-
1
-
-
84919621076
-
AMPK - sensing energy while talking to other signaling pathways
-
Hardie D.G. AMPK - sensing energy while talking to other signaling pathways. Cell Metab. 2014, 20:939-952.
-
(2014)
Cell Metab.
, vol.20
, pp. 939-952
-
-
Hardie, D.G.1
-
2
-
-
84857687439
-
AMPK functions as an adenylate charge-regulated protein kinase
-
Oakhill J.S., et al. AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol. Metab. 2012, 23:125-132.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 125-132
-
-
Oakhill, J.S.1
-
3
-
-
84862493914
-
AMP-activated protein kinase: new regulation, new roles?
-
Carling D., et al. AMP-activated protein kinase: new regulation, new roles?. Biochem. J. 2012, 445:11-27.
-
(2012)
Biochem. J.
, vol.445
, pp. 11-27
-
-
Carling, D.1
-
4
-
-
0029910018
-
Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase
-
Hawley S.A., et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J. Biol. Chem. 1996, 271:27879-27887.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 27879-27887
-
-
Hawley, S.A.1
-
5
-
-
79959338922
-
AMPK is a direct adenylate charge-regulated protein kinase
-
Oakhill J.S., et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011, 332:1433-1435.
-
(2011)
Science
, vol.332
, pp. 1433-1435
-
-
Oakhill, J.S.1
-
6
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B., et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472:230-233.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
-
7
-
-
84885168009
-
AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
-
Gowans G.J., et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013, 18:556-566.
-
(2013)
Cell Metab.
, vol.18
, pp. 556-566
-
-
Gowans, G.J.1
-
8
-
-
84924341261
-
Structural basis of AMPK regulation by adenine nucleotides and glycogen
-
Li X., et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 2015, 25:50-66.
-
(2015)
Cell Res.
, vol.25
, pp. 50-66
-
-
Li, X.1
-
9
-
-
85047691317
-
CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations
-
Scott J.W., et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 2004, 113:274-284.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 274-284
-
-
Scott, J.W.1
-
10
-
-
34848840368
-
Structural basis for AMP binding to mammalian AMP-activated protein kinase
-
Xiao B., et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007, 449:496-500.
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
-
11
-
-
84863719838
-
AMP-activated protein kinase undergoes nucleotide-dependent conformational changes
-
Chen L., et al. AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nat. Struct. Mol. Biol. 2012, 19:716-718.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 716-718
-
-
Chen, L.1
-
12
-
-
84890963021
-
Structural basis of AMPK regulation by small molecule activators
-
Xiao B., et al. Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 2013, 4:3017.
-
(2013)
Nat. Commun.
, vol.4
, pp. 3017
-
-
Xiao, B.1
-
13
-
-
84905719900
-
Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms
-
Calabrese M.F., et al. Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 2014, 22:1161-1172.
-
(2014)
Structure
, vol.22
, pp. 1161-1172
-
-
Calabrese, M.F.1
-
14
-
-
33846945033
-
Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits
-
Pang T., et al. Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits. J. Biol. Chem. 2007, 282:495-506.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 495-506
-
-
Pang, T.1
-
15
-
-
36348998521
-
Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase
-
Goransson O., et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem. 2007, 282:32549-32560.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32549-32560
-
-
Goransson, O.1
-
16
-
-
0032567252
-
Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase
-
Crute B.E., et al. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 1998, 273:35347-35354.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 35347-35354
-
-
Crute, B.E.1
-
17
-
-
67649484365
-
Structural insight into the autoinhibition mechanism of AMP-activated protein kinase
-
Chen L., et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 2009, 459:1146-1149.
-
(2009)
Nature
, vol.459
, pp. 1146-1149
-
-
Chen, L.1
-
18
-
-
79551594605
-
Protein kinases: evolution of dynamic regulatory proteins
-
Taylor S.S., Kornev A.P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 2011, 36:65-77.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 65-77
-
-
Taylor, S.S.1
Kornev, A.P.2
-
19
-
-
84885187278
-
Coordinated regulation of AMPK activity by multiple elements in the α-subunit
-
Xin F.J., et al. Coordinated regulation of AMPK activity by multiple elements in the α-subunit. Cell Res. 2013, 23:1237-1240.
-
(2013)
Cell Res.
, vol.23
, pp. 1237-1240
-
-
Xin, F.J.1
-
20
-
-
78650224772
-
A potent and selective AMPK activator that inhibits de novo lipogenesis
-
Gomez-Galeno J.E., et al. A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med. Chem. Lett. 2010, 1:478-482.
