메뉴 건너뛰기




Volumn 26, Issue 3, 2016, Pages 190-201

AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs

Author keywords

Allosteric activation; AMPK; Energy sensing; Kinase recognition motif; Kinase target identification; Pharmacological activators

Indexed keywords

ADENINE NUCLEOTIDE; ADENOSINE TRIPHOSPHATE; AMP ACTIVATED PROTEIN KINASE GAMMA; BETA CYCLODEXTRIN; CALCIUM ION; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; STAUROSPORINE; UNCLASSIFIED DRUG;

EID: 84958120581     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.10.013     Document Type: Review
Times cited : (693)

References (73)
  • 1
    • 84919621076 scopus 로고    scopus 로고
    • AMPK - sensing energy while talking to other signaling pathways
    • Hardie D.G. AMPK - sensing energy while talking to other signaling pathways. Cell Metab. 2014, 20:939-952.
    • (2014) Cell Metab. , vol.20 , pp. 939-952
    • Hardie, D.G.1
  • 2
    • 84857687439 scopus 로고    scopus 로고
    • AMPK functions as an adenylate charge-regulated protein kinase
    • Oakhill J.S., et al. AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol. Metab. 2012, 23:125-132.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 125-132
    • Oakhill, J.S.1
  • 3
    • 84862493914 scopus 로고    scopus 로고
    • AMP-activated protein kinase: new regulation, new roles?
    • Carling D., et al. AMP-activated protein kinase: new regulation, new roles?. Biochem. J. 2012, 445:11-27.
    • (2012) Biochem. J. , vol.445 , pp. 11-27
    • Carling, D.1
  • 4
    • 0029910018 scopus 로고    scopus 로고
    • Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase
    • Hawley S.A., et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J. Biol. Chem. 1996, 271:27879-27887.
    • (1996) J. Biol. Chem. , vol.271 , pp. 27879-27887
    • Hawley, S.A.1
  • 5
    • 79959338922 scopus 로고    scopus 로고
    • AMPK is a direct adenylate charge-regulated protein kinase
    • Oakhill J.S., et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011, 332:1433-1435.
    • (2011) Science , vol.332 , pp. 1433-1435
    • Oakhill, J.S.1
  • 6
    • 79954517977 scopus 로고    scopus 로고
    • Structure of mammalian AMPK and its regulation by ADP
    • Xiao B., et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472:230-233.
    • (2011) Nature , vol.472 , pp. 230-233
    • Xiao, B.1
  • 7
    • 84885168009 scopus 로고    scopus 로고
    • AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
    • Gowans G.J., et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013, 18:556-566.
    • (2013) Cell Metab. , vol.18 , pp. 556-566
    • Gowans, G.J.1
  • 8
    • 84924341261 scopus 로고    scopus 로고
    • Structural basis of AMPK regulation by adenine nucleotides and glycogen
    • Li X., et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 2015, 25:50-66.
    • (2015) Cell Res. , vol.25 , pp. 50-66
    • Li, X.1
  • 9
    • 85047691317 scopus 로고    scopus 로고
    • CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations
    • Scott J.W., et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 2004, 113:274-284.
    • (2004) J. Clin. Invest. , vol.113 , pp. 274-284
    • Scott, J.W.1
  • 10
    • 34848840368 scopus 로고    scopus 로고
    • Structural basis for AMP binding to mammalian AMP-activated protein kinase
    • Xiao B., et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007, 449:496-500.
    • (2007) Nature , vol.449 , pp. 496-500
    • Xiao, B.1
  • 11
    • 84863719838 scopus 로고    scopus 로고
    • AMP-activated protein kinase undergoes nucleotide-dependent conformational changes
    • Chen L., et al. AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nat. Struct. Mol. Biol. 2012, 19:716-718.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 716-718
    • Chen, L.1
  • 12
    • 84890963021 scopus 로고    scopus 로고
    • Structural basis of AMPK regulation by small molecule activators
    • Xiao B., et al. Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 2013, 4:3017.
    • (2013) Nat. Commun. , vol.4 , pp. 3017
    • Xiao, B.1
  • 13
    • 84905719900 scopus 로고    scopus 로고
    • Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms
    • Calabrese M.F., et al. Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 2014, 22:1161-1172.
