-
1
-
-
84940457605
-
Therapeutic targeting of autophagy in neurodegenerative and infectious diseases
-
Rubinsztein DC, Bento CF, Deretic V. 2015. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J. Exp. Med. 212:979-90
-
(2015)
J. Exp. Med.
, vol.212
, pp. 979-990
-
-
Rubinsztein, D.C.1
Bento, C.F.2
Deretic, V.3
-
2
-
-
84926252071
-
Autophagy in malignant transformation and cancer progression
-
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, et al. 2015. Autophagy in malignant transformation and cancer progression. EMBO J. 34:856-80
-
(2015)
EMBO J.
, vol.34
, pp. 856-880
-
-
Galluzzi, L.1
Pietrocola, F.2
Bravo-San Pedro, J.M.3
Amaravadi, R.K.4
Baehrecke, E.H.5
-
3
-
-
84866122688
-
Autophagy modulation as a potential therapeutic target for diverse diseases
-
Rubinsztein DC, Codogno P, Levine B. 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11:709-30
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 709-730
-
-
Rubinsztein, D.C.1
Codogno, P.2
Levine, B.3
-
4
-
-
84891745088
-
Historical landmarks of autophagy research
-
Ohsumi Y. 2014. Historical landmarks of autophagy research. Cell Res. 24:9-23
-
(2014)
Cell Res.
, vol.24
, pp. 9-23
-
-
Ohsumi, Y.1
-
5
-
-
84877323647
-
Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2
-
McAlpine F, Williamson LE, Tooze SA, Chan EY. 2013. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9:361-73
-
(2013)
Autophagy
, vol.9
, pp. 361-373
-
-
McAlpine, F.1
Williamson, L.E.2
Tooze, S.A.3
Chan, E.Y.4
-
6
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E, Mizushima N. 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764-76
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
7
-
-
0005677775
-
3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
-
Seglen PO, Gordon PB. 1982. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. PNAS 79:1889-92
-
(1982)
PNAS
, vol.79
, pp. 1889-1892
-
-
Seglen, P.O.1
Gordon, P.B.2
-
8
-
-
84911906578
-
A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
-
Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, et al. 2014. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10:1013-19
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 1013-1019
-
-
Ronan, B.1
Flamand, O.2
Vescovi, L.3
Dureuil, C.4
Durand, L.5
-
9
-
-
84908466248
-
SelectiveVPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
-
DowdleWE, Nyfeler B, Nagel J, EllingRA, Liu S, et al. 2014. SelectiveVPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16:1069-79
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1069-1079
-
-
Dowdle, W.E.1
Nyfeler, B.2
Nagel, J.3
Elling, R.A.4
Liu, S.5
-
10
-
-
84904575441
-
WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
-
Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. 2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55:238-52
-
(2014)
Mol. Cell
, vol.55
, pp. 238-252
-
-
Dooley, H.C.1
Razi, M.2
Polson, H.E.3
Girardin, S.E.4
Wilson, M.I.5
Tooze, S.A.6
-
11
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, et al. 1998. A protein conjugation system essential for autophagy. Nature 395:395-98
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
Noda, T.2
Yoshimori, T.3
Tanaka, Y.4
Ishii, T.5
-
12
-
-
84876191754
-
Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site
-
Sakoh-Nakatogawa M, Matoba K, Asai E, KirisakoH, Ishii J, et al. 2013. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20:433-39
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 433-439
-
-
Sakoh-Nakatogawa, M.1
Matoba, K.2
Asai, E.3
Kirisako, H.4
Ishii, J.5
-
13
-
-
0032701984
-
Formation process of autophagosome is traced with Apg8/Aut7p in yeast
-
Kirisako T, BabaM, Ishihara N, Miyazawa K, OhsumiM, et al. 1999. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147:435-46
-
(1999)
J. Cell Biol.
, vol.147
, pp. 435-446
-
-
Kirisako, T.1
Baba, M.2
Ishihara, N.3
Miyazawa, K.4
Ohsumi, M.5
-
14
-
-
77953122645
-
LC3 and GATE-16/ GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. 2010. LC3 and GATE-16/ GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29:1792-802
-
(2010)
EMBO J.
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
15
-
-
84861158462
-
Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
-
Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, et al. 2012. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23:1860-73
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 1860-1873
-
-
Orsi, A.1
Razi, M.2
Dooley, H.C.3
Robinson, D.4
Weston, A.E.5
-
16
-
-
33750366092
-
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
-
Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, et al. 2006. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:3888-900
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3888-3900
-
-
Young, A.R.1
Chan, E.Y.2
Hu, X.W.3
Kochl, R.4
Crawshaw, S.G.5
-
17
-
-
84884220705
-
Diverse autophagosome membrane sources coalesce in recycling endosomes
-
Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. 2013. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154:1285-99
-
(2013)
Cell
, vol.154
, pp. 1285-1299
-
-
Puri, C.1
Renna, M.2
Bento, C.F.3
Moreau, K.4
Rubinsztein, D.C.5
-
18
-
-
84898631586
-
TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy
-
Popovic D, Dikic I. 2014. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 15:392-401
-
(2014)
EMBO Rep.
, vol.15
, pp. 392-401
-
-
Popovic, D.1
Dikic, I.2
-
19
-
-
84923350735
-
PICALM modulates autophagy activity and tau accumulation
-
Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, et al. 2014. PICALM modulates autophagy activity and tau accumulation. Nat. Commun. 5:4998
-
(2014)
Nat. Commun.
, vol.5
, pp. 4998
-
-
Moreau, K.1
Fleming, A.2
Imarisio, S.3
Lopez Ramirez, A.4
Mercer, J.L.5
-
20
-
-
79960774898
-
Autophagosome precursor maturation requires homotypic fusion
-
Moreau K, RavikumarB, RennaM, Puri C, RubinszteinDC. 2011. Autophagosome precursor maturation requires homotypic fusion. Cell 146:303-17
-
(2011)
Cell
, vol.146
, pp. 303-317
-
-
Moreau, K.1
Ravikumar, B.2
Renna, M.3
Puri, C.4
Rubinsztein, D.C.5
-
21
-
-
84903935184
-
Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells
-
Pfisterer SG, BakulaD, Frickey T, Cezanne A, BriggerD, et al. 2014. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. J. Lipid Res. 55:1267-78
-
(2014)
J. Lipid Res.
, vol.55
, pp. 1267-1278
-
-
Pfisterer, S.G.1
Bakula, D.2
Frickey, T.3
Cezanne, A.4
Brigger, D.5
-
22
-
-
84857844643
-
Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
-
Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N. 2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23:896-909
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 896-909
-
-
Velikkakath, A.K.1
Nishimura, T.2
Oita, E.3
Ishihara, N.4
Mizushima, N.5
-
23
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132-41
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
24
-
-
80053476420
-
The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
-
Egan D, Kim J, Shaw RJ, Guan KL. 2011. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643-44
-
(2011)
Autophagy
, vol.7
, pp. 643-644
-
-
Egan, D.1
Kim, J.2
Shaw, R.J.3
Guan, K.L.4
-
25
-
-
81155123729
-
The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
-
Bach M, Larance M, James DE, Ramm G. 2011. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 440:283-91
-
(2011)
Biochem. J.
