-
1
-
-
0033772264
-
OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
-
Alexander, C., M. Votruba, U.E. Pesch, D.L. Thiselton, S. Mayer, A. Moore, M. Rodriguez, U. Kellner, B. Leo-Kottler, G. Auburger, et al. 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26:211-215. http://dx.doi.org/10.1038/79944
-
(2000)
Nat. Genet.
, vol.26
, pp. 211-215
-
-
Alexander, C.1
Votruba, M.2
Pesch, U.E.3
Thiselton, D.L.4
Mayer, S.5
Moore, A.6
Rodriguez, M.7
Kellner, U.8
Leo-Kottler, B.9
Auburger, G.10
-
2
-
-
0023718495
-
Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes
-
Amchenkova, A.A., L.E. Bakeeva, Y.S. Chentsov, V.P. Skulachev, and D.B. Zorov. 1988. Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J. Cell Biol. 107:481-495. http://dx.doi.org/10.1083/jcb.107.2.481
-
(1988)
J. Cell Biol.
, vol.107
, pp. 481-495
-
-
Amchenkova, A.A.1
Bakeeva, L.E.2
Chentsov, Y.S.3
Skulachev, V.P.4
Zorov, D.B.5
-
3
-
-
84896264348
-
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
-
Anand, R., T. Wai, M.J. Baker, N. Kladt, A.C. Schauss, E. Rugarli, and T. Langer. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204:919-929. http://dx.doi.org/10.1083/jcb.201308006
-
(2014)
J. Cell Biol.
, vol.204
, pp. 919-929
-
-
Anand, R.1
Wai, T.2
Baker, M.J.3
Kladt, N.4
Schauss, A.C.5
Rugarli, E.6
Langer, T.7
-
4
-
-
84898603457
-
Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics
-
Baker, M.J., P.A. Lampe, D. Stojanovski, A. Korwitz, R. Anand, T. Tatsuta, and T. Langer. 2014. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 33:578-593. http://dx.doi.org/10.1002/embj.201386474
-
(2014)
EMBO J.
, vol.33
, pp. 578-593
-
-
Baker, M.J.1
Lampe, P.A.2
Stojanovski, D.3
Korwitz, A.4
Anand, R.5
Tatsuta, T.6
Langer, T.7
-
5
-
-
84903281183
-
Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling
-
Boissan, M., G. Montagnac, Q. Shen, L. Griparic, J. Guitton, M. Romao, N. Sauvonnet, T. Lagache, I. Lascu, G. Raposo, et al. 2014. Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science. 344:1510-1515. http://dx.doi.org/10.1126/science.1253768
-
(2014)
Science.
, vol.344
, pp. 1510-1515
-
-
Boissan, M.1
Montagnac, G.2
Shen, Q.3
Griparic, L.4
Guitton, J.5
Romao, M.6
Sauvonnet, N.7
Lagache, T.8
Lascu, I.9
Raposo, G.10
-
6
-
-
33748643416
-
Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers
-
Bua, E., J. Johnson, A. Herbst, B. Delong, D. McKenzie, S. Salamat, and J.M. Aiken. 2006. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 79:469-480. http://dx.doi.org/10.1086/507132
-
(2006)
Am. J. Hum. Genet.
, vol.79
, pp. 469-480
-
-
Bua, E.1
Johnson, J.2
Herbst, A.3
Delong, B.4
McKenzie, D.5
Salamat, S.6
Aiken, J.M.7
-
7
-
-
84926289356
-
Mitochondrial DNA: Impacting central and peripheral nervous systems
-
Carelli, V., and D.C. Chan. 2014. Mitochondrial DNA: Impacting central and peripheral nervous systems. Neuron. 84:1126-1142. http://dx.doi.org/10.1016/j.neuron.2014.11.022
-
(2014)
Neuron.
, vol.84
, pp. 1126-1142
-
-
Carelli, V.1
Chan, D.C.2
-
8
-
-
57349160257
-
Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria
-
Cereghetti, G.M., A. Stangherlin, O. Martins de Brito, C.R. Chang, C. Blackstone, P. Bernardi, and L. Scorrano. 2008. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. USA. 105:15803-15808. http://dx.doi.org/10.1073/pnas.0808249105
-
(2008)
Proc. Natl. Acad. Sci. USA.
, vol.105
, pp. 15803-15808
-
-
Cereghetti, G.M.1
Stangherlin, A.2
Martins de Brito, O.3
Chang, C.R.4
Blackstone, C.5
Bernardi, P.6
Scorrano, L.7
-
9
-
-
84869030015
-
Fusion and fission: Interlinked processes critical for mitochondrial health
-
Chan, D.C. 2012. Fusion and fission: Interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46:265-287. http://dx.doi.org/10.1146/annurev -genet -110410-132529
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 265-287
-
-
Chan, D.C.1
-
10
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan, N.C., A.M. Salazar, A.H. Pham, M.J. Sweredoski, N.J. Kolawa, R.L. Graham, S. Hess, and D.C. Chan. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:1726-1737. http://dx.doi.org/10.1093/hmg/ddr048
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
Hess, S.7
Chan, D.C.8
-
11
-
-
34547611925
-
Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
-
Chang, C.R., and C. Blackstone. 2007. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282:21583-21587. http://dx.doi.org/10.1074/jbc. C700083200
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 21583-21587
-
-
Chang, C.R.1
Blackstone, C.2
-
12
-
-
84880806405
-
Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport
-
Chen, Y., and Z.H. Sheng. 2013. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202:351-364. http://dx.doi.org/10.1083/jcb.201302040
-
(2013)
J. Cell Biol.
, vol.202
, pp. 351-364
-
-
Chen, Y.1
Sheng, Z.H.2
-
13
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
Chen, G., Z. Han, D. Feng, Y. Chen, L. Chen, H. Wu, L. Huang, C. Zhou, X. Cai, C. Fu, et al. 2014. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell. 54:362-377. http://dx.doi.org/10.1016/j.molcel.2014.02.034
-
(2014)
Mol. Cell.