    • (2014) Structure , vol.22 , pp. 1161-1172
    • Calabrese, M.F.1
  • 14
    • 33846945033 scopus 로고    scopus 로고
    • Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits
    • Pang T., et al. Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits. J. Biol. Chem. 2007, 282:495-506.
    • (2007) J. Biol. Chem. , vol.282 , pp. 495-506
    • Pang, T.1
  • 15
    • 36348998521 scopus 로고    scopus 로고
    • Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase
    • Goransson O., et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem. 2007, 282:32549-32560.
    • (2007) J. Biol. Chem. , vol.282 , pp. 32549-32560
    • Goransson, O.1
  • 16
    • 0032567252 scopus 로고    scopus 로고
    • Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase
    • Crute B.E., et al. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 1998, 273:35347-35354.
    • (1998) J. Biol. Chem. , vol.273 , pp. 35347-35354
    • Crute, B.E.1
  • 17
    • 67649484365 scopus 로고    scopus 로고
    • Structural insight into the autoinhibition mechanism of AMP-activated protein kinase
    • Chen L., et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 2009, 459:1146-1149.
    • (2009) Nature , vol.459 , pp. 1146-1149
    • Chen, L.1
  • 18
    • 79551594605 scopus 로고    scopus 로고
    • Protein kinases: evolution of dynamic regulatory proteins
    • Taylor S.S., Kornev A.P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 2011, 36:65-77.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 65-77
    • Taylor, S.S.1    Kornev, A.P.2
  • 19
    • 84885187278 scopus 로고    scopus 로고
    • Coordinated regulation of AMPK activity by multiple elements in the α-subunit
    • Xin F.J., et al. Coordinated regulation of AMPK activity by multiple elements in the α-subunit. Cell Res. 2013, 23:1237-1240.
    • (2013) Cell Res. , vol.23 , pp. 1237-1240
    • Xin, F.J.1
  • 20
    • 78650224772 scopus 로고    scopus 로고
    • A potent and selective AMPK activator that inhibits de novo lipogenesis
    • Gomez-Galeno J.E., et al. A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med. Chem. Lett. 2010, 1:478-482.
    • (2010) ACS Med. Chem. Lett. , vol.1 , pp. 478-482
    • Gomez-Galeno, J.E.1
  • 21
    • 84904556335 scopus 로고    scopus 로고
    • Mechanism of action of Compound-13: an α1-selective small molecule activator of AMPK
    • Hunter R.W., et al. Mechanism of action of Compound-13: an α1-selective small molecule activator of AMPK. Chem. Biol. 2014, 21:866-879.
    • (2014) Chem. Biol. , vol.21 , pp. 866-879
    • Hunter, R.W.1
  • 22
    • 49649115970 scopus 로고    scopus 로고
    • Structural properties of AMP-activated protein kinase. Dimerization, molecular shape, and changes upon ligand binding
    • Riek U., et al. Structural properties of AMP-activated protein kinase. Dimerization, molecular shape, and changes upon ligand binding. J. Biol. Chem. 2008, 283:18331-18343.
    • (2008) J. Biol. Chem. , vol.283 , pp. 18331-18343
    • Riek, U.1
  • 23
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • Zhang C.S., et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014, 20:526-540.
    • (2014) Cell Metab. , vol.20 , pp. 526-540
    • Zhang, C.S.1
  • 24
    • 84885142437 scopus 로고    scopus 로고
    • AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
    • Zhang Y.L., et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 2013, 18:546-555.
    • (2013) Cell Metab. , vol.18 , pp. 546-555
    • Zhang, Y.L.1
  • 25
    • 85047689953 scopus 로고
    • 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells?
    • Corton J.M., et al. 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells?. Eur. J. Biochem. 1995, 229:558-565.
    • (1995) Eur. J. Biochem. , vol.229 , pp. 558-565
    • Corton, J.M.1
  • 26
    • 33744514139 scopus 로고    scopus 로고
    • Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
    • Cool B., et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006, 3:403-416.
    • (2006) Cell Metab. , vol.3 , pp. 403-416
    • Cool, B.1
  • 27
    • 36348978499 scopus 로고    scopus 로고
    • Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family
    • Sanders M.J., et al. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J. Biol. Chem. 2007, 282:32539-32548.