, vol.440
, pp. 283-291
-
-
Bach, M.1
Larance, M.2
James, D.E.3
Ramm, G.4
-
26
-
-
80052841665
-
Regulation of TFEB and V-ATPases by mTORC1
-
Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, et al. 2011. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30:3242-58
-
(2011)
EMBO J.
, vol.30
, pp. 3242-3258
-
-
Peña-Llopis, S.1
Vega-Rubin-De-Celis, S.2
Schwartz, J.C.3
Wolff, N.C.4
Tran, T.A.5
-
27
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429-33
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
-
28
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095-108
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
-
29
-
-
84886994271
-
IGF-1 receptor antagonism inhibits autophagy
-
Renna M, Bento CF, Fleming A, Menzies FM, Siddiqi FH, et al. 2013. IGF-1 receptor antagonism inhibits autophagy. Hum. Mol. Genet. 22:4528-44
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 4528-4544
-
-
Renna, M.1
Bento, C.F.2
Fleming, A.3
Menzies, F.M.4
Siddiqi, F.H.5
-
30
-
-
84900460616
-
Mutation in VPS35 associated with Parkinson's disease impairsWASH complex association and inhibits autophagy
-
Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, et al. 2014. Mutation in VPS35 associated with Parkinson's disease impairsWASH complex association and inhibits autophagy. Nat. Commun. 5:3828
-
(2014)
Nat. Commun.
, vol.5
, pp. 3828
-
-
Zavodszky, E.1
Seaman, M.N.2
Moreau, K.3
Jimenez-Sanchez, M.4
Breusegem, S.Y.5
-
31
-
-
84939824671
-
Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy
-
Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, et al. 2015. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat. Commun. 6:8045
-
(2015)
Nat. Commun.
, vol.6
, pp. 8045
-
-
Moreau, K.1
Ghislat, G.2
Hochfeld, W.3
Renna, M.4
Zavodszky, E.5
-
32
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:468-76
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 468-476
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
Yan, Y.4
Backer, J.M.5
-
33
-
-
34347344990
-
Ambra1 regulates autophagy and development of the nervous system
-
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, et al. 2007. Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121-25
-
(2007)
Nature
, vol.447
, pp. 1121-1125
-
-
Fimia, G.M.1
Stoykova, A.2
Romagnoli, A.3
Giunta, L.4
Di Bartolomeo, S.5
-
34
-
-
34248998801
-
Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1
-
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, et al. 2007. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26:2527-39
-
(2007)
EMBO J.
, vol.26
, pp. 2527-2539
-
-
Maiuri, M.C.1
Le Toumelin, G.2
Criollo, A.3
Rain, J.C.4
Gautier, F.5
-
35
-
-
84864942148
-
Bim inhibits autophagy by recruiting Beclin 1 to microtubules
-
Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP, et al. 2012. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell 47:359-70
-
(2012)
Mol. Cell
, vol.47
, pp. 359-370
-
-
Luo, S.1
Garcia-Arencibia, M.2
Zhao, R.3
Puri, C.4
Toh, P.P.5
-
36
-
-
44949237240
-
JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
-
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. 2008. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30:678-88
-
(2008)
Mol. Cell
, vol.30
, pp. 678-688
-
-
Wei, Y.1
Pattingre, S.2
Sinha, S.3
Bassik, M.4
Levine, B.5
-
37
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, et al. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15:741-50
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
-
38
-
-
77957728513
-
The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
-
Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, et al. 2010. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191:155-68
-
(2010)
J. Cell Biol.
, vol.191
, pp. 155-168
-
-
Di Bartolomeo, S.1
Corazzari, M.2
Nazio, F.3
Oliverio, S.4
Lisi, G.5
-
39
-
-
77953858790
-
TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
-
Shi CS, Kehrl JH. 2010. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3:ra42
-
(2010)
Sci. Signal.
, vol.3
, pp. ra42
-
-
Shi, C.S.1
Kehrl, J.H.2
-
40
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, et al. 2013. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15:406-16
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
Bielli, P.4
Cianfanelli, V.5
-
41
-
-
84885869476
-
WASH inhibits autophagy through suppression of Beclin 1 ubiquitination
-
Xia P, Wang S, Du Y, Zhao Z, Shi L, et al. 2013. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 32:2685-96
-
(2013)
EMBO J.
, vol.32
, pp. 2685-2696
-
-
Xia, P.1
Wang, S.2
Du, Y.3
Zhao, Z.4
Shi, L.5
-
42
-
-
80053501671
-
Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
-
Liu J, Xia H, Kim M, Xu L, Li Y, et al. 2011. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147:223-34
-
(2011)
Cell
, vol.147
, pp. 223-234
-
-
Liu, J.1
Xia, H.2
Kim, M.3
Xu, L.4
Li, Y.5
-
43
-
-
84055219407
-
Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1
-
Platta HW, Abrahamsen H, Thoresen SB, Stenmark H. 2012. Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1. Biochem. J. 441:399-406
-
(2012)
Biochem. J.
, vol.441
, pp. 399-406
-
-
Platta, H.W.1
Abrahamsen, H.2
Thoresen, S.B.3
Stenmark, H.4
-
44
-
-
84930226935
-
Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth
-
SunT, Li X, Zhang P, Chen WD, Zhang HL, et al. 2015. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun. 6:7215
-
(2015)
Nat. Commun.
, vol.6
, pp. 7215
-
-
Sun, T.1
Li, X.2
Zhang, P.3
Chen, W.D.4
Zhang, H.L.5
-
45
-
-
84876865718
-
Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy
-
Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, et al. 2013. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. PNAS 110:6841-46
-
(2013)
PNAS
, vol.110
, pp. 6841-6846
-
-
Yang, Y.1
Fiskus, W.2
Yong, B.3
Atadja, P.4
Takahashi, Y.5
-
46
-
-
84946848015
-
Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type i IFN/interferon
-
Xu D, Zhang T, Xiao J, Zhu K, Wei R, et al. 2015. Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon. Autophagy 11:617-28
-
(2015)
Autophagy
, vol.11
, pp. 617-628
-
-
Xu, D.1
Zhang, T.2
Xiao, J.3
Zhu, K.4
Wei, R.5
-
47
-
-
84355162283
-
Canonical and non-canonical autophagy: Variations on a common theme of self-eating?
