.7 , pp. 643-644
    • Egan, D.1    Kim, J.2    Shaw, R.J.3    Guan, K.L.4
  • 25
    • 81155123729 scopus 로고    scopus 로고
    • The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
    • Bach M, Larance M, James DE, Ramm G. 2011. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 440:283-91
    • (2011) Biochem. J. , vol.440 , pp. 283-291
    • Bach, M.1    Larance, M.2    James, D.E.3    Ramm, G.4
  • 28
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095-108
    • (2012) EMBO J. , vol.31 , pp. 1095-1108
    • Settembre, C.1    Zoncu, R.2    Medina, D.L.3    Vetrini, F.4    Erdin, S.5
  • 30
    • 84900460616 scopus 로고    scopus 로고
    • Mutation in VPS35 associated with Parkinson's disease impairsWASH complex association and inhibits autophagy
    • Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, et al. 2014. Mutation in VPS35 associated with Parkinson's disease impairsWASH complex association and inhibits autophagy. Nat. Commun. 5:3828
    • (2014) Nat. Commun. , vol.5 , pp. 3828
    • Zavodszky, E.1    Seaman, M.N.2    Moreau, K.3    Jimenez-Sanchez, M.4    Breusegem, S.Y.5
  • 31
    • 84939824671 scopus 로고    scopus 로고
    • Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy
    • Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, et al. 2015. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat. Commun. 6:8045
    • (2015) Nat. Commun. , vol.6 , pp. 8045
    • Moreau, K.1    Ghislat, G.2    Hochfeld, W.3    Renna, M.4    Zavodszky, E.5
  • 32
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:468-76
    • (2009) Nat. Cell Biol. , vol.11 , pp. 468-476
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5
  • 33
  • 34
    • 34248998801 scopus 로고    scopus 로고
    • Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1
    • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, et al. 2007. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26:2527-39
    • (2007) EMBO J. , vol.26 , pp. 2527-2539
    • Maiuri, M.C.1    Le Toumelin, G.2    Criollo, A.3    Rain, J.C.4    Gautier, F.5
  • 35
    • 84864942148 scopus 로고    scopus 로고
    • Bim inhibits autophagy by recruiting Beclin 1 to microtubules
    • Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP, et al. 2012. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell 47:359-70
    • (2012) Mol. Cell , vol.47 , pp. 359-370
    • Luo, S.1    Garcia-Arencibia, M.2    Zhao, R.3    Puri, C.4    Toh, P.P.5
  • 36
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. 2008. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30:678-88
    • (2008) Mol. Cell , vol.30 , pp. 678-688
    • Wei, Y.1    Pattingre, S.2    Sinha, S.3    Bassik, M.4    Levine, B.5
  • 37
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • Russell RC, Tian Y, Yuan H, Park HW, Chang YY, et al. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15:741-50
    • (2013) Nat. Cell Biol. , vol.15 , pp. 741-750
    • Russell, R.C.1    Tian, Y.2    Yuan, H.3    Park, H.W.4    Chang, Y.Y.5
  • 38
    • 77957728513 scopus 로고    scopus 로고
    • The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
    • Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, et al. 2010. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191:155-68
    • (2010) J. Cell Biol. , vol.191 , pp. 155-168
    • Di Bartolomeo, S.1    Corazzari, M.2    Nazio, F.3    Oliverio, S.4    Lisi, G.5
  • 39
    • 77953858790 scopus 로고    scopus 로고
    • TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
    • Shi CS, Kehrl JH. 2010. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3:ra42
    • (2010) Sci. Signal. , vol.3 , pp. ra42
    • Shi, C.S.1    Kehrl, J.H.2
  • 40
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, et al. 2013. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15:406-16
    • (2013) Nat. Cell Biol. , vol.15 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3    Bielli, P.4    Cianfanelli, V.5
  • 41
    • 84885869476 scopus 로고    scopus 로고
    • WASH inhibits autophagy through suppression of Beclin 1 ubiquitination
    • Xia P, Wang S, Du Y, Zhao Z, Shi L, et al. 2013. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 32:2685-96
    • (2013) EMBO J. , vol.32 , pp. 2685-2696
    • Xia, P.1    Wang, S.2    Du, Y.3    Zhao, Z.4    Shi, L.5
  • 42
    • 80053501671 scopus 로고    scopus 로고
    • Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
    • Liu J, Xia H, Kim M, Xu L, Li Y, et al. 2011. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147:223-34
    • (2011) Cell , vol.147 , pp. 223-234
    • Liu, J.1    Xia, H.2    Kim, M.3    Xu, L.4    Li, Y.5
  • 43
    • 84055219407 scopus 로고    scopus 로고
    • Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1
    • Platta HW, Abrahamsen H, Thoresen SB, Stenmark H. 2012. Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1. Biochem. J. 441:399-406
    • (2012) Biochem. J. , vol.441 , pp. 399-406
    • Platta, H.W.1    Abrahamsen, H.2    Thoresen, S.B.3    Stenmark, H.4
  • 44
    • 84930226935 scopus 로고    scopus 로고
    • Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth
    • SunT, Li X, Zhang P, Chen WD, Zhang HL, et al. 2015. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun. 6:7215
    • (2015) Nat. Commun. , vol.6 , pp. 7215
    • Sun, T.1    Li, X.2    Zhang, P.3    Chen, W.D.4    Zhang, H.L.5
  • 45
    • 84876865718 scopus 로고    scopus 로고
    • Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy
    • Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, et al. 2013. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. PNAS 110:6841-46
    • (2013) PNAS , vol.110 , pp. 6841-6846
    • Yang, Y.1    Fiskus, W.2    Yong, B.3    Atadja, P.4    Takahashi, Y.5
  • 46
    • 84946848015 scopus 로고    scopus 로고
    • Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type i IFN/interferon
    • Xu D, Zhang T, Xiao J, Zhu K, Wei R, et al. 2015. Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon. Autophagy 11:617-28
    • (2015) Autophagy , vol.11 , pp. 617-628
    • Xu, D.1    Zhang, T.2    Xiao, J.3    Zhu, K.4    Wei, R.5
  • 47
    • 84355162283 scopus 로고    scopus 로고
    • Canonical and non-canonical autophagy: Variations on a common theme of self-eating?