    • (2007) J. Biol. Chem. , vol.282 , pp. 32539-32548
    • Sanders, M.J.1
  • 28
    • 0038814313 scopus 로고    scopus 로고
    • A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias
    • Hudson E.R., et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 2003, 13:861-866.
    • (2003) Curr. Biol. , vol.13 , pp. 861-866
    • Hudson, E.R.1
  • 29
    • 0037799908 scopus 로고    scopus 로고
    • AMPK β-subunit targets metabolic stress-sensing to glycogen
    • Polekhina G., et al. AMPK β-subunit targets metabolic stress-sensing to glycogen. Curr. Biol. 2003, 13:867-871.
    • (2003) Curr. Biol. , vol.13 , pp. 867-871
    • Polekhina, G.1
  • 30
    • 84901725138 scopus 로고    scopus 로고
    • A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators
    • Lai Y.C., et al. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem. J. 2014, 460:363-375.
    • (2014) Biochem. J. , vol.460 , pp. 363-375
    • Lai, Y.C.1
  • 31
    • 84861222690 scopus 로고    scopus 로고
    • The ancient drug salicylate directly activates AMP-activated protein kinase
    • Hawley S.A., et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 2012, 336:918-922.
    • (2012) Science , vol.336 , pp. 918-922
    • Hawley, S.A.1
  • 32
    • 84920287728 scopus 로고    scopus 로고
    • Choreography of AMPK activation
    • Langendorf C.G., Kemp B.E. Choreography of AMPK activation. Cell Res. 2015, 25:5-6.
    • (2015) Cell Res. , vol.25 , pp. 5-6
    • Langendorf, C.G.1    Kemp, B.E.2
  • 33
    • 23044432463 scopus 로고    scopus 로고
    • Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase
    • Hawley S.A., et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005, 2:9-19.
    • (2005) Cell Metab. , vol.2 , pp. 9-19
    • Hawley, S.A.1
  • 34
    • 23044437445 scopus 로고    scopus 로고
    • 2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
    • 2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2:21-33.
    • (2005) Cell Metab. , vol.2 , pp. 21-33
    • Woods, A.1
  • 35
    • 23844471263 scopus 로고    scopus 로고
    • 2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
    • 2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 2005, 280:29060-29066.
    • (2005) J. Biol. Chem. , vol.280 , pp. 29060-29066
    • Hurley, R.L.1
  • 36
    • 76549089547 scopus 로고    scopus 로고
    • 2+ and AMP
    • 2+ and AMP. Biochem. J. 2010, 426:109-118.
    • (2010) Biochem. J. , vol.426 , pp. 109-118
    • Fogarty, S.1
  • 37
    • 77956410464 scopus 로고    scopus 로고
    • Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation
    • Hawley S.A., et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010, 11:554-565.
    • (2010) Cell Metab. , vol.11 , pp. 554-565
    • Hawley, S.A.1
  • 38
    • 33749336146 scopus 로고    scopus 로고
    • Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states
    • Lee Y.S., et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006, 55:2256-2264.
    • (2006) Diabetes , vol.55 , pp. 2256-2264
    • Lee, Y.S.1
  • 39
    • 84862558716 scopus 로고    scopus 로고
    • Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice
    • Huang S.L., et al. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice. Diabetologia 2012, 55:1469-1481.
    • (2012) Diabetologia , vol.55 , pp. 1469-1481
    • Huang, S.L.1
  • 40
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 41
    • 67650456927 scopus 로고    scopus 로고
    • Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition
    • Racanelli A.C., et al. Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res. 2009, 69:5467-5474.
    • (2009) Cancer Res. , vol.69 , pp. 5467-5474
    • Racanelli, A.C.1
  • 42
    • 84921897035 scopus 로고    scopus 로고
    • Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation
    • Pirkmajer S., et al. Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation. Diabetes 2015, 64:360-369.
    • (2015) Diabetes , vol.64 , pp. 360-369
    • Pirkmajer, S.1
  • 43
    • 0027440990 scopus 로고
    • Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides
    • Weekes J., et al. Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides. FEBS Lett. 1993, 334:335-339.