-
Codogno P, Mehrpour M, Proikas-Cezanne T. 2012. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13:7-12
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 7-12
-
-
Codogno, P.1
Mehrpour, M.2
Proikas-Cezanne, T.3
-
48
-
-
77952722628
-
Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway
-
Zhou X, Wang L, Hasegawa H, Amin P, Han BX, et al. 2010. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. PNAS 107:9424-29
-
(2010)
PNAS
, vol.107
, pp. 9424-9429
-
-
Zhou, X.1
Wang, L.2
Hasegawa, H.3
Amin, P.4
Han, B.X.5
-
49
-
-
82855170845
-
Resveratrol-mediated autophagy requiresWIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation
-
Mauthe M, JacobA, Freiberger S, Hentschel K, Stierhof YD, et al. 2011. Resveratrol-mediated autophagy requiresWIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy 7:1448-61
-
(2011)
Autophagy
, vol.7
, pp. 1448-1461
-
-
Mauthe, M.1
Jacob, A.2
Freiberger, S.3
Hentschel, K.4
Stierhof, Y.D.5
-
50
-
-
84921615639
-
PI (5)P regulates autophagosome biogenesis
-
Vicinanza M, Korolchuk VI, Ashkenazi A, Puri C, Menzies FM, et al. 2015. PI(5)P regulates autophagosome biogenesis. Mol. Cell 57:219-34
-
(2015)
Mol. Cell
, vol.57
, pp. 219-234
-
-
Vicinanza, M.1
Korolchuk, V.I.2
Ashkenazi, A.3
Puri, C.4
Menzies, F.M.5
-
51
-
-
84884822573
-
Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis
-
Devereaux K, Dall'armi C, Alcazar-Roman A, Ogasawara Y, Zhou X, et al. 2013. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLOS ONE 8:e76405
-
(2013)
PLOS ONE
, vol.8
, pp. e76405
-
-
Devereaux, K.1
Dall'Armi, C.2
Alcazar-Roman, A.3
Ogasawara, Y.4
Zhou, X.5
-
53
-
-
84893742000
-
Phosphatidylinositol 5-phosphate: A nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics
-
Viaud J, Boal F, Tronchere H, Gaits-Iacovoni F, Payrastre B. 2014. Phosphatidylinositol 5-phosphate: A nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics. BioEssays 36:260-72
-
(2014)
BioEssays
, vol.36
, pp. 260-272
-
-
Viaud, J.1
Boal, F.2
Tronchere, H.3
Gaits-Iacovoni, F.4
Payrastre, B.5
-
54
-
-
33244481532
-
Autophagy: A forty-year search for a missing membrane source
-
Juhasz G, Neufeld TP. 2006. Autophagy: A forty-year search for a missing membrane source. PLOS Biol. 4:e36
-
(2006)
PLOS Biol.
, vol.4
, pp. e36
-
-
Juhasz, G.1
Neufeld, T.P.2
-
55
-
-
84943798225
-
Ultrastructural relationship of the phagophore with surrounding organelles
-
Biazik J, Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. 2015. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 11:439-51
-
(2015)
Autophagy
, vol.11
, pp. 439-451
-
-
Biazik, J.1
Yla-Anttila, P.2
Vihinen, H.3
Jokitalo, E.4
Eskelinen, E.L.5
-
56
-
-
0016259232
-
Production of membrane whorls in rat liver by some inhibitors of protein synthesis
-
Hwang KM, Yang LC, Carrico CK, Schulz RA, Schenkman JB, Sartorelli AC. 1974. Production of membrane whorls in rat liver by some inhibitors of protein synthesis. J. Cell Biol. 62:20-31
-
(1974)
J. Cell Biol.
, vol.62
, pp. 20-31
-
-
Hwang, K.M.1
Yang, L.C.2
Carrico, C.K.3
Schulz, R.A.4
Schenkman, J.B.5
Sartorelli, A.C.6
-
57
-
-
0020576893
-
Ultrastructural studies on autolysosomes in rat hepatocytes after leupeptin treatment
-
Ishikawa T, Furuno K, Kato K. 1983. Ultrastructural studies on autolysosomes in rat hepatocytes after leupeptin treatment. Exp. Cell Res. 144:15-24
-
(1983)
Exp. Cell Res.
, vol.144
, pp. 15-24
-
-
Ishikawa, T.1
Furuno, K.2
Kato, K.3
-
58
-
-
0016665507
-
The role of the Golgi complex in the isolation and digestion of organelles
-
Locke M, Sykes AK. 1975. The role of the Golgi complex in the isolation and digestion of organelles. Tissue Cell 7:143-58
-
(1975)
Tissue Cell
, vol.7
, pp. 143-158
-
-
Locke, M.1
Sykes, A.K.2
-
59
-
-
0025217177
-
Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry
-
Yamamoto A, Masaki R, Tashiro Y. 1990. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J. Histochem. Cytochem. 38:573-80
-
(1990)
J. Histochem. Cytochem.
, vol.38
, pp. 573-580
-
-
Yamamoto, A.1
Masaki, R.2
Tashiro, Y.3
-
60
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. 2009. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:1433-37
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
61
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe EL, Walker SA, ManifavaM, Chandra P, Roderick HL, et al. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685-701
-
(2008)
J. Cell Biol.
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
-
62
-
-
84907042842
-
Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
-
Kishi-Itakura C, Koyama-Honda I, Itakura E, MizushimaN. 2014. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127:4089-102
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4089-4102
-
-
Kishi-Itakura, C.1
Koyama-Honda, I.2
Itakura, E.3
Mizushima, N.4
-
63
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, et al. 2010. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656-67
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
-
64
-
-
84875365804
-
Autophagosomes form at ERmitochondria contact sites
-
Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, et al. 2013. Autophagosomes form at ERmitochondria contact sites. Nature 495:389-93
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
-
66
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. 2010. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12:747-57
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
67
-
-
84899977406
-
Connexinsmodulate autophagosome biogenesis
-
Bejarano E, Yuste A, Patel B, Stout RF Jr, Spray DC, Cuervo AM. 2014. Connexinsmodulate autophagosome biogenesis. Nat. Cell Biol. 16:401-14
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 401-414
-
-
Bejarano, E.1
Yuste, A.2
Patel, B.3
Stout, R.F.4
Spray, D.C.5
Cuervo, A.M.6
-
68
-
-
84859965801
-
Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4, 5-bisphosphate and phospholipase D
-
Moreau K, Ravikumar B, Puri C, Rubinsztein DC. 2012. Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4, 5-bisphosphate and phospholipase D. J. Cell Biol. 196:483-96
-
(2012)
