-
1
-
-
84869222326
-
ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs.
-
Alemu, E. A., Lamark, T., Torgersen, K. M., Birgisdottir, A. B., Larsen, K. B., Jain, A., Olsvik, H., Øvervatn, A., Kirkin, V. and Johansen, T. (2012). ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287, 39275-39290.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 39275-39290
-
-
Alemu, E.A.1
Lamark, T.2
Torgersen, K.M.3
Birgisdottir, A.B.4
Larsen, K.B.5
Jain, A.6
Olsvik, H.7
Øvervatn, A.8
Kirkin, V.9
Johansen, T.10
-
2
-
-
79954422997
-
Chaperone-mediated autophagy in protein quality control.
-
Arias, E. and Cuervo, A. M. (2011). Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 23, 184-189.
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 184-189
-
-
Arias, E.1
Cuervo, A.M.2
-
3
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria.
-
Ashrafi, G. and Schwarz, T. L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31-42.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
4
-
-
77954237882
-
Network organization of the human autophagy system.
-
Behrends, C., Sowa, M. E., Gygi, S. P. and Harper, J. W. (2010). Network organization of the human autophagy system. Nature 466, 68-76.
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
5
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains.
-
Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouysségur, J. and Mazure, N. M. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29, 2570-2581.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
Chiche, J.4
Roux, D.5
Pouysségur, J.6
Mazure, N.M.7
-
6
-
-
27944504351
-
p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.
-
Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H. and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603-614.
-
(2005)
J. Cell Biol.
, vol.171
, pp. 603-614
-
-
Bjørkøy, G.1
Lamark, T.2
Brech, A.3
Outzen, H.4
Perander, M.5
Øvervatn, A.6
Stenmark, H.7
Johansen, T.8
-
7
-
-
79952348751
-
The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway.
-
Cemma, M., Kim, P. K. and Brumell, J. H. (2011). The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 7, 341-345.
-
(2011)
Autophagy
, vol.7
, pp. 341-345
-
-
Cemma, M.1
Kim, P.K.2
Brumell, J.H.3
-
8
-
-
77955875002
-
Regulation of the autophagy protein LC3 by phosphorylation.
-
Cherra, S. J., 3rd, Kulich, S. M., Uechi, G., Balasubramani, M., Mountzouris, J., Day, B. W. and Chu, C. T. (2010). Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol. 190, 533-539.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 533-539
-
-
Cherra, S.J.1
Kulich, S.M.2
Uechi, G.3
Balasubramani, M.4
Mountzouris, J.5
Day, B.W.6
Chu, C.T.7
-
9
-
-
77952914565
-
p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy
-
Clausen, T. H., Lamark, T., Isakson, P., Finley, K., Larsen, K. B., Brech, A., Øvervatn, A., Stenmark, H., Bjørkøy, G., Simonsen, A. et al. (2010). p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 6, 330-344.
-
(2010)
Autophagy
, vol.6
, pp. 330-344
-
-
Clausen, T.H.1
Lamark, T.2
Isakson, P.3
Finley, K.4
Larsen, K.B.5
Brech, A.6
Øvervatn, A.7
Stenmark, H.8
Bjørkøy, G.9
Simonsen, A.10
-
10
-
-
84870938108
-
MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins.
-
Colecchia, D., Strambi, A., Sanzone, S., Iavarone, C., Rossi, M., Dall'Armi, C., Piccioni, F., Verrotti di Pianella, A. and Chiariello, M. (2012). MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy 8, 1724-1740.
-
(2012)
Autophagy
, vol.8
, pp. 1724-1740
-
-
Colecchia, D.1
Strambi, A.2
Sanzone, S.3
Iavarone, C.4
Rossi, M.5
Dall'Armi, C.6
Piccioni, F.7
Verrotti di Pianella, A.8
Chiariello, M.9
-
11
-
-
84876345355
-
NBR1 acts as an autophagy receptor for peroxisomes.