, vol.54
, pp. 362-377
-
-
Chen, G.1
Han, Z.2
Feng, D.3
Chen, Y.4
Chen, L.5
Wu, H.6
Huang, L.7
Zhou, C.8
Cai, X.9
Fu, C.10
-
14
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen, H., S.A. Detmer, A.J. Ewald, E.E. Griffin, S.E. Fraser, and D.C. Chan. 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160:189-200. http://dx.doi.org/10.1083/jcb.200211046
-
(2003)
J. Cell Biol.
, vol.160
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
Fraser, S.E.5
Chan, D.C.6
-
15
-
-
22544451586
-
Disruption of fusion results in mitochondrial heterogeneity and dysfunction
-
Chen, H., A. Chomyn, and D.C. Chan. 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280:26185-26192. http://dx.doi.org/10.1074/jbc. M503062200
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26185-26192
-
-
Chen, H.1
Chomyn, A.2
Chan, D.C.3
-
16
-
-
34547601410
-
Mitochondrial fusion protects against neurodegeneration in the cerebellum
-
Chen, H., J.M. McCaffery, and D.C. Chan. 2007. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 130:548-562. http://dx.doi.org/10.1016/j.cell.2007.06.026
-
(2007)
Cell.
, vol.130
, pp. 548-562
-
-
Chen, H.1
McCaffery, J.M.2
Chan, D.C.3
-
17
-
-
77951737783
-
Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
-
Chen, H., M. Vermulst, Y.E. Wang, A. Chomyn, T.A. Prolla, J.M. McCaffery, and D.C. Chan. 2010. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 141:280-289. http://dx.doi.org/10.1016/j.cell.2010.02.026
-
(2010)
Cell.
, vol.141
, pp. 280-289
-
-
Chen, H.1
Vermulst, M.2
Wang, Y.E.3
Chomyn, A.4
Prolla, T.A.5
McCaffery, J.M.6
Chan, D.C.7
-
18
-
-
84884909413
-
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
-
Cogliati, S., C. Frezza, M.E. Soriano, T. Varanita, R. Quintana-Cabrera, M. Corrado, S. Cipolat, V. Costa, A. Casarin, L.C. Gomes, et al. 2013. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 155:160-171. http://dx.doi.org/10.1016/j.cell.2013.08.032
-
(2013)
Cell.
, vol.155
, pp. 160-171
-
-
Cogliati, S.1
Frezza, C.2
Soriano, M.E.3
Varanita, T.4
Quintana-Cabrera, R.5
Corrado, M.6
Cipolat, S.7
Costa, V.8
Casarin, A.9
Gomes, L.C.10
-
19
-
-
34848840991
-
Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death
-
Cribbs, J.T., and S. Strack. 2007. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8:939-944. http://dx.doi.org/10.1038/sj.embor.7401062
-
(2007)
EMBO Rep.
, vol.8
, pp. 939-944
-
-
Cribbs, J.T.1
Strack, S.2
-
20
-
-
20244381365
-
Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
-
Delettre, C., G. Lenaers, J.M. Griffoin, N. Gigarel, C. Lorenzo, P. Belenguer, L. Pelloquin, J. Grosgeorge, C. Turc-Carel, E. Perret, et al. 2000. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26:207-210. http://dx.doi.org/10.1038/79936
-
(2000)
Nat. Genet.
, vol.26
, pp. 207-210
-
-
Delettre, C.1
Lenaers, G.2
Griffoin, J.M.3
Gigarel, N.4
Lorenzo, C.5
Belenguer, P.6
Pelloquin, L.7
Grosgeorge, J.8
Turc-Carel, C.9
Perret, E.10
-
21
-
-
0036369531
-
OPA1 (Kjer type) dominant optic atrophy: A novel mitochondrial disease
-
Delettre, C., G. Lenaers, L. Pelloquin, P. Belenguer, and C.P. Hamel. 2002. OPA1 (Kjer type) dominant optic atrophy: A novel mitochondrial disease. Mol. Genet. Metab. 75:97-107. http://dx.doi.org/10.1006/mgme.2001.3278
-
(2002)
Mol. Genet. Metab.
, vol.75
, pp. 97-107
-
-
Delettre, C.1
Lenaers, G.2
Pelloquin, L.3
Belenguer, P.4
Hamel, C.P.5
-
22
-
-
80155137546
-
PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics
-
Dickey, A.S., and S. Strack. 2011. PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J. Neurosci. 31:15716-15726. http://dx.doi.org/10.1523/JNEUROSCI.3159-11.2011
-
(2011)
J. Neurosci.
, vol.31
, pp. 15716-15726
-
-
Dickey, A.S.1
Strack, S.2
-
23
-
-
84925494009
-
Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate
-
Ducommun, S., M. Deak, D. Sumpton, R.J. Ford, A. Núñez Galindo, M. Kussmann, B. Viollet, G.R. Steinberg, M. Foretz, L. Dayon, et al. 2015. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate. Cell. Signal. 27:978-988. http://dx.doi.org/10.1016/j.cellsig.2015.02.008
-
(2015)
Cell. Signal.