    • (1993) FEBS Lett. , vol.334 , pp. 335-339
    • Weekes, J.1
  • 44
    • 0024839973 scopus 로고
    • Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic AMP-dependent protein kinase, studied using a specific and sensitive peptide assay
    • Davies S.P., et al. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur. J. Biochem. 1989, 186:123-128.
    • (1989) Eur. J. Biochem. , vol.186 , pp. 123-128
    • Davies, S.P.1
  • 45
    • 0028942747 scopus 로고
    • Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I
    • Dale S., et al. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 1995, 361:191-195.
    • (1995) FEBS Lett. , vol.361 , pp. 191-195
    • Dale, S.1
  • 46
    • 0036290846 scopus 로고    scopus 로고
    • Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate
    • Scott J.W., et al. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J. Mol. Biol. 2002, 317:309-323.
    • (2002) J. Mol. Biol. , vol.317 , pp. 309-323
    • Scott, J.W.1
  • 47
    • 0034161543 scopus 로고    scopus 로고
    • Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis
    • Istvan E.S., et al. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J. 2000, 19:819-830.
    • (2000) EMBO J. , vol.19 , pp. 819-830
    • Istvan, E.S.1
  • 48
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30:214-226.
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 49
    • 0028540405 scopus 로고
    • Use of an oriented peptide library to determine the optimal substrates of protein kinases
    • Songyang Z., et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 1994, 4:973-982.
    • (1994) Curr. Biol. , vol.4 , pp. 973-982
    • Songyang, Z.1
  • 50
    • 84355161919 scopus 로고    scopus 로고
    • Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis
    • Banko M.R., et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 2011, 44:878-892.
    • (2011) Mol. Cell , vol.44 , pp. 878-892
    • Banko, M.R.1
  • 51
    • 0035947671 scopus 로고    scopus 로고
    • Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue
    • Habelhah H., et al. Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem. 2001, 276:18090-18095.
    • (2001) J. Biol. Chem. , vol.276 , pp. 18090-18095
    • Habelhah, H.1
  • 52
    • 0036008093 scopus 로고    scopus 로고
    • A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway
    • Shah K., Shokat K.M. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. Chem. Biol. 2002, 9:35-47.
    • (2002) Chem. Biol. , vol.9 , pp. 35-47
    • Shah, K.1    Shokat, K.M.2
  • 53
    • 40349092941 scopus 로고    scopus 로고
    • Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates
    • Blethrow J.D., et al. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:1442-1447.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 1442-1447
    • Blethrow, J.D.1
  • 54
    • 84948425160 scopus 로고    scopus 로고
    • Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction
    • Schaffer B.E., et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 2015, 22:907-921.
    • (2015) Cell Metab. , vol.22 , pp. 907-921
    • Schaffer, B.E.1
  • 55
    • 0031470652 scopus 로고    scopus 로고
    • The structural basis for 14-3-3:phosphopeptide binding specificity
    • Yaffe M.B., et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 1997, 91:961-971.
    • (1997) Cell , vol.91 , pp. 961-971
    • Yaffe, M.B.1
  • 56
    • 0030870168 scopus 로고    scopus 로고
    • Posttranslational modifications of the 5'-AMP-activated protein kinase β1 subunit
    • Mitchelhill K.I., et al. Posttranslational modifications of the 5'-AMP-activated protein kinase β1 subunit. J. Biol. Chem. 1997, 272:24475-24479.
    • (1997) J. Biol. Chem. , vol.272 , pp. 24475-24479
    • Mitchelhill, K.I.1
  • 57
    • 84897534723 scopus 로고    scopus 로고
    • Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells
    • Hawley S.A., et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 2014, 459:275-287.
    • (2014) Biochem. J. , vol.459 , pp. 275-287
    • Hawley, S.A.1
  • 58
    • 65849084678 scopus 로고    scopus 로고
    • 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry
    • 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 2009, 390:141-148.
    • (2009) Anal. Biochem. , vol.390 , pp. 141-148
    • Tuerk, R.D.1
  • 59
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 60
    • 79955815135 scopus 로고    scopus 로고
    • Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
    • Mihaylova M.M., et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011, 145:607-621.