-
Deosaran, E., Larsen, K. B., Hua, R., Sargent, G., Wang, Y., Kim, S., Lamark, T., Jauregui, M., Law, K., Lippincott-Schwartz, J. et al. (2013). NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939-952.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 939-952
-
-
Deosaran, E.1
Larsen, K.B.2
Hua, R.3
Sargent, G.4
Wang, Y.5
Kim, S.6
Lamark, T.7
Jauregui, M.8
Law, K.9
Lippincott-Schwartz, J.10
-
12
-
-
84857039937
-
Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors.
-
Deretic, V. (2012). Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr. Opin. Immunol. 24, 21-31.
-
(2012)
Curr. Opin. Immunol.
, vol.24
, pp. 21-31
-
-
Deretic, V.1
-
13
-
-
68349143052
-
Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy.
-
Dupont, N., Lacas-Gervais, S., Bertout, J., Paz, I., Freche, B., Van Nhieu, G. T., van der Goot, F. G., Sansonetti, P. J. and Lafont, F. (2009). Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6, 137-149.
-
(2009)
Cell Host Microbe
, vol.6
, pp. 137-149
-
-
Dupont, N.1
Lacas-Gervais, S.2
Bertout, J.3
Paz, I.4
Freche, B.5
Van Nhieu, G.T.6
van der Goot, F.G.7
Sansonetti, P.J.8
Lafont, F.9
-
14
-
-
77950903972
-
The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy.
-
Filimonenko, M., Isakson, P., Finley, K. D., Anderson, M., Jeong, H., Melia, T. J., Bartlett, B. J., Myers, K. M., Birkeland, H. C., Lamark, T. et al. (2010). The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 38, 265-279.
-
(2010)
Mol. Cell
, vol.38
, pp. 265-279
-
-
Filimonenko, M.1
Isakson, P.2
Finley, K.D.3
Anderson, M.4
Jeong, H.5
Melia, T.J.6
Bartlett, B.J.7
Myers, K.M.8
Birkeland, H.C.9
Lamark, T.10
-
15
-
-
77955172368
-
Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation.
-
Gao, C., Cao, W., Bao, L., Zuo, W., Xie, G., Cai, T., Fu, W., Zhang, J., Wu, W., Zhang, X. et al. (2010). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat. Cell Biol. 12, 781-790.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 781-790
-
-
Gao, C.1
Cao, W.2
Bao, L.3
Zuo, W.4
Xie, G.5
Cai, T.6
Fu, W.7
Zhang, J.8
Wu, W.9
Zhang, X.10
-
16
-
-
84870601009
-
Selective autophagy degrades DICER and AGO2 and regulates miRNA activity.
-
Gibbings, D., Mostowy, S., Jay, F., Schwab, Y., Cossart, P. and Voinnet, O. (2012). Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol. 14, 1314-1321.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1314-1321
-
-
Gibbings, D.1
Mostowy, S.2
Jay, F.3
Schwab, Y.4
Cossart, P.5
Voinnet, O.6
-
17
-
-
84868506702
-
Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction.
-
Hain, A. U., Weltzer, R. R., Hammond, H., Jayabalasingham, B., Dinglasan, R. R., Graham, D. R., Colquhoun, D. R., Coppens, I. and Bosch, J. (2012). Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J. Struct. Biol. 180, 551-562.
-
(2012)
J. Struct. Biol.
, vol.180
, pp. 551-562
-
-
Hain, A.U.1
Weltzer, R.R.2
Hammond, H.3
Jayabalasingham, B.4
Dinglasan, R.R.5
Graham, D.R.6
Colquhoun, D.R.7
Coppens, I.8
Bosch, J.9
-
18
-
-
84883452831
-
Up-to-date membrane biogenesis in the autophagosome formation
-
doi: 10.1016/j.ceb.2013.03.004
-
Hamasaki, M., Shibutani, S. T. and Yoshimori, T. (2013). Up-to-date membrane biogenesis in the autophagosome formation. Curr. Opin Cell Biol. 25, doi: 10.1016/j.ceb.2013.03.004.
-
(2013)
Curr. Opin Cell Biol
, vol.25
-
-
Hamasaki, M.1
Shibutani, S.T.2
Yoshimori, T.3
-
19
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy.