, vol.27
, pp. 978-988
-
-
Ducommun, S.1
Deak, M.2
Sumpton, D.3
Ford, R.J.4
Núñez Galindo, A.5
Kussmann, M.6
Viollet, B.7
Steinberg, G.R.8
Foretz, M.9
Dayon, L.10
-
24
-
-
33845976357
-
Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology
-
Duvezin-Caubet, S., R. Jagasia, J. Wagener, S. Hofmann, A. Trifunovic, A. Hansson, A. Chomyn, M.F. Bauer, G. Attardi, N.G. Larsson, et al. 2006. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Biol. Chem. 281:37972-37979. http://dx.doi.org/10.1074/jbc. M606059200
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 37972-37979
-
-
Duvezin-Caubet, S.1
Jagasia, R.2
Wagener, J.3
Hofmann, S.4
Trifunovic, A.5
Hansson, A.6
Chomyn, A.7
Bauer, M.F.8
Attardi, G.9
Larsson, N.G.10
-
25
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan, D.F., D.B. Shackelford, M.M. Mihaylova, S. Gelino, R.A. Kohnz, W. Mair, D.S. Vasquez, A. Joshi, D.M. Gwinn, R. Taylor, et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 331:456-461. http://dx.doi.org/10.1126/science.1196371
-
(2011)
Science.
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
Vasquez, D.S.7
Joshi, A.8
Gwinn, D.M.9
Taylor, R.10
-
26
-
-
0037133634
-
Fast 100-nm resolution threedimensional microscope reveals structural plasticity of mitochondria in live yeast
-
Egner, A., S. Jakobs, and S.W. Hell. 2002. Fast 100-nm resolution threedimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA. 99:3370-3375. http://dx.doi.org/10.1073/pnas.052545099
-
(2002)
Proc. Natl. Acad. Sci. USA.
, vol.99
, pp. 3370-3375
-
-
Egner, A.1
Jakobs, S.2
Hell, S.W.3
-
27
-
-
76149140917
-
Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1
-
Ehses, S., I. Raschke, G. Mancuso, A. Bernacchia, S. Geimer, D. Tondera, J.C. Martinou, B. Westermann, E.I. Rugarli, and T. Langer. 2009. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187:1023-1036. http://dx.doi.org/10.1083/jcb.200906084
-
(2009)
J. Cell Biol.
, vol.187
, pp. 1023-1036
-
-
Ehses, S.1
Raschke, I.2
Mancuso, G.3
Bernacchia, A.4
Geimer, S.5
Tondera, D.6
Martinou, J.C.7
Westermann, B.8
Rugarli, E.I.9
Langer, T.10
-
28
-
-
84899525169
-
Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling
-
Eisner, V., G. Lenaers, and G. Hajnóczky. 2014. Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling. J. Cell Biol. 205:179-195. http://dx.doi.org/10.1083/jcb.201312066
-
(2014)
J. Cell Biol.
, vol.205
, pp. 179-195
-
-
Eisner, V.1
Lenaers, G.2
Hajnóczky, G.3
-
29
-
-
0036837606
-
The length of cytochrome c oxidase-negative segments in muscle fibres in patients with mtDNA myopathy
-
Elson, J.L., D.C. Samuels, M.A. Johnson, D.M. Turnbull, and P.F. Chinnery. 2002. The length of cytochrome c oxidase-negative segments in muscle fibres in patients with mtDNA myopathy. Neuromuscul. Disord. 12:858-864. http://dx.doi.org/10.1016/S0960-8966(02)00047-0
-
(2002)
Neuromuscul. Disord.
, vol.12
, pp. 858-864
-
-
Elson, J.L.1
Samuels, D.C.2
Johnson, M.A.3
Turnbull, D.M.4
Chinnery, P.F.5
-
30
-
-
44649129342
-
The novel tail-anchored membrane protein Mffcontrols mitochondrial and peroxisomal fission in mammalian cells
-
Gandre-Babbe, S., and A.M. van der Bliek. 2008. The novel tail-anchored membrane protein Mffcontrols mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell. 19:2402-2412. http://dx.doi.org/10.1091/mbc. E07-12-1287
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 2402-2412
-
-
Gandre-Babbe, S.1
van der Bliek, A.M.2
-
31
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes, L.C., G. Di Benedetto, and L. Scorrano. 2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13:589-598. http://dx.doi.org/10.1038/ncb2220
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
32
-
-
23044432581
-
The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses
-
Guo, X., G.T. Macleod, A. Wellington, F. Hu, S. Panchumarthi, M. Schoenfield, L. Marin, M.P. Charlton, H.L. Atwood, and K.E. Zinsmaier. 2005. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 47:379-393. http://dx.doi.org/10.1016/j.neuron.2005.06.027
-
(2005)
Neuron.
, vol.47
, pp. 379-393
-
-
Guo, X.1
Macleod, G.T.2
Wellington, A.3
Hu, F.4
Panchumarthi, S.5
Schoenfield, M.6
Marin, L.7
Charlton, M.P.8
Atwood, H.L.9
Zinsmaier, K.E.10
-
33
-
-
76149093590
-
Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells
-
Head, B., L. Griparic, M. Amiri, S. Gandre-Babbe, and A.M. van der Bliek. 2009. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 187:959-966. http://dx.doi.org/10.1083/jcb.200906083
-
(2009)
J. Cell Biol.
, vol.187
, pp. 959-966
-
-
Head, B.1
Griparic, L.2
Amiri, M.3
Gandre-Babbe, S.4
van der Bliek, A.M.5
-
34
-
-
0032547845
-
Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p
-
Hermann, G.J., J.W. Thatcher, J.P. Mills, K.G. Hales, M.T. Fuller, J. Nunnari, and J.M. Shaw. 1998. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143:359-373. http://dx.doi.org/10.1083/jcb.143.2.359
-
(1998)
J. Cell Biol.
, vol.143
, pp. 359-373
-
-
Hermann, G.J.1
Thatcher, J.W.2
Mills, J.P.3
Hales, K.G.4
Fuller, M.T.5
Nunnari, J.6
Shaw, J.M.7
-
35
-
-
78651468702
-
The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes
-
Hoppins, S., F. Edlich, M.M. Cleland, S. Banerjee, J.M. McCaffery, R.J. Youle, and J. Nunnari. 2011. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol. Cell. 41:150-160. http://dx.doi.org/10.1016/j.molcel.2010.11.030
-
(2011)
Mol. Cell.