    • (2011) Cell , vol.145 , pp. 607-621
    • Mihaylova, M.M.1
  • 61
    • 84919595168 scopus 로고    scopus 로고
    • Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of Angiomotin-like 1 protein
    • DeRan M., et al. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of Angiomotin-like 1 protein. Cell Rep. 2014, 9:495-503.
    • (2014) Cell Rep. , vol.9 , pp. 495-503
    • DeRan, M.1
  • 62
    • 84925153510 scopus 로고    scopus 로고
    • Identification of AMP-activated protein kinase targets by a consensus sequence search of the proteome
    • Marin T.L., et al. Identification of AMP-activated protein kinase targets by a consensus sequence search of the proteome. BMC Syst. Biol. 2015, 9:13.
    • (2015) BMC Syst. Biol. , vol.9 , pp. 13
    • Marin, T.L.1
  • 63
    • 84925494009 scopus 로고    scopus 로고
    • Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate
    • Ducommun S., et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell. Signal. 2015, 27:978-988.
    • (2015) Cell. Signal. , vol.27 , pp. 978-988
    • Ducommun, S.1
  • 64
    • 0042622251 scopus 로고    scopus 로고
    • Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs
    • Obenauer J.C., et al. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003, 31:3635-3641.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3635-3641
    • Obenauer, J.C.1
  • 65
    • 79953300078 scopus 로고    scopus 로고
    • FIMO: scanning for occurrences of a given motif
    • Grant C.E., et al. FIMO: scanning for occurrences of a given motif. Bioinformatics 2011, 27:1017-1018.
    • (2011) Bioinformatics , vol.27 , pp. 1017-1018
    • Grant, C.E.1
  • 66
    • 34548161940 scopus 로고    scopus 로고
    • New candidate targets of AMP-activated protein kinase in murine brain revealed by a novel multidimensional substrate-screen for protein kinases
    • Tuerk R.D., et al. New candidate targets of AMP-activated protein kinase in murine brain revealed by a novel multidimensional substrate-screen for protein kinases. J. Proteome Res. 2007, 6:3266-3277.
    • (2007) J. Proteome Res. , vol.6 , pp. 3266-3277
    • Tuerk, R.D.1
  • 67
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C., et al. Network organization of the human autophagy system. Nature 2010, 466:68-76.
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1
  • 68
    • 84937213168 scopus 로고    scopus 로고
    • The BioPlex Network: a systematic exploration of the human interactome
    • Huttlin E.L., et al. The BioPlex Network: a systematic exploration of the human interactome. Cell 2015, 162:425-440.
    • (2015) Cell , vol.162 , pp. 425-440
    • Huttlin, E.L.1
  • 69
    • 84905568827 scopus 로고    scopus 로고
    • An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential
    • Goodwin J.M., et al. An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential. Mol. Cell 2014, 55:436-450.
    • (2014) Mol. Cell , vol.55 , pp. 436-450
    • Goodwin, J.M.1
  • 70
    • 0029946455 scopus 로고    scopus 로고
    • Isoform-specific purification and substrate specificity of the 5'-AMP-activated protein kinase
    • Michell B.J., et al. Isoform-specific purification and substrate specificity of the 5'-AMP-activated protein kinase. J. Biol. Chem. 1996, 271:28445-28450.
    • (1996) J. Biol. Chem. , vol.271 , pp. 28445-28450
    • Michell, B.J.1
  • 71
    • 84971497663 scopus 로고    scopus 로고
    • Regulation of AMP-activated protein kinase by natural and synthetic activators
    • Published online July 21, 2015
    • Hardie D.G. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm. Sin. B 2015, Published online July 21, 2015. 10.1016/j.apsb.2015.06.002.
    • (2015) Acta Pharm. Sin. B
    • Hardie, D.G.1
  • 72
    • 2142738304 scopus 로고    scopus 로고
    • WebLogo: a sequence logo generator
    • Crooks G.E., et al. WebLogo: a sequence logo generator. Genome Res. 2004, 14:1188-1190.
    • (2004) Genome Res. , vol.14 , pp. 1188-1190
    • Crooks, G.E.1
  • 73
    • 84948412219 scopus 로고    scopus 로고
    • Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates
    • Hoffman N.J., et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 2015, 22:922-935.
    • (2015) Cell Metab. , vol.22 , pp. 922-935
    • Hoffman, N.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.