-
Hanna, R. A., Quinsay, M. N., Orogo, A. M., Giang, K., Rikka, S. and Gustafsson, A. B. (2012). Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094-19104.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson, A.B.6
-
20
-
-
58149083873
-
Selective turnover of p62/A170/SQSTM1 by autophagy.
-
Ichimura, Y., Kominami, E., Tanaka, K. and Komatsu, M. (2008a). Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy 4, 1063-1066.
-
(2008)
Autophagy
, vol.4
, pp. 1063-1066
-
-
Ichimura, Y.1
Kominami, E.2
Tanaka, K.3
Komatsu, M.4
-
21
-
-
53049103308
-
Structural basis for sorting mechanism of p62 in selective autophagy.
-
Ichimura, Y., Kumanomidou, T., Sou, Y. S., Mizushima, T., Ezaki, J., Ueno, T., Kominami, E., Yamane, T., Tanaka, K. and Komatsu, M. (2008b). Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283, 22847-22857.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 22847-22857
-
-
Ichimura, Y.1
Kumanomidou, T.2
Sou, Y.S.3
Mizushima, T.4
Ezaki, J.5
Ueno, T.6
Kominami, E.7
Yamane, T.8
Tanaka, K.9
Komatsu, M.10
-
22
-
-
79955492012
-
Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells.
-
Inami, Y., Waguri, S., Sakamoto, A., Kouno, T., Nakada, K., Hino, O., Watanabe, S., Ando, J., Iwadate, M., Yamamoto, M. et al. (2011). Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193, 275-284.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 275-284
-
-
Inami, Y.1
Waguri, S.2
Sakamoto, A.3
Kouno, T.4
Nakada, K.5
Hino, O.6
Watanabe, S.7
Ando, J.8
Iwadate, M.9
Yamamoto, M.10
-
23
-
-
78651282673
-
p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding.
-
Itakura, E. and Mizushima, N. (2011). p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol. 192, 17-27.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 17-27
-
-
Itakura, E.1
Mizushima, N.2
-
24
-
-
50249098491
-
Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation.
-
Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T. and Fukuda, M. (2008). Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell 19, 2916-2925.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2916-2925
-
-
Itoh, T.1
Fujita, N.2
Kanno, E.3
Yamamoto, A.4
Yoshimori, T.5
Fukuda, M.6
-
25
-
-
79952422876
-
OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation.
-
Itoh, T., Kanno, E., Uemura, T., Waguri, S. and Fukuda, M. (2011). OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol. 192, 839-853.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 839-853
-
-
Itoh, T.1
Kanno, E.2
Uemura, T.3
Waguri, S.4
Fukuda, M.5
-
26
-
-
77954599053
-
p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription.
-
Jain, A., Lamark, T., Sjøttem, E., Larsen, K. B., Awuh, J. A., Øvervatn, A., McMahon, M., Hayes, J. D. and Johansen, T. (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576-22591.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjøttem, E.3
Larsen, K.B.4
Awuh, J.A.5
Øvervatn, A.6
McMahon, M.7
Hayes, J.D.8
Johansen, T.9
-
27
-
-
80053338210
-
Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1.
-
Jiang, S., Wells, C. D. and Roach, P. J. (2011). Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413, 420-425.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.413
, pp. 420-425
-
-
Jiang, S.1
Wells, C.D.2
Roach, P.J.3
-
28
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins.
-
Johansen, T. and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
29
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy.
-
Kanki, T., Wang, K., Cao, Y., Baba, M. and Klionsky, D. J. (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98-109.
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
30
-
-
65549142204
-
A role for ubiquitin in selective autophagy.
-
Kirkin, V., McEwan, D. G., Novak, I. and Dikic, I. (2009a). A role for ubiquitin in selective autophagy. Mol. Cell 34, 259-269.
-
(2009)
Mol. Cell
, vol.34
, pp. 259-269
-
-
Kirkin, V.1
McEwan, D.G.2
Novak, I.3
Dikic, I.4
-
31
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates.
-
Kirkin, V., Lamark, T., Sou, Y. S., Bjørkøy, G., Nunn, J. L., Bruun, J. A., Shvets, E., McEwan, D. G., Clausen, T. H., Wild, P. et al. (2009b). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516.