-
(2010)
ACS Med. Chem. Lett.
, vol.1
, pp. 478-482
-
-
Gomez-Galeno, J.E.1
-
21
-
-
84904556335
-
Mechanism of action of Compound-13: an α1-selective small molecule activator of AMPK
-
Hunter R.W., et al. Mechanism of action of Compound-13: an α1-selective small molecule activator of AMPK. Chem. Biol. 2014, 21:866-879.
-
(2014)
Chem. Biol.
, vol.21
, pp. 866-879
-
-
Hunter, R.W.1
-
22
-
-
49649115970
-
Structural properties of AMP-activated protein kinase. Dimerization, molecular shape, and changes upon ligand binding
-
Riek U., et al. Structural properties of AMP-activated protein kinase. Dimerization, molecular shape, and changes upon ligand binding. J. Biol. Chem. 2008, 283:18331-18343.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18331-18343
-
-
Riek, U.1
-
23
-
-
84907519033
-
The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
Zhang C.S., et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014, 20:526-540.
-
(2014)
Cell Metab.
, vol.20
, pp. 526-540
-
-
Zhang, C.S.1
-
24
-
-
84885142437
-
AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
-
Zhang Y.L., et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 2013, 18:546-555.
-
(2013)
Cell Metab.
, vol.18
, pp. 546-555
-
-
Zhang, Y.L.1
-
25
-
-
85047689953
-
5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells?
-
Corton J.M., et al. 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells?. Eur. J. Biochem. 1995, 229:558-565.
-
(1995)
Eur. J. Biochem.
, vol.229
, pp. 558-565
-
-
Corton, J.M.1
-
26
-
-
33744514139
-
Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
-
Cool B., et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006, 3:403-416.
-
(2006)
Cell Metab.
, vol.3
, pp. 403-416
-
-
Cool, B.1
-
27
-
-
36348978499
-
Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family
-
Sanders M.J., et al. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J. Biol. Chem. 2007, 282:32539-32548.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32539-32548
-
-
Sanders, M.J.1
-
28
-
-
0038814313
-
A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias
-
Hudson E.R., et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 2003, 13:861-866.
-
(2003)
Curr. Biol.
, vol.13
, pp. 861-866
-
-
Hudson, E.R.1
-
29
-
-
0037799908
-
AMPK β-subunit targets metabolic stress-sensing to glycogen
-
Polekhina G., et al. AMPK β-subunit targets metabolic stress-sensing to glycogen. Curr. Biol. 2003, 13:867-871.
-
(2003)
Curr. Biol.
, vol.13
, pp. 867-871
-
-
Polekhina, G.1
-
30
-
-
84901725138
-
A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators
-
Lai Y.C., et al. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem. J. 2014, 460:363-375.
-
(2014)
Biochem. J.
, vol.460
, pp. 363-375
-
-
Lai, Y.C.1
-
31
-
-
84861222690
-
The ancient drug salicylate directly activates AMP-activated protein kinase
-
Hawley S.A., et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 2012, 336:918-922.
-
(2012)
Science
, vol.336
, pp. 918-922
-
-
Hawley, S.A.1
-
32
-
-
84920287728
-
Choreography of AMPK activation
-
Langendorf C.G., Kemp B.E. Choreography of AMPK activation. Cell Res. 2015, 25:5-6.
-
(2015)
Cell Res.
, vol.25
, pp. 5-6
-
-
Langendorf, C.G.1
Kemp, B.E.2
-
33
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley S.A., et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005, 2:9-19.
-
(2005)
Cell Metab.
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
-
34
-
-
23044437445
-
2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
-
2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2:21-33.
-
(2005)
Cell Metab.
, vol.2
, pp. 21-33
-
-
Woods, A.1
-
35
-
-
23844471263
-
2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
-
2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 2005, 280:29060-29066.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 29060-29066
-
-
Hurley, R.L.1
-
36
-
-
76549089547
-
2+ and AMP
-
2+ and AMP. Biochem. J. 2010, 426:109-118.
-
(2010)
Biochem. J.
, vol.426
, pp. 109-118
-
-
Fogarty, S.1
-
37
-
-
77956410464
-
Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation
-
Hawley S.A., et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010, 11:554-565.
-
(2010)
Cell Metab.