, vol.41
, pp. 150-160
-
-
Hoppins, S.1
Edlich, F.2
Cleland, M.M.3
Banerjee, S.4
McCaffery, J.M.5
Youle, R.J.6
Nunnari, J.7
-
36
-
-
33746299692
-
Regulation of mitochondrial morphology through proteolytic cleavage of OPA1
-
Ishihara, N., Y. Fujita, T. Oka, and K. Mihara. 2006. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25:2966-2977. http://dx.doi.org/10.1038/sj.emboj.7601184
-
(2006)
EMBO J.
, vol.25
, pp. 2966-2977
-
-
Ishihara, N.1
Fujita, Y.2
Oka, T.3
Mihara, K.4
-
37
-
-
0037768628
-
Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p
-
Jakobs, S., N. Martini, A.C. Schauss, A. Egner, B. Westermann, and S.W. Hell. 2003. Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J. Cell Sci. 116:2005-2014. http://dx.doi.org/10.1242/jcs.00423
-
(2003)
J. Cell Sci.
, vol.116
, pp. 2005-2014
-
-
Jakobs, S.1
Martini, N.2
Schauss, A.C.3
Egner, A.4
Westermann, B.5
Hell, S.W.6
-
38
-
-
37749053855
-
Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation
-
Kang, J.S., J.H. Tian, P.Y. Pan, P. Zald, C. Li, C. Deng, and Z.H. Sheng. 2008. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell. 132:137-148. http://dx.doi.org/10.1016/j.cell.2007.11.024
-
(2008)
Cell.
, vol.132
, pp. 137-148
-
-
Kang, J.S.1
Tian, J.H.2
Pan, P.Y.3
Zald, P.4
Li, C.5
Deng, C.6
Sheng, Z.H.7
-
39
-
-
84924761433
-
Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth
-
Kashatus, J.A., A. Nascimento, L.J. Myers, A. Sher, F.L. Byrne, K.L. Hoehn, C.M. Counter, and D.F. Kashatus. 2015. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell. 57:537-551. http://dx.doi.org/10.1016/j.molcel.2015.01.002
-
(2015)
Mol. Cell.
, vol.57
, pp. 537-551
-
-
Kashatus, J.A.1
Nascimento, A.2
Myers, L.J.3
Sher, A.4
Byrne, F.L.5
Hoehn, K.L.6
Counter, C.M.7
Kashatus, D.F.8
-
40
-
-
84908250304
-
Determinants and functions of mitochondrial behavior
-
Labbé, K., A. Murley, and J. Nunnari. 2014. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30:357-391. http://dx.doi.org/10.1146/annurev -cellbio -101011-155756
-
(2014)
Annu. Rev. Cell Dev. Biol.
, vol.30
, pp. 357-391
-
-
Labbé, K.1
Murley, A.2
Nunnari, J.3
-
41
-
-
67449124361
-
HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport
-
Li, Y., S. Lim, D. Hoffman, P. Aspenstrom, H.J. Federoff, and D.A. Rempe. 2009. HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. J. Cell Biol. 185:1065-1081. http://dx.doi.org/10.1083/jcb.200811033
-
(2009)
J. Cell Biol.
, vol.185
, pp. 1065-1081
-
-
Li, Y.1
Lim, S.2
Hoffman, D.3
Aspenstrom, P.4
Federoff, H.J.5
Rempe, D.A.6
-
42
-
-
84942287874
-
Mutations causing mitochondrial disease: What is new and what challenges remain?
-
Lightowlers, R.N., R.W. Taylor, and D.M. Turnbull. 2015. Mutations causing mitochondrial disease: What is new and what challenges remain? Science. 349:1494-1499. http://dx.doi.org/10.1126/science.aac7516
-
(2015)
Science.
, vol.349
, pp. 1494-1499
-
-
Lightowlers, R.N.1
Taylor, R.W.2
Turnbull, D.M.3
-
43
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14:177-185. http://dx.doi.org/10.1038/ncb2422
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
44
-
-
84874639591
-
Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
-
Losón, O.C., Z. Song, H. Chen, and D.C. Chan. 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell. 24:659-667. http://dx.doi.org/10.1091/mbc. E12-10-0721
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 659-667
-
-
Losón, O.C.1
Song, Z.2
Chen, H.3
Chan, D.C.4
-
45
-
-
84896739005
-
The mitochondrial fission receptor MiD51 requires ADP as a cofactor
-
Losón, O.C., R. Liu, M.E. Rome, S. Meng, J.T. Kaiser, S.O. Shan, and D.C. Chan. 2014. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure. 22:367-377. http://dx.doi.org/10.1016/j.str.2014.01.001
-
(2014)
Structure.
, vol.22
, pp. 367-377
-
-
Losón, O.C.1
Liu, R.2
Rome, M.E.3
Meng, S.4
Kaiser, J.T.5
Shan, S.O.6
Chan, D.C.7
-
46
-
-
84941425977
-
Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1
-
Losón, O.C., S. Meng, H. Ngo, R. Liu, J.T. Kaiser, and D.C. Chan. 2015. Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci. 24:386-394. http://dx.doi.org/10.1002/pro.2629
-
(2015)
Protein Sci.