    • Codogno P, Mehrpour M, Proikas-Cezanne T. 2012. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13:7-12
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 7-12
    • Codogno, P.1    Mehrpour, M.2    Proikas-Cezanne, T.3
  • 48
    • 77952722628 scopus 로고    scopus 로고
    • Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway
    • Zhou X, Wang L, Hasegawa H, Amin P, Han BX, et al. 2010. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. PNAS 107:9424-29
    • (2010) PNAS , vol.107 , pp. 9424-9429
    • Zhou, X.1    Wang, L.2    Hasegawa, H.3    Amin, P.4    Han, B.X.5
  • 49
    • 82855170845 scopus 로고    scopus 로고
    • Resveratrol-mediated autophagy requiresWIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation
    • Mauthe M, JacobA, Freiberger S, Hentschel K, Stierhof YD, et al. 2011. Resveratrol-mediated autophagy requiresWIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy 7:1448-61
    • (2011) Autophagy , vol.7 , pp. 1448-1461
    • Mauthe, M.1    Jacob, A.2    Freiberger, S.3    Hentschel, K.4    Stierhof, Y.D.5
  • 51
    • 84884822573 scopus 로고    scopus 로고
    • Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis
    • Devereaux K, Dall'armi C, Alcazar-Roman A, Ogasawara Y, Zhou X, et al. 2013. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLOS ONE 8:e76405
    • (2013) PLOS ONE , vol.8 , pp. e76405
    • Devereaux, K.1    Dall'Armi, C.2    Alcazar-Roman, A.3    Ogasawara, Y.4    Zhou, X.5
  • 52
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C, Sowa ME, Gygi SP, Harper JW. 2010. Network organization of the human autophagy system. Nature 466:68-76
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3    Harper, J.W.4
  • 53
    • 84893742000 scopus 로고    scopus 로고
    • Phosphatidylinositol 5-phosphate: A nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics
    • Viaud J, Boal F, Tronchere H, Gaits-Iacovoni F, Payrastre B. 2014. Phosphatidylinositol 5-phosphate: A nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics. BioEssays 36:260-72
    • (2014) BioEssays , vol.36 , pp. 260-272
    • Viaud, J.1    Boal, F.2    Tronchere, H.3    Gaits-Iacovoni, F.4    Payrastre, B.5
  • 54
    • 33244481532 scopus 로고    scopus 로고
    • Autophagy: A forty-year search for a missing membrane source
    • Juhasz G, Neufeld TP. 2006. Autophagy: A forty-year search for a missing membrane source. PLOS Biol. 4:e36
    • (2006) PLOS Biol. , vol.4 , pp. e36
    • Juhasz, G.1    Neufeld, T.P.2
  • 57
    • 0020576893 scopus 로고
    • Ultrastructural studies on autolysosomes in rat hepatocytes after leupeptin treatment
    • Ishikawa T, Furuno K, Kato K. 1983. Ultrastructural studies on autolysosomes in rat hepatocytes after leupeptin treatment. Exp. Cell Res. 144:15-24
    • (1983) Exp. Cell Res. , vol.144 , pp. 15-24
    • Ishikawa, T.1    Furuno, K.2    Kato, K.3
  • 58
    • 0016665507 scopus 로고
    • The role of the Golgi complex in the isolation and digestion of organelles
    • Locke M, Sykes AK. 1975. The role of the Golgi complex in the isolation and digestion of organelles. Tissue Cell 7:143-58
    • (1975) Tissue Cell , vol.7 , pp. 143-158
    • Locke, M.1    Sykes, A.K.2
  • 59
    • 0025217177 scopus 로고
    • Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry
    • Yamamoto A, Masaki R, Tashiro Y. 1990. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J. Histochem. Cytochem. 38:573-80
    • (1990) J. Histochem. Cytochem. , vol.38 , pp. 573-580
    • Yamamoto, A.1    Masaki, R.2    Tashiro, Y.3
  • 61
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe EL, Walker SA, ManifavaM, Chandra P, Roderick HL, et al. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685-701
    • (2008) J. Cell Biol. , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4    Roderick, H.L.5
  • 62
    • 84907042842 scopus 로고    scopus 로고
    • Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
    • Kishi-Itakura C, Koyama-Honda I, Itakura E, MizushimaN. 2014. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127:4089-102
    • (2014) J. Cell Sci. , vol.127 , pp. 4089-4102
    • Kishi-Itakura, C.1    Koyama-Honda, I.2    Itakura, E.3    Mizushima, N.4
  • 63
    • 77952495224 scopus 로고    scopus 로고
    • Mitochondria supply membranes for autophagosome biogenesis during starvation
    • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, et al. 2010. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656-67
    • (2010) Cell , vol.141 , pp. 656-667
    • Hailey, D.W.1    Rambold, A.S.2    Satpute-Krishnan, P.3    Mitra, K.4    Sougrat, R.5
  • 64
  • 68
    • 84859965801 scopus 로고    scopus 로고
    • Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4, 5-bisphosphate and phospholipase D
    • Moreau K, Ravikumar B, Puri C, Rubinsztein DC. 2012. Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4, 5-bisphosphate and phospholipase D. J. Cell Biol. 196:483-96
    • (2012) J. Cell Biol. , vol.196 , pp. 483-496
    • Moreau, K.1    Ravikumar, B.2    Puri, C.3    Rubinsztein, D.C.4
  • 69
    • 84863116629 scopus 로고    scopus 로고
    • Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
    • Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP, et al. 2012. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. PNAS 109:2003-8
    • (2012) PNAS , vol.109 , pp. 2003-2008
    • Jaber, N.1    Dou, Z.2    Chen, J.S.3    Catanzaro, J.4    Jiang, Y.P.5