J. Cell Biol.
, vol.196
, pp. 483-496
-
-
Moreau, K.1
Ravikumar, B.2
Puri, C.3
Rubinsztein, D.C.4
-
69
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP, et al. 2012. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. PNAS 109:2003-8
-
(2012)
PNAS
, vol.109
, pp. 2003-2008
-
-
Jaber, N.1
Dou, Z.2
Chen, J.S.3
Catanzaro, J.4
Jiang, Y.P.5
-
70
-
-
32244442749
-
Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking
-
Zeng X, Overmeyer JH, Maltese WA. 2006. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci. 119:259-70
-
(2006)
J. Cell Sci.
, vol.119
, pp. 259-270
-
-
Zeng, X.1
Overmeyer, J.H.2
Maltese, W.A.3
-
71
-
-
46249127490
-
Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease
-
Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC. 2008. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci. 121:1649-60
-
(2008)
J. Cell Sci.
, vol.121
, pp. 1649-1660
-
-
Ravikumar, B.1
Imarisio, S.2
Sarkar, S.3
O'Kane, C.J.4
Rubinsztein, D.C.5
-
72
-
-
84876086849
-
Class IA PI3K p110?subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation
-
Dou Z, Pan JA, Dbouk HA, Ballou LM, DeLeon JL, et al. 2013. Class IA PI3K p110?subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol. Cell 50:29-42
-
(2013)
Mol. Cell
, vol.50
, pp. 29-42
-
-
Dou, Z.1
Pan, J.A.2
Dbouk, H.A.3
Ballou, L.M.4
DeLeon, J.L.5
-
73
-
-
84862611041
-
TBC1D14 regulates autophagosome formation via Rab11-and ULK1-positive recycling endosomes
-
Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. 2012. TBC1D14 regulates autophagosome formation via Rab11-and ULK1-positive recycling endosomes. J. Cell Biol. 197:659-75
-
(2012)
J. Cell Biol.
, vol.197
, pp. 659-675
-
-
Longatti, A.1
Lamb, C.A.2
Razi, M.3
Yoshimura, S.4
Barr, F.A.5
Tooze, S.A.6
-
74
-
-
84885660381
-
SNX18 tubulates recycling endosomes for autophagosome biogenesis
-
Knaevelsrud H, Carlsson SR, Simonsen A. 2013. SNX18 tubulates recycling endosomes for autophagosome biogenesis. Autophagy 9:1639-41
-
(2013)
Autophagy
, vol.9
, pp. 1639-1641
-
-
Knaevelsrud, H.1
Carlsson, S.R.2
Simonsen, A.3
-
75
-
-
84881506338
-
The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
-
Ge L, Melville D, Zhang M, Schekman R. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. ELife 2:e00947
-
(2013)
ELife
, vol.2
, pp. e00947
-
-
Ge, L.1
Melville, D.2
Zhang, M.3
Schekman, R.4
-
76
-
-
84927720203
-
Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment
-
Ge L, Zhang M, Schekman R. 2014. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. ELife 3:e04135
-
(2014)
ELife
, vol.3
, pp. e04135
-
-
Ge, L.1
Zhang, M.2
Schekman, R.3
-
77
-
-
84888350190
-
The em structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
-
Tan D, Cai Y, Wang J, Zhang J, Menon S, et al. 2013. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. PNAS 110:19432-37
-
(2013)
PNAS
, vol.110
, pp. 19432-19437
-
-
Tan, D.1
Cai, Y.2
Wang, J.3
Zhang, J.4
Menon, S.5
-
78
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
Stolz A, Ernst A, Dikic I. 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495-501
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
79
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309-14
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
-
80
-
-
84862618804
-
A role for Atg8-PE deconjugation in autophagosome biogenesis
-
Nair U, YenWL, Mari M, Cao Y, Xie Z, et al. 2012. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8:780-93
-
(2012)
Autophagy
, vol.8
, pp. 780-793
-
-
Nair, U.1
Yen, W.L.2
Mari, M.3
Cao, Y.4
Xie, Z.5
-
81
-
-
84864886799
-
Dual roles of Atg8-PE deconjugation by Atg4 in autophagy
-
Yu ZQ, Ni T, Hong B, Wang HY, Jiang FJ, et al. 2012. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883-92
-
(2012)
Autophagy
, vol.8
, pp. 883-892
-
-
Yu, Z.Q.1
Ni, T.2
Hong, B.3
Wang, H.Y.4
Jiang, F.J.5
-
83
-
-
80053364693
-
The role of motor proteins in endosomal sorting
-
Hunt SD, Stephens DJ. 2011. The role of motor proteins in endosomal sorting. Biochem. Soc. Trans. 39:1179-84
-
(2011)
Biochem. Soc. Trans.
, vol.39
, pp. 1179-1184
-
-
Hunt, S.D.1
Stephens, D.J.2
-
84
-
-
33846010776
-
Microtubules support production of starvationinduced autophagosomes but not their targeting and fusion with lysosomes
-
Fass E, ShvetsE, Degani I, HirschbergK, Elazar Z. 2006. Microtubules support production of starvationinduced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281:36303-16
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 36303-36316
-
-
Fass, E.1
Shvets, E.2
Degani, I.3
Hirschberg, K.4
Elazar, Z.5
-
85
-
-
40449139980
-
The itinerary of autophagosomes: From peripheral formation to kiss-and-run fusion with lysosomes
-
Jahreiss L, Menzies FM, Rubinsztein DC. 2008. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9:574-87
-
(2008)
Traffic
, vol.9
, pp. 574-587
-
-
Jahreiss, L.1
Menzies, F.M.2
Rubinsztein, D.C.3
-
86
-
-
84857858536
-
Autophagosomes initiate distally andmature during transport toward the cell soma in primary neurons
-
Maday S, Wallace KE, Holzbaur EL. 2012. Autophagosomes initiate distally andmature during transport toward the cell soma in primary neurons. J. Cell Biol. 196:407-17
-
(2012)
J. Cell Biol.
, vol.196
, pp. 407-417
-
-
Maday, S.1
Wallace, K.E.2
Holzbaur, E.L.3
-
87
-
-
84937148634
-
Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes
-
Cheng XT, Zhou B, Lin MY, Cai Q, Sheng ZH. 2015. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209:377-86
-
(2015)
J. Cell Biol.
, vol.209
, pp. 377-386
-
-
Cheng, X.T.1
Zhou, B.2
Lin, M.Y.3
Cai, Q.4
Sheng, Z.H.5
-
88
-
-
22844436451
-
Dynein mutations impair autophagic clearance of aggregate-prone proteins
-
Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, et al. 2005. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37:771-76
-
(2005)
Nat. Genet.