, vol.24
, pp. 386-394
-
-
Losón, O.C.1
Meng, S.2
Ngo, H.3
Liu, R.4
Kaiser, J.T.5
Chan, D.C.6
-
47
-
-
60449108890
-
Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses
-
Macaskill, A.F., J.E. Rinholm, A.E. Twelvetrees, I.L. Arancibia-Carcamo, J. Muir, A. Fransson, P. Aspenstrom, D. Attwell, and J.T. Kittler. 2009. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 61:541-555. http://dx.doi.org/10.1016/j.neuron.2009.01.030
-
(2009)
Neuron.
, vol.61
, pp. 541-555
-
-
Macaskill, A.F.1
Rinholm, J.E.2
Twelvetrees, A.E.3
Arancibia-Carcamo, I.L.4
Muir, J.5
Fransson, A.6
Aspenstrom, P.7
Attwell, D.8
Kittler, J.T.9
-
48
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211-221. http://dx.doi.org/10.1083/jcb.200910140
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
Sou, Y.S.7
Saiki, S.8
Kawajiri, S.9
Sato, F.10
-
49
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
McLelland, G.L., V. Soubannier, C.X. Chen, H.M. McBride, and E.A. Fon. 2014. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33:282-295.
-
(2014)
EMBO J.
, vol.33
, pp. 282-295
-
-
McLelland, G.L.1
Soubannier, V.2
Chen, C.X.3
McBride, H.M.4
Fon, E.A.5
-
50
-
-
0038700756
-
Mitochondrial membrane remodelling regulated by a conserved rhomboid protease
-
McQuibban, G.A., S. Saurya, and M. Freeman. 2003. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature. 423:537-541. http://dx.doi.org/10.1038/nature01633
-
(2003)
Nature.
, vol.423
, pp. 537-541
-
-
McQuibban, G.A.1
Saurya, S.2
Freeman, M.3
-
51
-
-
4544378532
-
Mitochondrial fusion intermediates revealed in vitro
-
Meeusen, S., J.M. McCaffery, and J. Nunnari. 2004. Mitochondrial fusion intermediates revealed in vitro. Science. 305:1747-1752. http://dx.doi.org/10.1126/science.1100612
-
(2004)
Science.
, vol.305
, pp. 1747-1752
-
-
Meeusen, S.1
McCaffery, J.M.2
Nunnari, J.3
-
52
-
-
84877578621
-
Rheb regulates mitophagy induced by mitochondrial energetic status
-
Melser, S., E.H. Chatelain, J. Lavie, W. Mahfouf, C. Jose, E. Obre, S. Goorden, M. Priault, Y. Elgersma, H.R. Rezvani, et al. 2013. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17:719-730. http://dx.doi.org/10.1016/j.cmet.2013.03.014
-
(2013)
Cell Metab.
, vol.17
, pp. 719-730
-
-
Melser, S.1
Chatelain, E.H.2
Lavie, J.3
Mahfouf, W.4
Jose, C.5
Obre, E.6
Goorden, S.7
Priault, M.8
Elgersma, Y.9
Rezvani, H.R.10
-
53
-
-
34147149003
-
ADP regulates movements of mitochondria in neurons
-
Mironov, S.L. 2007. ADP regulates movements of mitochondria in neurons. Biophys. J. 92:2944-2952. http://dx.doi.org/10.1529/biophysj.106.092981
-
(2007)
Biophys. J.
, vol.92
, pp. 2944-2952
-
-
Mironov, S.L.1
-
54
-
-
84910141948
-
Mitochondrial dynamics and inheritance during cell division, development and disease
-
Mishra, P., and D.C. Chan. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15:634-646. http://dx.doi.org/10.1038/nrm3877
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 634-646
-
-
Mishra, P.1
Chan, D.C.2
-
55
-
-
84897538678
-
Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
-
Mishra, P., V. Carelli, G. Manfredi, and D.C. Chan. 2014. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19:630-641. http://dx.doi.org/10.1016/j.cmet.2014.03.011
-
(2014)
Cell Metab.
, vol.19
, pp. 630-641
-
-
Mishra, P.1
Carelli, V.2
Manfredi, G.3
Chan, D.C.4
-
56
-
-
84951335747
-
Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization
-
Mishra, P., G. Varuzhanyan, A.H. Pham, and D.C. Chan. 2015. Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization. Cell Metab. 22:1033-1044. http://dx.doi.org/10.1016/j.cmet.2015.09.027
-
(2015)
Cell Metab.
, vol.22
, pp. 1033-1044
-
-
Mishra, P.1
Varuzhanyan, G.2
Pham, A.H.3
Chan, D.C.4
-
57
-
-
67749089562
-
A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase
-
Mitra, K., C. Wunder, B. Roysam, G. Lin, and J. Lippincott-Schwartz. 2009. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA. 106:11960-11965. http://dx.doi.org/10.1073/pnas.0904875106
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 11960-11965
-
-
Mitra, K.1
Wunder, C.2
Roysam, B.3
Lin, G.4
Lippincott-Schwartz, J.5
-
58
-
-
0026907560
-
Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions
-
Moraes, C.T., E. Ricci, V. Petruzzella, S. Shanske, S. DiMauro, E.A. Schon, and E. Bonilla. 1992. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat. Genet. 1:359-367. http://dx.doi.org/10.1038/ng0892-359
-
(1992)
Nat. Genet.