, vol.11
, pp. 554-565
-
-
Hawley, S.A.1
-
38
-
-
33749336146
-
Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states
-
Lee Y.S., et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006, 55:2256-2264.
-
(2006)
Diabetes
, vol.55
, pp. 2256-2264
-
-
Lee, Y.S.1
-
39
-
-
84862558716
-
Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice
-
Huang S.L., et al. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice. Diabetologia 2012, 55:1469-1481.
-
(2012)
Diabetologia
, vol.55
, pp. 1469-1481
-
-
Huang, S.L.1
-
40
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
41
-
-
67650456927
-
Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition
-
Racanelli A.C., et al. Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res. 2009, 69:5467-5474.
-
(2009)
Cancer Res.
, vol.69
, pp. 5467-5474
-
-
Racanelli, A.C.1
-
42
-
-
84921897035
-
Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation
-
Pirkmajer S., et al. Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation. Diabetes 2015, 64:360-369.
-
(2015)
Diabetes
, vol.64
, pp. 360-369
-
-
Pirkmajer, S.1
-
43
-
-
0027440990
-
Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides
-
Weekes J., et al. Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides. FEBS Lett. 1993, 334:335-339.
-
(1993)
FEBS Lett.
, vol.334
, pp. 335-339
-
-
Weekes, J.1
-
44
-
-
0024839973
-
Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic AMP-dependent protein kinase, studied using a specific and sensitive peptide assay
-
Davies S.P., et al. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur. J. Biochem. 1989, 186:123-128.
-
(1989)
Eur. J. Biochem.
, vol.186
, pp. 123-128
-
-
Davies, S.P.1
-
45
-
-
0028942747
-
Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I
-
Dale S., et al. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 1995, 361:191-195.
-
(1995)
FEBS Lett.
, vol.361
, pp. 191-195
-
-
Dale, S.1
-
46
-
-
0036290846
-
Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate
-
Scott J.W., et al. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J. Mol. Biol. 2002, 317:309-323.
-
(2002)
J. Mol. Biol.
, vol.317
, pp. 309-323
-
-
Scott, J.W.1
-
47
-
-
0034161543
-
Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis
-
Istvan E.S., et al. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J. 2000, 19:819-830.
-
(2000)
EMBO J.
, vol.19
, pp. 819-830
-
-
Istvan, E.S.1
-
48
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30:214-226.
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
-
49
-
-
0028540405
-
Use of an oriented peptide library to determine the optimal substrates of protein kinases
-
Songyang Z., et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 1994, 4:973-982.
-
(1994)
Curr. Biol.
, vol.4
, pp. 973-982
-
-
Songyang, Z.1
-
50
-
-
84355161919
-
Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis
-
Banko M.R., et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 2011, 44:878-892.
-
(2011)
Mol. Cell
, vol.44
, pp. 878-892
-
-
Banko, M.R.1
-
51
-
-
0035947671
-
Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue
-
Habelhah H., et al. Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem. 2001, 276:18090-18095.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 18090-18095
-
-
Habelhah, H.1
-
52
-
-
0036008093
-
A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway
-
Shah K., Shokat K.M. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. Chem. Biol. 2002, 9:35-47.
-
(2002)
Chem. Biol.
, vol.9
, pp. 35-47
-
-
Shah, K.1
Shokat, K.M.2
-
53
-
-
40349092941
-
Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates
-
Blethrow J.D., et al. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:1442-1447.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 1442-1447
-
-
Blethrow, J.D.1
-
54
-
-
84948425160
-
Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction
-
Schaffer B.E., et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 2015, 22:907-921.
-
(2015)
Cell Metab.
, vol.22
, pp. 907-921
-
-
Schaffer, B.E.1
-
55
-
-
0031470652
-
The structural basis for 14-3-3:phosphopeptide binding specificity
-
Yaffe M.B., et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 1997, 91:961-971.
-
(1997)
Cell
, vol.91
, pp. 961-971
-
-
Yaffe, M.B.1
-
56
-
-
0030870168
-
Posttranslational modifications of the 5'-AMP-activated protein kinase β1 subunit
-
Mitchelhill K.I., et al. Posttranslational modifications of the 5'-AMP-activated protein kinase β1 subunit. J. Biol. Chem. 1997, 272:24475-24479.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 24475-24479
-
-
Mitchelhill, K.I.1
-
57
-
-
84897534723
-
Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells
-
Hawley S.A., et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 2014, 459:275-287.
-
(2014)
Biochem. J.