, vol.37
, pp. 771-776
-
-
Ravikumar, B.1
Acevedo-Arozena, A.2
Imarisio, S.3
Berger, Z.4
Vacher, C.5
-
89
-
-
84887212412
-
Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells
-
Cardoso CM, Groth-Pedersen L, Hoyer-Hansen M, Kirkegaard T, Corcelle E, et al. 2009. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLOS ONE 4:e4424
-
(2009)
PLOS ONE
, vol.4
, pp. e4424
-
-
Cardoso, C.M.1
Groth-Pedersen, L.2
Hoyer-Hansen, M.3
Kirkegaard, T.4
Corcelle, E.5
-
90
-
-
79953316595
-
Lysosomal positioning coordinates cellular nutrient responses
-
Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, et al. 2011. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13:453-60
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 453-460
-
-
Korolchuk, V.I.1
Saiki, S.2
Lichtenberg, M.3
Siddiqi, F.H.4
Roberts, E.A.5
-
92
-
-
77649337122
-
HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
-
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29:969-80
-
(2010)
EMBO J.
, vol.29
, pp. 969-980
-
-
Lee, J.Y.1
Koga, H.2
Kawaguchi, Y.3
Tang, W.4
Wong, E.5
-
93
-
-
84867103427
-
Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome
-
Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F. 2012. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14:1024-35
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1024-1035
-
-
Tumbarello, D.A.1
Waxse, B.J.2
Arden, S.D.3
Bright, N.A.4
Kendrick-Jones, J.5
Buss, F.6
-
94
-
-
68049105101
-
Rab GTPases as coordinators of vesicle traffic
-
Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:513-25
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 513-525
-
-
Stenmark, H.1
-
95
-
-
0035975946
-
TheRab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors
-
Jordens I, Fernandez-Borja M, MarsmanM, Dusseljee S, JanssenL, et al. 2001. TheRab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11:1680-85
-
(2001)
Curr. Biol.
, vol.11
, pp. 1680-1685
-
-
Jordens, I.1
Fernandez-Borja, M.2
Marsman, M.3
Dusseljee, S.4
Janssen, L.5
-
96
-
-
76149086512
-
FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
-
Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, et al. 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188:253-69
-
(2010)
J. Cell Biol.
, vol.188
, pp. 253-269
-
-
Pankiv, S.1
Alemu, E.A.2
Brech, A.3
Bruun, J.A.4
Lamark, T.5
-
98
-
-
80052233389
-
Endosome maturation
-
Huotari J, Helenius A. 2011. Endosome maturation. EMBO J. 30:3481-500
-
(2011)
EMBO J.
, vol.30
, pp. 3481-3500
-
-
Huotari, J.1
Helenius, A.2
-
99
-
-
79959346132
-
Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest
-
Ganley IG, Wong PM, Gammoh N, Jiang X. 2011. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42:731-43
-
(2011)
Mol. Cell
, vol.42
, pp. 731-743
-
-
Ganley, I.G.1
Wong, P.M.2
Gammoh, N.3
Jiang, X.4
-
100
-
-
84929193242
-
Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification
-
Mauvezin C, Nagy P, Juhasz G, Neufeld TP. 2015. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun. 6:7007
-
(2015)
Nat. Commun.
, vol.6
, pp. 7007
-
-
Mauvezin, C.1
Nagy, P.2
Juhasz, G.3
Neufeld, T.P.4
-
101
-
-
77951918362
-
Identification of the switch in early-to-late endosome transition
-
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. 2010. Identification of the switch in early-to-late endosome transition. Cell 141:497-508
-
(2010)
Cell
, vol.141
, pp. 497-508
-
-
Poteryaev, D.1
Datta, S.2
Ackema, K.3
Zerial, M.4
Spang, A.5
-
102
-
-
46449120732
-
Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking
-
Liang C, Lee JS, Inn KS, Gack MU, Li Q, et al. 2008. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10:776-87
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 776-787
-
-
Liang, C.1
Lee, J.S.2
Inn, K.S.3
Gack, M.U.4
Li, Q.5
-
103
-
-
78650600158
-
Rubicon controls endosome maturation as a Rab7 effector
-
Sun Q, Westphal W, Wong KN, Tan I, Zhong Q. 2010. Rubicon controls endosome maturation as a Rab7 effector. PNAS 107:19338-43
-
(2010)
PNAS
, vol.107
, pp. 19338-19343
-
-
Sun, Q.1
Westphal, W.2
Wong, K.N.3
Tan, I.4
Zhong, Q.5
-
104
-
-
78650114245
-
Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain
-
Tabata K, Matsunaga K, Sakane A, Sasaki T, Noda T, Yoshimori T. 2010. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell 21:4162-72
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 4162-4172
-
-
Tabata, K.1
Matsunaga, K.2
Sakane, A.3
Sasaki, T.4
Noda, T.5
Yoshimori, T.6
-
105
-
-
84930643015
-
GABARAPs regulate PI4P-dependent autophagosome: Lysosome fusion
-
Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, et al. 2015. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. PNAS 112:7015-20
-
(2015)
PNAS
, vol.112
, pp. 7015-7020
-
-
Wang, H.1
Sun, H.Q.2
Zhu, X.3
Zhang, L.4
Albanesi, J.5
-
106
-
-
78149306025
-
Multisubunit tethering complexes and their role in membrane fusion
-
Brocker C, Engelbrecht-Vandre S, Ungermann C. 2010. Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol. 20:R943-52
-
(2010)
Curr. Biol.
, vol.20
, pp. R943-R952
-
-
Brocker, C.1
Engelbrecht-Vandre, S.2
Ungermann, C.3
-
107
-
-
84920448565
-
PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, et al. 2015. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:39-54
-
(2015)
Mol. Cell
, vol.57
, pp. 39-54
-
-
McEwan, D.G.1
Popovic, D.2
Gubas, A.3
Terawaki, S.4
Suzuki, H.5
-
108
-
-
84930375084
-
Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes
-
Wartosch L, Gunesdogan U, Graham SC, Paul Luzio J. 2015. Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes. Traffic 16:727-42
-
(2015)
Traffic
, vol.16
, pp. 727-742
-
-
Wartosch, L.1
Gunesdogan, U.2
Graham, S.C.3
Paul Luzio, J.4
-
109
-
-
79956147302
-
A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens
-
Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, et al. 2011. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:376-89
-
(2011)
Cell Host Microbe
, vol.9
, pp. 376-389
-
-
Ogawa, M.1
Yoshikawa, Y.2
Kobayashi, T.3
Mimuro, H.4
Fukumatsu, M.5
-
110
-
-
84862777210
-
A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate
-
Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. 2012. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45:629-41
-
(2012)
Mol. Cell
, vol.45
, pp. 629-641
-
-
Chen, D.1
Fan, W.2
Lu, Y.3
Ding, X.4
Chen, S.5
Zhong, Q.6
-
111
-
-
84923329832
-
Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners
-
Kim JH, Hong SB, Lee JK, Han S, Roh KH, et al. 2015. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11:75-87
-
(2015)
Autophagy
, vol.11
, pp. 75-87
-
-
Kim, J.H.1
Hong, S.B.2
Lee, J.K.3
Han, S.4
Roh, K.H.5
-
113
-
-
3042735690
-
CombinatorialSNAREcomplexes with VAMP7 or VAMP8 define different late endocytic fusion events
-
Pryor PR, Mullock BM, Bright NA, LindsayMR, Gray SR, et al. 2004. CombinatorialSNAREcomplexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep. 5:590-95
-
(2004)
EMBO Rep.