, vol.1
, pp. 359-367
-
-
Moraes, C.T.1
Ricci, E.2
Petruzzella, V.3
Shanske, S.4
DiMauro, S.5
Schon, E.A.6
Bonilla, E.7
-
59
-
-
84924653249
-
Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels
-
Mourier, A., E. Motori, T. Brandt, M. Lagouge, I. Atanassov, A. Galinier, G. Rappl, S. Brodesser, K. Hultenby, C. Dieterich, and N.G. Larsson. 2015. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J. Cell Biol. 208:429-442. http://dx.doi.org/10.1083/jcb.201411100
-
(2015)
J. Cell Biol.
, vol.208
, pp. 429-442
-
-
Mourier, A.1
Motori, E.2
Brandt, T.3
Lagouge, M.4
Atanassov, I.5
Galinier, A.6
Rappl, G.7
Brodesser, S.8
Hultenby, K.9
Dieterich, C.10
Larsson, N.G.11
-
60
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D.P., S.M. Jin, A. Tanaka, D.F. Suen, C.A. Gautier, J. Shen, M.R. Cookson, and R.J. Youle. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e1000298. http://dx.doi.org/10.1371/journal.pbio.1000298
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
61
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
Okatsu, K., F. Koyano, M. Kimura, H. Kosako, Y. Saeki, K. Tanaka, and N. Matsuda. 2015. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209:111-128. http://dx.doi.org/10.1083/jcb.201410050
-
(2015)
J. Cell Biol.
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
Koyano, F.2
Kimura, M.3
Kosako, H.4
Saeki, Y.5
Tanaka, K.6
Matsuda, N.7
-
62
-
-
78650167618
-
Mffis an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
-
Otera, H., C. Wang, M.M. Cleland, K. Setoguchi, S. Yokota, R.J. Youle, and K. Mihara. 2010. Mffis an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191:1141-1158. http://dx.doi.org/10.1083/jcb.201007152
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1141-1158
-
-
Otera, H.1
Wang, C.2
Cleland, M.M.3
Setoguchi, K.4
Yokota, S.5
Youle, R.J.6
Mihara, K.7
-
63
-
-
84903975888
-
Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase
-
Pekkurnaz, G., J.C. Trinidad, X. Wang, D. Kong, and T.L. Schwarz. 2014. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell. 158:54-68. http://dx.doi.org/10.1016/j.cell.2014.06.007
-
(2014)
Cell.
, vol.158
, pp. 54-68
-
-
Pekkurnaz, G.1
Trinidad, J.C.2
Wang, X.3
Kong, D.4
Schwarz, T.L.5
-
64
-
-
84948402628
-
Calcineurin links mitochondrial elongation with energy metabolism
-
Pfluger, P.T., D.G. Kabra, M. Aichler, S.C. Schriever, K. Pfuhlmann, V.C. García, M. Lehti, J. Weber, M. Kutschke, J. Rozman, et al. 2015. Calcineurin links mitochondrial elongation with energy metabolism. Cell Metab. 22:838-850. http://dx.doi.org/10.1016/j.cmet.2015.08.022
-
(2015)
Cell Metab.
, vol.22
, pp. 838-850
-
-
Pfluger, P.T.1
Kabra, D.G.2
Aichler, M.3
Schriever, S.C.4
Pfuhlmann, K.5
García, V.C.6
Lehti, M.7
Weber, J.8
Kutschke, M.9
Rozman, J.10
-
65
-
-
84870060160
-
Mouse lines with photoactivatable mitochondria to study mitochondrial dynamics
-
Pham, A.H., J.M. McCaffery, and D.C. Chan. 2012. Mouse lines with photoactivatable mitochondria to study mitochondrial dynamics. Genesis. 50:833-843. http://dx.doi.org/10.1002/dvg.22050
-
(2012)
Genesis.
, vol.50
, pp. 833-843
-
-
Pham, A.H.1
McCaffery, J.M.2
Chan, D.C.3
-
66
-
-
33646759268
-
Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons
-
Pilling, A.D., D. Horiuchi, C.M. Lively, and W.M. Saxton. 2006. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell. 17:2057-2068. http://dx.doi.org/10.1091/mbc. E05-06-0526
-
(2006)
Mol. Biol. Cell.
, vol.17
, pp. 2057-2068
-
-
Pilling, A.D.1
Horiuchi, D.2
Lively, C.M.3
Saxton, W.M.4
-
67
-
-
84928212582
-
Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis
-
Pyakurel, A., C. Savoia, D. Hess, and L. Scorrano. 2015. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol. Cell. 58:244-254. http://dx.doi.org/10.1016/j.molcel.2015.02.021
-
(2015)
Mol. Cell.
, vol.58
, pp. 244-254
-
-
Pyakurel, A.1
Savoia, C.2
Hess, D.3
Scorrano, L.4
-
68
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold, A.S., B. Kostelecky, N. Elia, and J. Lippincott-Schwartz. 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA. 108:10190-10195. http://dx.doi.org/10.1073/pnas.1107402108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
69
-
-
84894080490
-
Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission
-
Richter, V., C.S. Palmer, L.D. Osellame, A.P. Singh, K. Elgass, D.A. Stroud, H. Sesaki, M. Kvansakul, and M.T. Ryan. 2014. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204:477-486. http://dx.doi.org/10.1083/jcb.201311014
-
(2014)
J. Cell Biol.
, vol.204
, pp. 477-486
-
-
Richter, V.1
Palmer, C.S.2
Osellame, L.D.3
Singh, A.P.4
Elgass, K.5
Stroud, D.A.6
Sesaki, H.7
Kvansakul, M.8
Ryan, M.T.9
-
70
-
-
0842325793
-
Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells
-
Rossignol, R., R. Gilkerson, R. Aggeler, K. Yamagata, S.J. Remington, and R.A. Capaldi. 2004. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 64:985-993. http://dx.doi.org/10.1158/0008-5472.CAN -03-1101
-
(2004)
Cancer Res.