  • 70
    • 32244442749 scopus 로고    scopus 로고
    • Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking
    • Zeng X, Overmeyer JH, Maltese WA. 2006. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci. 119:259-70
    • (2006) J. Cell Sci. , vol.119 , pp. 259-270
    • Zeng, X.1    Overmeyer, J.H.2    Maltese, W.A.3
  • 71
    • 46249127490 scopus 로고    scopus 로고
    • Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease
    • Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC. 2008. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci. 121:1649-60
    • (2008) J. Cell Sci. , vol.121 , pp. 1649-1660
    • Ravikumar, B.1    Imarisio, S.2    Sarkar, S.3    O'Kane, C.J.4    Rubinsztein, D.C.5
  • 72
    • 84876086849 scopus 로고    scopus 로고
    • Class IA PI3K p110?subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation
    • Dou Z, Pan JA, Dbouk HA, Ballou LM, DeLeon JL, et al. 2013. Class IA PI3K p110?subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol. Cell 50:29-42
    • (2013) Mol. Cell , vol.50 , pp. 29-42
    • Dou, Z.1    Pan, J.A.2    Dbouk, H.A.3    Ballou, L.M.4    DeLeon, J.L.5
  • 73
    • 84862611041 scopus 로고    scopus 로고
    • TBC1D14 regulates autophagosome formation via Rab11-and ULK1-positive recycling endosomes
    • Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. 2012. TBC1D14 regulates autophagosome formation via Rab11-and ULK1-positive recycling endosomes. J. Cell Biol. 197:659-75
    • (2012) J. Cell Biol. , vol.197 , pp. 659-675
    • Longatti, A.1    Lamb, C.A.2    Razi, M.3    Yoshimura, S.4    Barr, F.A.5    Tooze, S.A.6
  • 74
    • 84885660381 scopus 로고    scopus 로고
    • SNX18 tubulates recycling endosomes for autophagosome biogenesis
    • Knaevelsrud H, Carlsson SR, Simonsen A. 2013. SNX18 tubulates recycling endosomes for autophagosome biogenesis. Autophagy 9:1639-41
    • (2013) Autophagy , vol.9 , pp. 1639-1641
    • Knaevelsrud, H.1    Carlsson, S.R.2    Simonsen, A.3
  • 75
    • 84881506338 scopus 로고    scopus 로고
    • The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
    • Ge L, Melville D, Zhang M, Schekman R. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. ELife 2:e00947
    • (2013) ELife , vol.2 , pp. e00947
    • Ge, L.1    Melville, D.2    Zhang, M.3    Schekman, R.4
  • 76
    • 84927720203 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment
    • Ge L, Zhang M, Schekman R. 2014. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. ELife 3:e04135
    • (2014) ELife , vol.3 , pp. e04135
    • Ge, L.1    Zhang, M.2    Schekman, R.3
  • 77
    • 84888350190 scopus 로고    scopus 로고
    • The em structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
    • Tan D, Cai Y, Wang J, Zhang J, Menon S, et al. 2013. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. PNAS 110:19432-37
    • (2013) PNAS , vol.110 , pp. 19432-19437
    • Tan, D.1    Cai, Y.2    Wang, J.3    Zhang, J.4    Menon, S.5
  • 78
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • Stolz A, Ernst A, Dikic I. 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495-501
    • (2014) Nat. Cell Biol. , vol.16 , pp. 495-501
    • Stolz, A.1    Ernst, A.2    Dikic, I.3
  • 79
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309-14
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1    Sliter, D.A.2    Kane, L.A.3    Sarraf, S.A.4    Wang, C.5
  • 80
    • 84862618804 scopus 로고    scopus 로고
    • A role for Atg8-PE deconjugation in autophagosome biogenesis
    • Nair U, YenWL, Mari M, Cao Y, Xie Z, et al. 2012. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8:780-93
    • (2012) Autophagy , vol.8 , pp. 780-793
    • Nair, U.1    Yen, W.L.2    Mari, M.3    Cao, Y.4    Xie, Z.5
  • 81
    • 84864886799 scopus 로고    scopus 로고
    • Dual roles of Atg8-PE deconjugation by Atg4 in autophagy
    • Yu ZQ, Ni T, Hong B, Wang HY, Jiang FJ, et al. 2012. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883-92
    • (2012) Autophagy , vol.8 , pp. 883-892
    • Yu, Z.Q.1    Ni, T.2    Hong, B.3    Wang, H.Y.4    Jiang, F.J.5
  • 83
    • 80053364693 scopus 로고    scopus 로고
    • The role of motor proteins in endosomal sorting
    • Hunt SD, Stephens DJ. 2011. The role of motor proteins in endosomal sorting. Biochem. Soc. Trans. 39:1179-84
    • (2011) Biochem. Soc. Trans. , vol.39 , pp. 1179-1184
    • Hunt, S.D.1    Stephens, D.J.2
  • 84
    • 33846010776 scopus 로고    scopus 로고
    • Microtubules support production of starvationinduced autophagosomes but not their targeting and fusion with lysosomes
    • Fass E, ShvetsE, Degani I, HirschbergK, Elazar Z. 2006. Microtubules support production of starvationinduced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281:36303-16
    • (2006) J. Biol. Chem. , vol.281 , pp. 36303-36316
    • Fass, E.1    Shvets, E.2    Degani, I.3    Hirschberg, K.4    Elazar, Z.5
  • 85
    • 40449139980 scopus 로고    scopus 로고
    • The itinerary of autophagosomes: From peripheral formation to kiss-and-run fusion with lysosomes
    • Jahreiss L, Menzies FM, Rubinsztein DC. 2008. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9:574-87
    • (2008) Traffic , vol.9 , pp. 574-587
    • Jahreiss, L.1    Menzies, F.M.2    Rubinsztein, D.C.3
  • 86
    • 84857858536 scopus 로고    scopus 로고
    • Autophagosomes initiate distally andmature during transport toward the cell soma in primary neurons