, vol.5
, pp. 590-595
-
-
Pryor, P.R.1
Mullock, B.M.2
Bright, N.A.3
Lindsay, M.R.4
Gray, S.R.5
-
114
-
-
77949448601
-
Combinational soluble N-ethylmaleimidesensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes
-
Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. 2010. Combinational soluble N-ethylmaleimidesensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21:1001-10
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 1001-1010
-
-
Furuta, N.1
Fujita, N.2
Noda, T.3
Yoshimori, T.4
Amano, A.5
-
115
-
-
78149282263
-
Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders
-
Fraldi A, Annunziata F, Lombardi A, Kaiser HJ, Medina DL, et al. 2010. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 29:3607-20
-
(2010)
EMBO J.
, vol.29
, pp. 3607-3620
-
-
Fraldi, A.1
Annunziata, F.2
Lombardi, A.3
Kaiser, H.J.4
Medina, D.L.5
-
116
-
-
72049088519
-
TI-VAMP/VAMP7 and VAMP3/cellubrevin: Two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways
-
FaderCM, Sanchez DG, Mestre MB, ColomboMI. 2009. TI-VAMP/VAMP7 and VAMP3/cellubrevin: Two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793:1901-16
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 1901-1916
-
-
Fader, C.M.1
Sanchez, D.G.2
Mestre, M.B.3
Colombo, M.I.4
-
117
-
-
79551546749
-
Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex
-
Renna M, SchaffnerC, Winslow AR, Menzies FM, Peden AA, et al. 2011. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 124:469-82
-
(2011)
J. Cell Sci.
, vol.124
, pp. 469-482
-
-
Renna, M.1
Schaffner, C.2
Winslow, A.R.3
Menzies, F.M.4
Peden, A.A.5
-
118
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256-69
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
119
-
-
84878615771
-
Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila
-
Takats S, Nagy P, Varga A, Pircs K, Karpati M, et al. 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201:531-39
-
(2013)
J. Cell Biol.
, vol.201
, pp. 531-539
-
-
Takats, S.1
Nagy, P.2
Varga, A.3
Pircs, K.4
Karpati, M.5
-
120
-
-
84928550400
-
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
Diao J, Liu R, Rong Y, ZhaoM, Zhang J, et al. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563-66
-
(2015)
Nature
, vol.520
, pp. 563-566
-
-
Diao, J.1
Liu, R.2
Rong, Y.3
Zhao, M.4
Zhang, J.5
-
121
-
-
65349155174
-
Early endosomes and endosomal coatomer are required for autophagy
-
Razi M, Chan EY, Tooze SA. 2009. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185:305-21
-
(2009)
J. Cell Biol.
, vol.185
, pp. 305-321
-
-
Razi, M.1
Chan, E.Y.2
Tooze, S.A.3
-
122
-
-
69449089915
-
How do ESCRT proteins control autophagy?
-
Rusten TE, Stenmark H. 2009. How do ESCRT proteins control autophagy? J. Cell Sci. 122:2179-83
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2179-2183
-
-
Rusten, T.E.1
Stenmark, H.2
-
123
-
-
84921417671
-
Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors
-
Lazarus MB, Novotny CJ, Shokat KM. 2015. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol. 10:257-61
-
(2015)
ACS Chem. Biol.
, vol.10
, pp. 257-261
-
-
Lazarus, M.B.1
Novotny, C.J.2
Shokat, K.M.3
-
124
-
-
84901986623
-
Structural basis of starvation-induced assembly of the autophagy initiation complex
-
Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y, et al. 2014. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21:513-21
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 513-521
-
-
Fujioka, Y.1
Suzuki, S.W.2
Yamamoto, H.3
Kondo-Kakuta, C.4
Kimura, Y.5
-
125
-
-
84871581862
-
Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis
-
Ragusa MJ, Stanley RE, Hurley JH. 2012. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151:1501-12
-
(2012)
Cell
, vol.151
, pp. 1501-1512
-
-
Ragusa, M.J.1
Stanley, R.E.2
Hurley, J.H.3
-
126
-
-
84881091197
-
Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation
-
Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U, et al. 2013. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. PNAS 110:E2875-84
-
(2013)
PNAS
, vol.110
, pp. E2875-E2884
-
-
Mao, K.1
Chew, L.H.2
Inoue-Aono, Y.3
Cheong, H.4
Nair, U.5
-
127
-
-
84930188743
-
Solution structure of the Atg1 complex: Implications for the architecture of the phagophore assembly site
-
Kofinger J, Ragusa MJ, Lee IH, Hummer G, Hurley JH. 2015. Solution structure of the Atg1 complex: implications for the architecture of the phagophore assembly site. Structure 23:809-18
-
(2015)
Structure
, vol.23
, pp. 809-818
-
-
Kofinger, J.1
Ragusa, M.J.2
Lee, I.H.3
Hummer, G.4
Hurley, J.H.5
-
128
-
-
84890887051
-
The beginning of the end: How scaffolds nucleate autophagosome biogenesis
-
Stanley RE, Ragusa MJ, Hurley JH. 2014. The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol. 24:73-81
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 73-81
-
-
Stanley, R.E.1
Ragusa, M.J.2
Hurley, J.H.3
-
129
-
-
84875834380
-
A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy
-
Jao CC, Ragusa MJ, Stanley RE, Hurley JH. 2013. A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. PNAS 110:5486-91
-
(2013)
PNAS
, vol.110
, pp. 5486-5491
-
-
Jao, C.C.1
Ragusa, M.J.2
Stanley, R.E.3
Hurley, J.H.4
-
130
-
-
84936846861
-
Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation
-
Suzuki H, Kaizuka T, Mizushima N, Noda NN. 2015. Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat. Struct. Mol. Biol. 22:572-80
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 572-580
-
-
Suzuki, H.1
Kaizuka, T.2
Mizushima, N.3
Noda, N.N.4
-
131
-
-
84925307913
-
Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation
-
Suzuki SW, Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y, et al. 2015. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. PNAS 112:3350-55
-
(2015)
PNAS
, vol.112
, pp. 3350-3355
-
-
Suzuki, S.W.1
Yamamoto, H.2
Oikawa, Y.3
Kondo-Kakuta, C.4
Kimura, Y.5
-
132
-
-
77950212231
-
Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34
-
Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, et al. 2010. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638-42
-
(2010)
Science
, vol.327
, pp. 1638-1642
-
-
Miller, S.1
Tavshanjian, B.2
Oleksy, A.3
Perisic, O.4
Houseman, B.T.5
-
133
-
-
84898639632
-
Atomistic autophagy: The structures of cellular self-digestion
-
Hurley JH, Schulman BA. 2014. Atomistic autophagy: The structures of cellular self-digestion. Cell 157:300-11
-
(2014)
Cell
, vol.157
, pp. 300-311
-
-
Hurley, J.H.1
Schulman, B.A.2
-
134
-
-
34547689505
-
Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1
-
Feng W, Huang S, Wu H, Zhang M. 2007. Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J. Mol. Biol. 372:223-35
-
(2007)