, vol.64
, pp. 985-993
-
-
Rossignol, R.1
Gilkerson, R.2
Aggeler, R.3
Yamagata, K.4
Remington, S.J.5
Capaldi, R.A.6
-
71
-
-
84880213863
-
OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange
-
Santo-Domingo, J., M. Giacomello, D. Poburko, L. Scorrano, and N. Demaurex. 2013. OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J. 32:1927-1940. http://dx.doi.org/10.1038/emboj.2013.124
-
(2013)
EMBO J.
, vol.32
, pp. 1927-1940
-
-
Santo-Domingo, J.1
Giacomello, M.2
Poburko, D.3
Scorrano, L.4
Demaurex, N.5
-
72
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf, S.A., M. Raman, V. Guarani-Pereira, M.E. Sowa, E.L. Huttlin, S.P. Gygi, and J.W. Harper. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 496:372-376. http://dx.doi.org/10.1038/nature12043
-
(2013)
Nature.
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
73
-
-
84862870271
-
The axonal transport of mitochondria
-
Saxton, W.M., and P.J. Hollenbeck. 2012. The axonal transport of mitochondria. J. Cell Sci. 125:2095-2104. http://dx.doi.org/10.1242/jcs.053850
-
(2012)
J. Cell Sci.
, vol.125
, pp. 2095-2104
-
-
Saxton, W.M.1
Hollenbeck, P.J.2
-
74
-
-
84924768387
-
Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors
-
Serasinghe, M.N., S.Y. Wieder, T.T. Renault, R. Elkholi, J.J. Asciolla, J.L. Yao, O. Jabado, K. Hoehn, Y. Kageyama, H. Sesaki, and J.E. Chipuk. 2015. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell. 57:521-536. http://dx.doi.org/10.1016/j.molcel.2015.01.003
-
(2015)
Mol. Cell.
, vol.57
, pp. 521-536
-
-
Serasinghe, M.N.1
Wieder, S.Y.2
Renault, T.T.3
Elkholi, R.4
Asciolla, J.J.5
Yao, J.L.6
Jabado, O.7
Hoehn, K.8
Kageyama, Y.9
Sesaki, H.10
Chipuk, J.E.11
-
75
-
-
84864112680
-
Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes
-
Shamseldin, H.E., M. Alshammari, T. Al-Sheddi, M.A. Salih, H. Alkhalidi, A. Kentab, G.M. Repetto, M. Hashem, and F.S. Alkuraya. 2012. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J. Med. Genet. 49:234-241. http://dx.doi.org/10.1136/jmedgenet -2012-100836
-
(2012)
J. Med. Genet.
, vol.49
, pp. 234-241
-
-
Shamseldin, H.E.1
Alshammari, M.2
Al-Sheddi, T.3
Salih, M.A.4
Alkhalidi, H.5
Kentab, A.6
Repetto, G.M.7
Hashem, M.8
Alkuraya, F.S.9
-
76
-
-
84867032955
-
The intracellular redox state is a core determinant of mitochondrial fusion
-
Shutt, T., M. Geoffrion, R. Milne, and H.M. McBride. 2012. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 13:909-915. http://dx.doi.org/10.1038/embor.2012.128
-
(2012)
EMBO Rep.
, vol.13
, pp. 909-915
-
-
Shutt, T.1
Geoffrion, M.2
Milne, R.3
McBride, H.M.4
-
77
-
-
0035146891
-
Mitochondrial filaments and clusters as intracellular power-transmitting cables
-
Skulachev, V.P. 2001. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26:23-29. http://dx.doi.org/10.1016/S0968-0004(00)01735-7
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 23-29
-
-
Skulachev, V.P.1
-
78
-
-
34548313688
-
OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
-
Song, Z., H. Chen, M. Fiket, C. Alexander, and D.C. Chan. 2007. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178:749-755. http://dx.doi.org/10.1083/jcb.200704110
-
(2007)
J. Cell Biol.
, vol.178
, pp. 749-755
-
-
Song, Z.1
Chen, H.2
Fiket, M.3
Alexander, C.4
Chan, D.C.5
-
79
-
-
0037137704
-
Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein
-
Stowers, R.S., L.J. Megeath, J. Górska-Andrzejak, I.A. Meinertzhagen, and T.L. Schwarz. 2002. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron. 36:1063-1077. http://dx.doi.org/10.1016/S0896-6273(02)01094-2
-
(2002)
Neuron.
, vol.36
, pp. 1063-1077
-
-
Stowers, R.S.1
Megeath, L.J.2
Górska-Andrzejak, J.3
Meinertzhagen, I.A.4
Schwarz, T.L.5
-
80
-
-
84908085343
-
A new pathway for mitochondrial quality control: Mitochondrial-derived vesicles
-
Sugiura, A., G.L. McLelland, E.A. Fon, and H.M. McBride. 2014. A new pathway for mitochondrial quality control: Mitochondrial-derived vesicles. EMBO J. 33:2142-2156. http://dx.doi.org/10.15252/embj.201488104
-
(2014)
EMBO J.
, vol.33
, pp. 2142-2156
-
-
Sugiura, A.1
McLelland, G.L.2
Fon, E.A.3
McBride, H.M.4
-
81
-
-
84947802088
-
Measuring in vivo mitophagy
-
Sun, N., J. Yun, J. Liu, D. Malide, C. Liu, I.I. Rovira, K.M. Holmström, M.M. Fergusson, Y.H. Yoo, C.A. Combs, and T. Finkel. 2015. Measuring in vivo mitophagy. Mol. Cell. 60:685-696. http://dx.doi.org/10.1016/j.molcel.2015.10.009
-
(2015)
Mol. Cell.