    • Maday S, Wallace KE, Holzbaur EL. 2012. Autophagosomes initiate distally andmature during transport toward the cell soma in primary neurons. J. Cell Biol. 196:407-17
    • (2012) J. Cell Biol. , vol.196 , pp. 407-417
    • Maday, S.1    Wallace, K.E.2    Holzbaur, E.L.3
  • 87
    • 84937148634 scopus 로고    scopus 로고
    • Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes
    • Cheng XT, Zhou B, Lin MY, Cai Q, Sheng ZH. 2015. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209:377-86
    • (2015) J. Cell Biol. , vol.209 , pp. 377-386
    • Cheng, X.T.1    Zhou, B.2    Lin, M.Y.3    Cai, Q.4    Sheng, Z.H.5
  • 89
    • 84887212412 scopus 로고    scopus 로고
    • Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells
    • Cardoso CM, Groth-Pedersen L, Hoyer-Hansen M, Kirkegaard T, Corcelle E, et al. 2009. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLOS ONE 4:e4424
    • (2009) PLOS ONE , vol.4 , pp. e4424
    • Cardoso, C.M.1    Groth-Pedersen, L.2    Hoyer-Hansen, M.3    Kirkegaard, T.4    Corcelle, E.5
  • 92
    • 77649337122 scopus 로고    scopus 로고
    • HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
    • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29:969-80
    • (2010) EMBO J. , vol.29 , pp. 969-980
    • Lee, J.Y.1    Koga, H.2    Kawaguchi, Y.3    Tang, W.4    Wong, E.5
  • 93
    • 84867103427 scopus 로고    scopus 로고
    • Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome
    • Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F. 2012. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14:1024-35
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1024-1035
    • Tumbarello, D.A.1    Waxse, B.J.2    Arden, S.D.3    Bright, N.A.4    Kendrick-Jones, J.5    Buss, F.6
  • 94
    • 68049105101 scopus 로고    scopus 로고
    • Rab GTPases as coordinators of vesicle traffic
    • Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:513-25
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 513-525
    • Stenmark, H.1
  • 95
    • 0035975946 scopus 로고    scopus 로고
    • TheRab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors
    • Jordens I, Fernandez-Borja M, MarsmanM, Dusseljee S, JanssenL, et al. 2001. TheRab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11:1680-85
    • (2001) Curr. Biol. , vol.11 , pp. 1680-1685
    • Jordens, I.1    Fernandez-Borja, M.2    Marsman, M.3    Dusseljee, S.4    Janssen, L.5
  • 96
    • 76149086512 scopus 로고    scopus 로고
    • FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
    • Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, et al. 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188:253-69
    • (2010) J. Cell Biol. , vol.188 , pp. 253-269
    • Pankiv, S.1    Alemu, E.A.2    Brech, A.3    Bruun, J.A.4    Lamark, T.5
  • 98
    • 80052233389 scopus 로고    scopus 로고
    • Endosome maturation
    • Huotari J, Helenius A. 2011. Endosome maturation. EMBO J. 30:3481-500
    • (2011) EMBO J. , vol.30 , pp. 3481-3500
    • Huotari, J.1    Helenius, A.2
  • 99
    • 79959346132 scopus 로고    scopus 로고
    • Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest
    • Ganley IG, Wong PM, Gammoh N, Jiang X. 2011. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42:731-43
    • (2011) Mol. Cell , vol.42 , pp. 731-743
    • Ganley, I.G.1    Wong, P.M.2    Gammoh, N.3    Jiang, X.4
  • 100
    • 84929193242 scopus 로고    scopus 로고
    • Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification
    • Mauvezin C, Nagy P, Juhasz G, Neufeld TP. 2015. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun. 6:7007
    • (2015) Nat. Commun. , vol.6 , pp. 7007
    • Mauvezin, C.1    Nagy, P.2    Juhasz, G.3    Neufeld, T.P.4
  • 101
    • 77951918362 scopus 로고    scopus 로고
    • Identification of the switch in early-to-late endosome transition
    • Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. 2010. Identification of the switch in early-to-late endosome transition. Cell 141:497-508
    • (2010) Cell , vol.141 , pp. 497-508
    • Poteryaev, D.1    Datta, S.2    Ackema, K.3    Zerial, M.4    Spang, A.5
  • 102
    • 46449120732 scopus 로고    scopus 로고
    • Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking
    • Liang C, Lee JS, Inn KS, Gack MU, Li Q, et al. 2008. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10:776-87
    • (2008) Nat. Cell Biol. , vol.10 , pp. 776-787
    • Liang, C.1    Lee, J.S.2    Inn, K.S.3    Gack, M.U.4    Li, Q.5
  • 103
    • 78650600158 scopus 로고    scopus 로고
    • Rubicon controls endosome maturation as a Rab7 effector
    • Sun Q, Westphal W, Wong KN, Tan I, Zhong Q. 2010. Rubicon controls endosome maturation as a Rab7 effector. PNAS 107:19338-43
    • (2010) PNAS , vol.107 , pp. 19338-19343
    • Sun, Q.1    Westphal, W.2    Wong, K.N.3    Tan, I.4    Zhong, Q.5
  • 104
    • 78650114245 scopus 로고    scopus 로고
    • Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain
    • Tabata K, Matsunaga K, Sakane A, Sasaki T, Noda T, Yoshimori T. 2010. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell 21:4162-72
    • (2010) Mol. Biol. Cell , vol.21 , pp. 4162-4172
    • Tabata, K.1    Matsunaga, K.2    Sakane, A.3    Sasaki, T.4    Noda, T.5    Yoshimori, T.6
  • 105
    • 84930643015 scopus 로고    scopus 로고
    • GABARAPs regulate PI4P-dependent autophagosome: Lysosome fusion
    • Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, et al. 2015. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. PNAS 112:7015-20
    • (2015) PNAS , vol.112 , pp. 7015-7020
    • Wang, H.1    Sun, H.Q.2    Zhu, X.3    Zhang, L.4    Albanesi, J.5
  • 106
    • 78149306025 scopus 로고    scopus 로고
    • Multisubunit tethering complexes and their role in membrane fusion
    • Brocker C, Engelbrecht-Vandre S, Ungermann C. 2010. Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol. 20:R943-52
    • (2010) Curr. Biol. , vol.20 , pp. R943-R952
    • Brocker, C.1    Engelbrecht-Vandre, S.2    Ungermann, C.3
  • 107
    • 84920448565 scopus 로고    scopus 로고
    • PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
    • McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, et al. 2015. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:39-54
    • (2015) Mol. Cell , vol.57 , pp. 39-54
    • McEwan, D.G.1    Popovic, D.2    Gubas, A.3    Terawaki, S.4    Suzuki, H.5
  • 108
    • 84930375084 scopus 로고    scopus 로고
    • Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes
    • Wartosch L, Gunesdogan U, Graham SC, Paul Luzio J. 2015. Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes. Traffic 16:727-42
    • (2015) Traffic , vol.16 , pp. 727-742
    • Wartosch, L.1    Gunesdogan, U.2    Graham, S.C.3    Paul Luzio, J.4
  • 110
    • 84862777210 scopus 로고    scopus 로고
    • A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate
    • Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. 2012. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45:629-41
    • (2012) Mol. Cell , vol.45 , pp. 629-641
    • Chen, D.1    Fan, W.2    Lu, Y.3    Ding, X.4    Chen, S.5    Zhong, Q.6
  • 111
    • 84923329832 scopus 로고    scopus 로고
    • Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners
    • Kim JH, Hong SB, Lee JK, Han S, Roh KH, et al. 2015. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11:75-87
    • (2015) Autophagy , vol.11 , pp. 75-87
    • Kim, J.H.1    Hong, S.B.2    Lee, J.K.3    Han, S.4    Roh, K.H.5
  • 113
    • 3042735690 scopus 로고    scopus 로고
    • CombinatorialSNAREcomplexes with VAMP7 or VAMP8 define different late endocytic fusion events
    • Pryor PR, Mullock BM, Bright NA, LindsayMR, Gray SR, et al. 2004. CombinatorialSNAREcomplexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep. 5:590-95
    • (2004) EMBO Rep. , vol.5 , pp. 590-595
    • Pryor, P.R.1    Mullock, B.M.2    Bright, N.A.3    Lindsay, M.R.4    Gray, S.R.5
  • 114
    • 77949448601 scopus 로고    scopus 로고
    • Combinational soluble N-ethylmaleimidesensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes
    • Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. 2010. Combinational soluble N-ethylmaleimidesensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21:1001-10
    • (2010) Mol. Biol. Cell , vol.21 , pp. 1001-1010
    • Furuta, N.1    Fujita, N.2    Noda, T.3    Yoshimori, T.4    Amano, A.5
  • 115
    • 78149282263 scopus 로고    scopus 로고
    • Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders
    • Fraldi A, Annunziata F, Lombardi A, Kaiser HJ, Medina DL, et al. 2010. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 29:3607-20
    • (2010) EMBO J. , vol.29 , pp. 3607-3620
    • Fraldi, A.1    Annunziata, F.2    Lombardi, A.3    Kaiser, H.J.4    Medina, D.L.5
  • 116
    • 72049088519 scopus 로고    scopus 로고
    • TI-VAMP/VAMP7 and VAMP3/cellubrevin: Two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways
    • FaderCM, Sanchez DG, Mestre MB, ColomboMI. 2009. TI-VAMP/VAMP7 and VAMP3/cellubrevin: Two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793:1901-16
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 1901-1916
    • Fader, C.M.1    Sanchez, D.G.2    Mestre, M.B.3    Colombo, M.I.4
  • 117
    • 79551546749 scopus 로고    scopus 로고
    • Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex
    • Renna M, SchaffnerC, Winslow AR, Menzies FM, Peden AA, et al. 2011. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 124:469-82
    • (2011) J. Cell Sci. , vol.124 , pp. 469-482
    • Renna, M.1    Schaffner, C.2    Winslow, A.R.3    Menzies, F.M.4    Peden, A.A.5
  • 118
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256-69
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 119
    • 84878615771 scopus 로고    scopus 로고
    • Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila
    • Takats S, Nagy P, Varga A, Pircs K, Karpati M, et al. 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201:531-39
    • (2013) J. Cell Biol. , vol.201 , pp. 531-539
    • Takats, S.1    Nagy, P.2    Varga, A.3    Pircs, K.4    Karpati, M.5
  • 120
    • 84928550400 scopus 로고    scopus 로고
    • ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
    • Diao J, Liu R, Rong Y, ZhaoM, Zhang J, et al. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563-66
    • (2015) Nature , vol.520 , pp. 563-566
    • Diao, J.1    Liu, R.2    Rong, Y.3    Zhao, M.4    Zhang, J.5
  • 121
    • 65349155174 scopus 로고    scopus 로고
    • Early endosomes and endosomal coatomer are required for autophagy
    • Razi M, Chan EY, Tooze SA. 2009. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185:305-21
    • (2009) J. Cell Biol. , vol.185 , pp. 305-321
    • Razi, M.1    Chan, E.Y.2    Tooze, S.A.3
  • 122
    • 69449089915 scopus 로고    scopus 로고
    • How do ESCRT proteins control autophagy?