J. Mol. Biol.
, vol.372
, pp. 223-235
-
-
Feng, W.1
Huang, S.2
Wu, H.3
Zhang, M.4
-
135
-
-
34249037565
-
Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein
-
Oberstein A, Jeffrey PD, Shi Y. 2007. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J. Biol. Chem. 282:13123-32
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 13123-13132
-
-
Oberstein, A.1
Jeffrey, P.D.2
Shi, Y.3
-
136
-
-
84862023791
-
Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG
-
Li X, He L, Che KH, Funderburk SF, Pan L, et al. 2012. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun. 3:662
-
(2012)
Nat. Commun.
, vol.3
, pp. 662
-
-
Li, X.1
He, L.2
Che, K.H.3
Funderburk, S.F.4
Pan, L.5
-
137
-
-
84884262668
-
EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
-
Wei Y, Zou Z, Becker N, Anderson M, SumpterR, et al. 2013. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistancE. Cell 154:1269-84
-
(2013)
Cell
, vol.154
, pp. 1269-1284
-
-
Wei, Y.1
Zou, Z.2
Becker, N.3
Anderson, M.4
Sumpter, R.5
-
138
-
-
84862777560
-
Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein
-
HuangW, ChoiW, HuW, Mi N, Guo Q, et al. 2012. Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res. 22:473-89
-
(2012)
Cell Res.
, vol.22
, pp. 473-489
-
-
Huang, W.1
Choi, W.2
Hu, W.3
Mi, N.4
Guo, Q.5
-
139
-
-
84860875222
-
Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy
-
Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F. 2012. Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem. 287:16256-66
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 16256-16266
-
-
Noda, N.N.1
Kobayashi, T.2
Adachi, W.3
Fujioka, Y.4
Ohsumi, Y.5
Inagaki, F.6
-
140
-
-
84943665694
-
Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex
-
Baskaran S, Carlson LA, Stjepanovic G, Young LN, Kim do J, et al. 2014. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. ELife 3:e05115
-
(2014)
ELife
, vol.3
, pp. e05115
-
-
Baskaran, S.1
Carlson, L.A.2
Stjepanovic, G.3
Young, L.N.4
Kim do, J.5
-
141
-
-
84943521176
-
Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes
-
Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E, et al. 2015. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350:aac7365
-
(2015)
Science
, vol.350
, pp. aac7365
-
-
Rostislavleva, K.1
Soler, N.2
Ohashi, Y.3
Zhang, L.4
Pardon, E.5
-
142
-
-
84864960430
-
Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy
-
Baskaran S, Ragusa MJ, Boura E, Hurley JH. 2012. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol. Cell 47:339-48
-
(2012)
Mol. Cell
, vol.47
, pp. 339-348
-
-
Baskaran, S.1
Ragusa, M.J.2
Boura, E.3
Hurley, J.H.4
-
143
-
-
84864337089
-
Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a propeller protein family
-
Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, et al. 2012. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a propeller protein family. PNAS 109:E2042-49
-
(2012)
PNAS
, vol.109
, pp. E2042-E2049
-
-
Krick, R.1
Busse, R.A.2
Scacioc, A.3
Stephan, M.4
Janshoff, A.5
-
144
-
-
84866419794
-
Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18
-
Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, et al. 2012. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem. 287:31681-90
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 31681-31690
-
-
Watanabe, Y.1
Kobayashi, T.2
Yamamoto, H.3
Hoshida, H.4
Akada, R.5
-
146
-
-
84870815734
-
Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures
-
Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL, et al. 2012. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat. Struct. Mol. Biol. 19:1242-49
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1242-1249
-
-
Kaiser, S.E.1
Mao, K.2
Taherbhoy, A.M.3
Yu, S.4
Olszewski, J.L.5
-
147
-
-
84870834728
-
Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7
-
Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H, et al. 2012. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19:1250-56
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1250-1256
-
-
Yamaguchi, M.1
Matoba, K.2
Sawada, R.3
Fujioka, Y.4
Nakatogawa, H.5
-
148
-
-
84863519526
-
Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate
-
Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H, et al. 2012. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20:1244-54
-
(2012)
Structure
, vol.20
, pp. 1244-1254
-
-
Yamaguchi, M.1
Noda, N.N.2
Yamamoto, H.3
Shima, T.4
Kumeta, H.5
-
149
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, et al. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282:37298-302
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37298-37302
-
-
Hanada, T.1
Noda, N.N.2
Satomi, Y.3
Ichimura, Y.4
Fujioka, Y.5
-
150
-
-
43949143804
-
The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
-
Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 2008. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19:2092-100
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2092-2100
-
-
Fujita, N.1
Itoh, T.2
Omori, H.3
Fukuda, M.4
Noda, T.5
Yoshimori, T.6
-
151
-
-
34248203863
-
Structure of Atg5Atg16, a complex essential for autophagy
-
Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F. 2007. Structure of Atg5Atg16, a complex essential for autophagy. J. Biol. Chem. 282:6763-72
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 6763-6772
-
-
Matsushita, M.1
Suzuki, N.N.2
Obara, K.3
Fujioka, Y.4
Ohsumi, Y.5
Inagaki, F.6
-
152
-
-
74049140368
-
Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy
-
Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F. 2010. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285:1508-15
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 1508-1515
-
-
Fujioka, Y.1
Noda, N.N.2
Nakatogawa, H.3
Ohsumi, Y.4
Inagaki, F.5
-
153
-
-
84873405258
-
Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation
-
Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. 2013. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 14:206-11
-
(2013)
EMBO Rep.