, vol.60
, pp. 685-696
-
-
Sun, N.1
Yun, J.2
Liu, J.3
Malide, D.4
Liu, C.5
Rovira, I.I.6
Holmström, K.M.7
Fergusson, M.M.8
Yoo, Y.H.9
Combs, C.A.10
Finkel, T.11
-
82
-
-
84899907498
-
AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon
-
Tao, K., N. Matsuki, and R. Koyama. 2014. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon. Dev. Neurobiol. 74:557-573. http://dx.doi.org/10.1002/dneu.22149
-
(2014)
Dev. Neurobiol.
, vol.74
, pp. 557-573
-
-
Tao, K.1
Matsuki, N.2
Koyama, R.3
-
83
-
-
67049089786
-
SLP-2 is required for stress-induced mitochondrial hyperfusion
-
Tondera, D., S. Grandemange, A. Jourdain, M. Karbowski, Y. Mattenberger, S. Herzig, S. Da Cruz, P. Clerc, I. Raschke, C. Merkwirth, et al. 2009. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28:1589-1600. http://dx.doi.org/10.1038/emboj.2009.89
-
(2009)
EMBO J.
, vol.28
, pp. 1589-1600
-
-
Tondera, D.1
Grandemange, S.2
Jourdain, A.3
Karbowski, M.4
Mattenberger, Y.5
Herzig, S.6
Da Cruz, S.7
Clerc, P.8
Raschke, I.9
Merkwirth, C.10
-
84
-
-
84954318420
-
AMPactivated protein kinase mediates mitochondrial fission in response to energetic stress
-
Toyoma, E.Q., S. Herzig, J. Courchet, T.L. Lewis, O.C. Loson, K. Helberg, N.P. Young, H. Chen, F. Polleux, D.C. Chan, and R.J. Shaw. 2016. AMPactivated protein kinase mediates mitochondrial fission in response to energetic stress. Science. 351:275-281.
-
(2016)
Science.
, vol.351
, pp. 275-281
-
-
Toyoma, E.Q.1
Herzig, S.2
Courchet, J.3
Lewis, T.L.4
Loson, O.C.5
Helberg, K.6
Young, N.P.7
Chen, H.8
Polleux, F.9
Chan, D.C.10
Shaw, R.J.11
-
85
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig, G., A. Elorza, A.J. Molina, H. Mohamed, J.D. Wikstrom, G. Walzer, L. Stiles, S.E. Haigh, S. Katz, G. Las, et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27:433-446. http://dx.doi.org/10.1038/sj.emboj.7601963
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
-
86
-
-
84975635993
-
DNM1Lrelated mitochondrial fission defect presenting as refractory epilepsy
-
Vanstone, J.R., A.M. Smith, S. McBride, T. Naas, M. Holcik, G. Antoun, M.E. Harper, J. Michaud, E. Sell, P. Chakraborty, et al. 2015. DNM1Lrelated mitochondrial fission defect presenting as refractory epilepsy. Eur. J. Hum. Genet. http://dx.doi.org/10.1038/ejhg.2015.243
-
(2015)
Eur. J. Hum. Genet.
-
-
Vanstone, J.R.1
Smith, A.M.2
McBride, S.3
Naas, T.4
Holcik, M.5
Antoun, G.6
Harper, M.E.7
Michaud, J.8
Sell, E.9
Chakraborty, P.10
-
87
-
-
58149091896
-
The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility
-
Wang, X., and T.L. Schwarz. 2009. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell. 136:163-174. http://dx.doi.org/10.1016/j.cell.2008.11.046
-
(2009)
Cell.
, vol.136
, pp. 163-174
-
-
Wang, X.1
Schwarz, T.L.2
-
88
-
-
34247525092
-
A lethal defect of mitochondrial and peroxisomal fission
-
Waterham, H.R., J. Koster, C.W. van Roermund, P.A. Mooyer, R.J. Wanders, and J.V. Leonard. 2007. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356:1736-1741. http://dx.doi.org/10.1056/NEJMoa064436
-
(2007)
N. Engl. J. Med.
, vol.356
, pp. 1736-1741
-
-
Waterham, H.R.1
Koster, J.2
van Roermund, C.W.3
Mooyer, P.A.4
Wanders, R.J.5
Leonard, J.V.6
-
89
-
-
84898648553
-
Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure
-
Wikstrom, J.D., K. Mahdaviani, M. Liesa, S.B. Sereda, Y. Si, G. Las, G. Twig, N. Petrovic, C. Zingaretti, A. Graham, et al. 2014. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33:418-436.
-
(2014)
EMBO J.
, vol.33
, pp. 418-436
-
-
Wikstrom, J.D.1
Mahdaviani, K.2
Liesa, M.3
Sereda, S.B.4
Si, Y.5
Las, G.6
Twig, G.7
Petrovic, N.8
Zingaretti, C.9
Graham, A.10
-
90
-
-
0014784078
-
The midpiece of the mouse spermatozoon: Its form and development as seen by surface replication
-
Woolley, D.M. 1970. The midpiece of the mouse spermatozoon: Its form and development as seen by surface replication. J. Cell Sci. 6:865-879.
-
(1970)
J. Cell Sci.
, vol.6
, pp. 865-879
-
-
Woolley, D.M.1
-
91
-
-
2442589922
-
Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
-
Züchner, S., I.V. Mersiyanova, M. Muglia, N. Bissar-Tadmouri, J. Rochelle, E.L. Dadali, M. Zappia, E. Nelis, A. Patitucci, J. Senderek, et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36:449-451. http://dx.doi.org/10.1038/ng1341
-
(2004)
Nat. Genet.
, vol.36
, pp. 449-451
-
-
Züchner, S.1
Mersiyanova, I.V.2
Muglia, M.3
Bissar-Tadmouri, N.4
Rochelle, J.5
Dadali, E.L.6
Zappia, M.7
Nelis, E.8
Patitucci, A.9
Senderek, J.10
|