    • Rusten TE, Stenmark H. 2009. How do ESCRT proteins control autophagy? J. Cell Sci. 122:2179-83
    • (2009) J. Cell Sci. , vol.122 , pp. 2179-2183
    • Rusten, T.E.1    Stenmark, H.2
  • 123
    • 84921417671 scopus 로고    scopus 로고
    • Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors
    • Lazarus MB, Novotny CJ, Shokat KM. 2015. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol. 10:257-61
    • (2015) ACS Chem. Biol. , vol.10 , pp. 257-261
    • Lazarus, M.B.1    Novotny, C.J.2    Shokat, K.M.3
  • 125
    • 84871581862 scopus 로고    scopus 로고
    • Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis
    • Ragusa MJ, Stanley RE, Hurley JH. 2012. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151:1501-12
    • (2012) Cell , vol.151 , pp. 1501-1512
    • Ragusa, M.J.1    Stanley, R.E.2    Hurley, J.H.3
  • 126
    • 84881091197 scopus 로고    scopus 로고
    • Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation
    • Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U, et al. 2013. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. PNAS 110:E2875-84
    • (2013) PNAS , vol.110 , pp. E2875-E2884
    • Mao, K.1    Chew, L.H.2    Inoue-Aono, Y.3    Cheong, H.4    Nair, U.5
  • 127
    • 84930188743 scopus 로고    scopus 로고
    • Solution structure of the Atg1 complex: Implications for the architecture of the phagophore assembly site
    • Kofinger J, Ragusa MJ, Lee IH, Hummer G, Hurley JH. 2015. Solution structure of the Atg1 complex: implications for the architecture of the phagophore assembly site. Structure 23:809-18
    • (2015) Structure , vol.23 , pp. 809-818
    • Kofinger, J.1    Ragusa, M.J.2    Lee, I.H.3    Hummer, G.4    Hurley, J.H.5
  • 128
    • 84890887051 scopus 로고    scopus 로고
    • The beginning of the end: How scaffolds nucleate autophagosome biogenesis
    • Stanley RE, Ragusa MJ, Hurley JH. 2014. The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol. 24:73-81
    • (2014) Trends Cell Biol. , vol.24 , pp. 73-81
    • Stanley, R.E.1    Ragusa, M.J.2    Hurley, J.H.3
  • 129
    • 84875834380 scopus 로고    scopus 로고
    • A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy
    • Jao CC, Ragusa MJ, Stanley RE, Hurley JH. 2013. A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. PNAS 110:5486-91
    • (2013) PNAS , vol.110 , pp. 5486-5491
    • Jao, C.C.1    Ragusa, M.J.2    Stanley, R.E.3    Hurley, J.H.4
  • 130
    • 84936846861 scopus 로고    scopus 로고
    • Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation
    • Suzuki H, Kaizuka T, Mizushima N, Noda NN. 2015. Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat. Struct. Mol. Biol. 22:572-80
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 572-580
    • Suzuki, H.1    Kaizuka, T.2    Mizushima, N.3    Noda, N.N.4
  • 131
    • 84925307913 scopus 로고    scopus 로고
    • Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation
    • Suzuki SW, Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y, et al. 2015. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. PNAS 112:3350-55
    • (2015) PNAS , vol.112 , pp. 3350-3355
    • Suzuki, S.W.1    Yamamoto, H.2    Oikawa, Y.3    Kondo-Kakuta, C.4    Kimura, Y.5
  • 132
    • 77950212231 scopus 로고    scopus 로고
    • Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34
    • Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, et al. 2010. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638-42
    • (2010) Science , vol.327 , pp. 1638-1642
    • Miller, S.1    Tavshanjian, B.2    Oleksy, A.3    Perisic, O.4    Houseman, B.T.5
  • 133
    • 84898639632 scopus 로고    scopus 로고
    • Atomistic autophagy: The structures of cellular self-digestion
    • Hurley JH, Schulman BA. 2014. Atomistic autophagy: The structures of cellular self-digestion. Cell 157:300-11
    • (2014) Cell , vol.157 , pp. 300-311
    • Hurley, J.H.1    Schulman, B.A.2
  • 134
    • 34547689505 scopus 로고    scopus 로고
    • Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1
    • Feng W, Huang S, Wu H, Zhang M. 2007. Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J. Mol. Biol. 372:223-35
    • (2007) J. Mol. Biol. , vol.372 , pp. 223-235
    • Feng, W.1    Huang, S.2    Wu, H.3    Zhang, M.4
  • 135
    • 34249037565 scopus 로고    scopus 로고
    • Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein
    • Oberstein A, Jeffrey PD, Shi Y. 2007. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J. Biol. Chem. 282:13123-32
    • (2007) J. Biol. Chem. , vol.282 , pp. 13123-13132
    • Oberstein, A.1    Jeffrey, P.D.2    Shi, Y.3
  • 136
    • 84862023791 scopus 로고    scopus 로고
    • Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG
    • Li X, He L, Che KH, Funderburk SF, Pan L, et al. 2012. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun. 3:662
    • (2012) Nat. Commun. , vol.3 , pp. 662
    • Li, X.1    He, L.2    Che, K.H.3    Funderburk, S.F.4    Pan, L.5
  • 137
    • 84884262668 scopus 로고    scopus 로고
    • EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
    • Wei Y, Zou Z, Becker N, Anderson M, SumpterR, et al. 2013. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistancE. Cell 154:1269-84
    • (2013) Cell , vol.154 , pp. 1269-1284
    • Wei, Y.1    Zou, Z.2    Becker, N.3    Anderson, M.4    Sumpter, R.5
  • 138
    • 84862777560 scopus 로고    scopus 로고
    • Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein
    • HuangW, ChoiW, HuW, Mi N, Guo Q, et al. 2012. Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res. 22:473-89
    • (2012) Cell Res. , vol.22 , pp. 473-489
    • Huang, W.1    Choi, W.2    Hu, W.3    Mi, N.4    Guo, Q.5
  • 139
    • 84860875222 scopus 로고    scopus 로고
    • Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy
    • Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F. 2012. Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem. 287:16256-66
    • (2012) J. Biol. Chem. , vol.287 , pp. 16256-16266
    • Noda, N.N.1    Kobayashi, T.2    Adachi, W.3    Fujioka, Y.4    Ohsumi, Y.5    Inagaki, F.6
  • 140
    • 84943665694 scopus 로고    scopus 로고
    • Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex
    • Baskaran S, Carlson LA, Stjepanovic G, Young LN, Kim do J, et al. 2014. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. ELife 3:e05115
    • (2014) ELife , vol.3 , pp. e05115
    • Baskaran, S.1    Carlson, L.A.2    Stjepanovic, G.3    Young, L.N.4    Kim do, J.5
  • 141
    • 84943521176 scopus 로고    scopus 로고
    • Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes
    • Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E, et al. 2015. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350:aac7365
    • (2015) Science , vol.350 , pp. aac7365
    • Rostislavleva, K.1    Soler, N.2    Ohashi, Y.3    Zhang, L.4    Pardon, E.5
  • 142
    • 84864960430 scopus 로고    scopus 로고
    • Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy
    • Baskaran S, Ragusa MJ, Boura E, Hurley JH. 2012. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol. Cell 47:339-48
    • (2012) Mol. Cell , vol.47 , pp. 339-348
    • Baskaran, S.1    Ragusa, M.J.2    Boura, E.3    Hurley, J.H.4
  • 143
    • 84864337089 scopus 로고    scopus 로고
    • Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a propeller protein family
    • Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, et al. 2012. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a propeller protein family. PNAS 109:E2042-49
    • (2012) PNAS , vol.109 , pp. E2042-E2049
    • Krick, R.1    Busse, R.A.2    Scacioc, A.3    Stephan, M.4    Janshoff, A.5
  • 144
    • 84866419794 scopus 로고    scopus 로고
    • Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18
    • Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, et al. 2012. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem. 287:31681-90
    • (2012) J. Biol. Chem. , vol.287 , pp. 31681-31690
    • Watanabe, Y.1    Kobayashi, T.2    Yamamoto, H.3    Hoshida, H.4    Akada, R.5
  • 146
    • 84870815734 scopus 로고    scopus 로고
    • Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures
    • Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL, et al. 2012. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat. Struct. Mol. Biol. 19:1242-49
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1242-1249
    • Kaiser, S.E.1    Mao, K.2    Taherbhoy, A.M.3    Yu, S.4    Olszewski, J.L.5
  • 147
    • 84870834728 scopus 로고    scopus 로고
    • Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7
    • Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H, et al. 2012. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19:1250-56
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1250-1256
    • Yamaguchi, M.1    Matoba, K.2    Sawada, R.3    Fujioka, Y.4    Nakatogawa, H.5
  • 148
    • 84863519526 scopus 로고    scopus 로고
    • Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate
    • Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H, et al. 2012. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20:1244-54
    • (2012) Structure , vol.20 , pp. 1244-1254
    • Yamaguchi, M.1    Noda, N.N.2    Yamamoto, H.3    Shima, T.4    Kumeta, H.5
  • 149
    • 38049098543 scopus 로고    scopus 로고
    • The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, et al. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282:37298-302
    • (2007) J. Biol. Chem. , vol.282 , pp. 37298-37302
    • Hanada, T.1    Noda, N.N.2    Satomi, Y.3    Ichimura, Y.4    Fujioka, Y.5
  • 150
    • 43949143804 scopus 로고    scopus 로고
    • The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
    • Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 2008. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19:2092-100
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2092-2100
    • Fujita, N.1    Itoh, T.2    Omori, H.3    Fukuda, M.4    Noda, T.5    Yoshimori, T.6
  • 152
    • 74049140368 scopus 로고    scopus 로고
    • Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy
    • Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F. 2010. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285:1508-15
    • (2010) J. Biol. Chem. , vol.285 , pp. 1508-1515
    • Fujioka, Y.1    Noda, N.N.2    Nakatogawa, H.3    Ohsumi, Y.4    Inagaki, F.5
  • 153
    • 84873405258 scopus 로고    scopus 로고
    • Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation
    • Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. 2013. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 14:206-11
    • (2013) EMBO Rep. , vol.14 , pp. 206-211
    • Noda, N.N.1    Fujioka, Y.2    Hanada, T.3    Ohsumi, Y.4    Inagaki, F.5
  • 154
    • 84872036691 scopus 로고    scopus 로고
    • Structure of the human ATG12?ATG5 conjugate required for LC3 lipidation in autophagy
    • Otomo C, Metlagel Z, Takaesu G, Otomo T. 2013. Structure of the human ATG12?ATG5 conjugate required for LC3 lipidation in autophagy. Nat. Struct. Mol. Biol. 20:59-66
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 59-66
    • Otomo, C.1    Metlagel, Z.2    Takaesu, G.3    Otomo, T.4
  • 156
    • 77954436763 scopus 로고    scopus 로고
    • Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori
    • Hu C, Zhang X, Teng YB, Hu HX, LiWF. 2010. Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr. Sect. F 66:787-90
    • (2010) Acta Crystallogr. Sect. F , vol.66 , pp. 787-790
    • Hu, C.1    Zhang, X.2    Teng, Y.B.3    Hu, H.X.4    Li, W.F.5
  • 157
    • 73449097796 scopus 로고    scopus 로고
    • Trypanosoma brucei ATG8: Structural insights into autophagic-like mechanisms in protozoa
    • Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M. 2009. Trypanosoma brucei ATG8: structural insights into autophagic-like mechanisms in protozoa. Autophagy 5:1085-91
    • (2009) Autophagy , vol.5 , pp. 1085-1091
    • Koopmann, R.1    Muhammad, K.2    Perbandt, M.3    Betzel, C.4    Duszenko, M.5
  • 158
    • 34447099450 scopus 로고    scopus 로고
    • Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
    • Nakatogawa H, Ichimura Y, Ohsumi Y. 2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165-78
    • (2007) Cell , vol.130 , pp. 165-178
    • Nakatogawa, H.1    Ichimura, Y.2    Ohsumi, Y.3
  • 159
    • 57249083972 scopus 로고    scopus 로고
    • Structural basis of target recognition by Atg8/LC3 during selective autophagy
    • Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, et al. 2008. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211-18
    • (2008) Genes Cells , vol.13 , pp. 1211-1218
    • Noda, N.N.1    Kumeta, H.2    Nakatogawa, H.3    Satoo, K.4    Adachi, W.5
  • 160
    • 4344696843 scopus 로고    scopus 로고
    • The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8
    • Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 2004. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611-18
    • (2004) Genes Cells , vol.9 , pp. 611-618
    • Sugawara, K.1    Suzuki, N.N.2    Fujioka, Y.3    Mizushima, N.4    Ohsumi, Y.5    Inagaki, F.6
  • 161
    • 79954544250 scopus 로고    scopus 로고
    • LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis
    • Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z. 2011. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20:444-54
    • (2011) Dev. Cell , vol.20 , pp. 444-454
    • Weidberg, H.1    Shpilka, T.2    Shvets, E.3    Abada, A.4    Shimron, F.5    Elazar, Z.6
  • 163
  • 164
  • 165
    • 29144517659 scopus 로고    scopus 로고
    • The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers
    • Kumanomidou T, Mizushima T, Komatsu M, Suzuki A, Tanida I, et al. 2006. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol. 355:612-18
    • (2006) J. Mol. Biol. , vol.355 , pp. 612-618
    • Kumanomidou, T.1    Mizushima, T.2    Komatsu, M.3    Suzuki, A.4    Tanida, I.5
  • 166
    • 65649136884 scopus 로고    scopus 로고
    • The structure of Atg4B-LC3 complex reveals themechanism ofLC3processing and delipidation during autophagy
    • Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, et al. 2009. The structure of Atg4B-LC3 complex reveals themechanism ofLC3processing and delipidation during autophagy. EMBOJ. 28:1341-50
    • (2009) EMBOJ. , vol.28 , pp. 1341-1350
    • Satoo, K.1    Noda, N.N.2    Kumeta, H.3    Fujioka, Y.4    Mizushima, N.5
  • 167
    • 28844502647 scopus 로고    scopus 로고
    • Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy
    • Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 2005. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280:40058-65
    • (2005) J. Biol. Chem. , vol.280 , pp. 40058-40065
    • Sugawara, K.1    Suzuki, N.N.2    Fujioka, Y.3    Mizushima, N.4    Ohsumi, Y.5    Inagaki, F.6
  • 168
    • 82955247613 scopus 로고    scopus 로고
    • Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8
    • Hong SB, Kim BW, Lee KE, Kim SW, Jeon H, et al. 2011. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18:1323-30
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1323-1330
    • Hong, S.B.1    Kim, B.W.2    Lee, K.E.3    Kim, S.W.4    Jeon, H.5
  • 169
    • 80555144181 scopus 로고    scopus 로고
    • Structural basis of Atg8 activation by a homodimeric E1, Atg7
    • Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, et al. 2011. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44:462-75
    • (2011) Mol. Cell , vol.44 , pp. 462-475
    • Noda, N.N.1    Satoo, K.2    Fujioka, Y.3    Kumeta, H.4    Ogura, K.5
  • 170
    • 80555144189 scopus 로고    scopus 로고
    • Atg8 transfer from Atg7 to Atg3: A distinctive E1-E2 architecture and mechanism in the autophagy pathway
    • Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, et al. 2011. Atg8 transfer from Atg7 to Atg3: A distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44:451-61
    • (2011) Mol. Cell , vol.44 , pp. 451-461
    • Taherbhoy, A.M.1    Tait, S.W.2    Kaiser, S.E.3    Williams, A.H.4    Deng, A.5
  • 171
    • 34247237202 scopus 로고    scopus 로고
    • The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation
    • Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, et al. 2007. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282:8036-43
    • (2007) J. Biol. Chem. , vol.282 , pp. 8036-8043
    • Yamada, Y.1    Suzuki, N.N.2    Hanada, T.3    Ichimura, Y.4    Kumeta, H.5
  • 172
    • 77956499358 scopus 로고    scopus 로고
    • Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway
    • Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. 2010. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285:29599-607
    • (2010) J. Biol. Chem. , vol.285 , pp. 29599-29607
    • Yamaguchi, M.1    Noda, N.N.2    Nakatogawa, H.3    Kumeta, H.4    Ohsumi, Y.5    Inagaki, F.6
  • 173
    • 84899844485 scopus 로고    scopus 로고
    • Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3
    • Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, et al. 2014. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 16:415-24
    • (2014) Nat. Cell Biol. , vol.16 , pp. 415-424
    • Nath, S.1    Dancourt, J.2    Shteyn, V.3    Puente, G.4    Fong, W.M.5
  • 174
    • 0035503594 scopus 로고    scopus 로고
    • The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
    • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971-81
    • (2001) EMBO J. , vol.20 , pp. 5971-5981
    • Suzuki, K.1    Kirisako, T.2    Kamada, Y.3    Mizushima, N.4    Noda, T.5    Ohsumi, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.