, vol.14
, pp. 206-211
-
-
Noda, N.N.1
Fujioka, Y.2
Hanada, T.3
Ohsumi, Y.4
Inagaki, F.5
-
154
-
-
84872036691
-
Structure of the human ATG12?ATG5 conjugate required for LC3 lipidation in autophagy
-
Otomo C, Metlagel Z, Takaesu G, Otomo T. 2013. Structure of the human ATG12?ATG5 conjugate required for LC3 lipidation in autophagy. Nat. Struct. Mol. Biol. 20:59-66
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 59-66
-
-
Otomo, C.1
Metlagel, Z.2
Takaesu, G.3
Otomo, T.4
-
155
-
-
84868506702
-
Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction
-
Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR, et al. 2012. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J. Struct. Biol. 180:551-62
-
(2012)
J. Struct. Biol.
, vol.180
, pp. 551-562
-
-
Hain, A.U.1
Weltzer, R.R.2
Hammond, H.3
Jayabalasingham, B.4
Dinglasan, R.R.5
-
156
-
-
77954436763
-
Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori
-
Hu C, Zhang X, Teng YB, Hu HX, LiWF. 2010. Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr. Sect. F 66:787-90
-
(2010)
Acta Crystallogr. Sect. F
, vol.66
, pp. 787-790
-
-
Hu, C.1
Zhang, X.2
Teng, Y.B.3
Hu, H.X.4
Li, W.F.5
-
157
-
-
73449097796
-
Trypanosoma brucei ATG8: Structural insights into autophagic-like mechanisms in protozoa
-
Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M. 2009. Trypanosoma brucei ATG8: structural insights into autophagic-like mechanisms in protozoa. Autophagy 5:1085-91
-
(2009)
Autophagy
, vol.5
, pp. 1085-1091
-
-
Koopmann, R.1
Muhammad, K.2
Perbandt, M.3
Betzel, C.4
Duszenko, M.5
-
158
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
Nakatogawa H, Ichimura Y, Ohsumi Y. 2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165-78
-
(2007)
Cell
, vol.130
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
159
-
-
57249083972
-
Structural basis of target recognition by Atg8/LC3 during selective autophagy
-
Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, et al. 2008. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211-18
-
(2008)
Genes Cells
, vol.13
, pp. 1211-1218
-
-
Noda, N.N.1
Kumeta, H.2
Nakatogawa, H.3
Satoo, K.4
Adachi, W.5
-
160
-
-
4344696843
-
The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8
-
Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 2004. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611-18
-
(2004)
Genes Cells
, vol.9
, pp. 611-618
-
-
Sugawara, K.1
Suzuki, N.N.2
Fujioka, Y.3
Mizushima, N.4
Ohsumi, Y.5
Inagaki, F.6
-
161
-
-
79954544250
-
LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis
-
Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z. 2011. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20:444-54
-
(2011)
Dev. Cell
, vol.20
, pp. 444-454
-
-
Weidberg, H.1
Shpilka, T.2
Shvets, E.3
Abada, A.4
Shimron, F.5
Elazar, Z.6
-
162
-
-
77954762337
-
The NMR structure of the autophagy-related protein Atg8
-
Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K, et al. 2010. The NMR structure of the autophagy-related protein Atg8. J. Biomol. NMR 47:237-41
-
(2010)
J. Biomol. NMR
, vol.47
, pp. 237-241
-
-
Kumeta, H.1
Watanabe, M.2
Nakatogawa, H.3
Yamaguchi, M.4
Ogura, K.5
-
163
-
-
53049103308
-
Structural basis for sorting mechanism of p62 in selective autophagy
-
Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, et al. 2008. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283:22847-57
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 22847-22857
-
-
Ichimura, Y.1
Kumanomidou, T.2
Sou, Y.S.3
Mizushima, T.4
Ezaki, J.5
-
165
-
-
29144517659
-
The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers
-
Kumanomidou T, Mizushima T, Komatsu M, Suzuki A, Tanida I, et al. 2006. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol. 355:612-18
-
(2006)
J. Mol. Biol.
, vol.355
, pp. 612-618
-
-
Kumanomidou, T.1
Mizushima, T.2
Komatsu, M.3
Suzuki, A.4
Tanida, I.5
-
166
-
-
65649136884
-
The structure of Atg4B-LC3 complex reveals themechanism ofLC3processing and delipidation during autophagy
-
Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, et al. 2009. The structure of Atg4B-LC3 complex reveals themechanism ofLC3processing and delipidation during autophagy. EMBOJ. 28:1341-50
-
(2009)
EMBOJ.
, vol.28
, pp. 1341-1350
-
-
Satoo, K.1
Noda, N.N.2
Kumeta, H.3
Fujioka, Y.4
Mizushima, N.5
-
167
-
-
28844502647
-
Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy
-
Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 2005. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280:40058-65
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40058-40065
-
-
Sugawara, K.1
Suzuki, N.N.2
Fujioka, Y.3
Mizushima, N.4
Ohsumi, Y.5
Inagaki, F.6
-
168
-
-
82955247613
-
Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8
-
Hong SB, Kim BW, Lee KE, Kim SW, Jeon H, et al. 2011. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18:1323-30
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1323-1330
-
-
Hong, S.B.1
Kim, B.W.2
Lee, K.E.3
Kim, S.W.4
Jeon, H.5
-
169
-
-
80555144181
-
Structural basis of Atg8 activation by a homodimeric E1, Atg7
-
Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, et al. 2011. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44:462-75
-
(2011)
Mol. Cell
, vol.44
, pp. 462-475
-
-
Noda, N.N.1
Satoo, K.2
Fujioka, Y.3
Kumeta, H.4
Ogura, K.5
-
170
-
-
80555144189
-
Atg8 transfer from Atg7 to Atg3: A distinctive E1-E2 architecture and mechanism in the autophagy pathway
-
Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, et al. 2011. Atg8 transfer from Atg7 to Atg3: A distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44:451-61
-
(2011)
Mol. Cell
, vol.44
, pp. 451-461
-
-
Taherbhoy, A.M.1
Tait, S.W.2
Kaiser, S.E.3
Williams, A.H.4
Deng, A.5
-
171
-
-
34247237202
-
The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation
-
Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, et al. 2007. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282:8036-43
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 8036-8043
-
-
Yamada, Y.1
Suzuki, N.N.2
Hanada, T.3
Ichimura, Y.4
Kumeta, H.5
-
172
-
-
77956499358
-
Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway
-
Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. 2010. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285:29599-607
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 29599-29607
-
-
Yamaguchi, M.1
Noda, N.N.2
Nakatogawa, H.3
Kumeta, H.4
Ohsumi, Y.5
Inagaki, F.6
-
173
-
-
84899844485
-
Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3
-
Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, et al. 2014. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 16:415-24
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 415-424
-
-
Nath, S.1
Dancourt, J.2
Shteyn, V.3
Puente, G.4
Fong, W.M.5
-
174
-
-
0035503594
-
The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971-81
-
(2001)
EMBO J.
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
Mizushima, N.4
Noda, T.5
Ohsumi, Y.6
|