, vol.459
, pp. 275-287
-
-
Hawley, S.A.1
-
58
-
-
65849084678
-
32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry
-
32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 2009, 390:141-148.
-
(2009)
Anal. Biochem.
, vol.390
, pp. 141-148
-
-
Tuerk, R.D.1
-
59
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
60
-
-
79955815135
-
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
-
Mihaylova M.M., et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011, 145:607-621.
-
(2011)
Cell
, vol.145
, pp. 607-621
-
-
Mihaylova, M.M.1
-
61
-
-
84919595168
-
Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of Angiomotin-like 1 protein
-
DeRan M., et al. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of Angiomotin-like 1 protein. Cell Rep. 2014, 9:495-503.
-
(2014)
Cell Rep.
, vol.9
, pp. 495-503
-
-
DeRan, M.1
-
62
-
-
84925153510
-
Identification of AMP-activated protein kinase targets by a consensus sequence search of the proteome
-
Marin T.L., et al. Identification of AMP-activated protein kinase targets by a consensus sequence search of the proteome. BMC Syst. Biol. 2015, 9:13.
-
(2015)
BMC Syst. Biol.
, vol.9
, pp. 13
-
-
Marin, T.L.1
-
63
-
-
84925494009
-
Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate
-
Ducommun S., et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell. Signal. 2015, 27:978-988.
-
(2015)
Cell. Signal.
, vol.27
, pp. 978-988
-
-
Ducommun, S.1
-
64
-
-
0042622251
-
Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs
-
Obenauer J.C., et al. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003, 31:3635-3641.
-
(2003)
Nucleic Acids Res.
, vol.31
, pp. 3635-3641
-
-
Obenauer, J.C.1
-
65
-
-
79953300078
-
FIMO: scanning for occurrences of a given motif
-
Grant C.E., et al. FIMO: scanning for occurrences of a given motif. Bioinformatics 2011, 27:1017-1018.
-
(2011)
Bioinformatics
, vol.27
, pp. 1017-1018
-
-
Grant, C.E.1
-
66
-
-
34548161940
-
New candidate targets of AMP-activated protein kinase in murine brain revealed by a novel multidimensional substrate-screen for protein kinases
-
Tuerk R.D., et al. New candidate targets of AMP-activated protein kinase in murine brain revealed by a novel multidimensional substrate-screen for protein kinases. J. Proteome Res. 2007, 6:3266-3277.
-
(2007)
J. Proteome Res.
, vol.6
, pp. 3266-3277
-
-
Tuerk, R.D.1
-
67
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends C., et al. Network organization of the human autophagy system. Nature 2010, 466:68-76.
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
-
68
-
-
84937213168
-
The BioPlex Network: a systematic exploration of the human interactome
-
Huttlin E.L., et al. The BioPlex Network: a systematic exploration of the human interactome. Cell 2015, 162:425-440.
-
(2015)
Cell
, vol.162
, pp. 425-440
-
-
Huttlin, E.L.1
-
69
-
-
84905568827
-
An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential
-
Goodwin J.M., et al. An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential. Mol. Cell 2014, 55:436-450.
-
(2014)
Mol. Cell
, vol.55
, pp. 436-450
-
-
Goodwin, J.M.1
-
70
-
-
0029946455
-
Isoform-specific purification and substrate specificity of the 5'-AMP-activated protein kinase
-
Michell B.J., et al. Isoform-specific purification and substrate specificity of the 5'-AMP-activated protein kinase. J. Biol. Chem. 1996, 271:28445-28450.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 28445-28450
-
-
Michell, B.J.1
-
71
-
-
84971497663
-
Regulation of AMP-activated protein kinase by natural and synthetic activators
-
Published online July 21, 2015
-
Hardie D.G. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm. Sin. B 2015, Published online July 21, 2015. 10.1016/j.apsb.2015.06.002.
-
(2015)
Acta Pharm. Sin. B
-
-
Hardie, D.G.1
-
72
-
-
2142738304
-
WebLogo: a sequence logo generator
-
Crooks G.E., et al. WebLogo: a sequence logo generator. Genome Res. 2004, 14:1188-1190.
-
(2004)
Genome Res.
, vol.14
, pp. 1188-1190
-
-
Crooks, G.E.1
-
73
-
-
84948412219
-
Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates
-
Hoffman N.J., et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 2015, 22:922-935.
-
(2015)
Cell Metab.
, vol.22
, pp. 922-935
-
-
Hoffman, N.J.1
|