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjørkøy, G.4
Nunn, J.L.5
Bruun, J.A.6
Shvets, E.7
McEwan, D.G.8
Clausen, T.H.9
Wild, P.10
-
32
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice.
-
Komatsu, M., Waguri, S., Koike, M., Sou, Y. S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S. et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Iwata, J.8
Ezaki, J.9
Murata, S.10
-
33
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1.
-
Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I. et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
-
34
-
-
84858988067
-
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy.
-
Kondo-Okamoto, N., Noda, N. N., Suzuki, S. W., Nakatogawa, H., Takahashi, I., Matsunami, M., Hashimoto, A., Inagaki, F., Ohsumi, Y. and Okamoto, K. (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287, 10631-10638.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 10631-10638
-
-
Kondo-Okamoto, N.1
Noda, N.N.2
Suzuki, S.W.3
Nakatogawa, H.4
Takahashi, I.5
Matsunami, M.6
Hashimoto, A.7
Inagaki, F.8
Ohsumi, Y.9
Okamoto, K.10
-
35
-
-
84876085831
-
Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates.
-
Korac, J., Schaeffer, V., Kovacevic, I., Clement, A. M., Jungblut, B., Behl, C., Terzic, J. and Dikic, I. (2013). Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126, 580-592.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 580-592
-
-
Korac, J.1
Schaeffer, V.2
Kovacevic, I.3
Clement, A.M.4
Jungblut, B.5
Behl, C.6
Terzic, J.7
Dikic, I.8
-
36
-
-
77956410115
-
Selective autophagy: ubiquitin-mediated recognition and beyond.
-
Kraft, C., Peter, M. and Hofmann, K. (2010). Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836-841.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 836-841
-
-
Kraft, C.1
Peter, M.2
Hofmann, K.3
-
37
-
-
84866426794
-
Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy.
-
Kraft, C., Kijanska, M., Kalie, E., Siergiejuk, E., Lee, S. S., Semplicio, G., Stoffel, I., Brezovich, A., Verma, M., Hansmann, I. et al. (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31, 3691-3703.
-
(2012)
EMBO J.
, vol.31
, pp. 3691-3703
-
-
Kraft, C.1
Kijanska, M.2
Kalie, E.3
Siergiejuk, E.4
Lee, S.S.5
Semplicio, G.6
Stoffel, I.7
Brezovich, A.8
Verma, M.9
Hansmann, I.10
-
38
-
-
80053564250
-
Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity.
-
Kuo, T. C., Chen, C. T., Baron, D., Onder, T. T., Loewer, S., Almeida, S., Weismann, C. M., Xu, P., Houghton, J. M., Gao, F. B. et al. (2011). Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat. Cell Biol. 13, 1214-1223.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1214-1223
-
-
Kuo, T.C.1
Chen, C.T.2
Baron, D.3
Onder, T.T.4
Loewer, S.5
Almeida, S.6
Weismann, C.M.7
Xu, P.8
Houghton, J.M.9
Gao, F.B.10
-
39
-
-
0035919837
-
Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies.
-
Kuusisto, E., Salminen, A. and Alafuzoff, I. (2001). Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12, 2085-2090.
-
(2001)
Neuroreport
, vol.12
, pp. 2085-2090
-
-
Kuusisto, E.1
Salminen, A.2
Alafuzoff, I.3
-
40
-
-
37649005234
-
Autophagy in the pathogenesis of disease.
-
Levine, B. and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
41
-
-
78751672975
-
Autophagy in immunity and inflammation.
-
Levine, B., Mizushima, N. and Virgin, H. W. (2011). Autophagy in immunity and inflammation. Nature 469, 323-335.
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
42
-
-
79953190772
-
Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates.
-
Li, M., Hou, Y., Wang, J., Chen, X., Shao, Z. M. and Yin, X. M. (2011). Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J. Biol. Chem. 286, 7327-7338.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 7327-7338
-
-
Li, M.1
Hou, Y.2
Wang, J.3
Chen, X.4
Shao, Z.M.5
Yin, X.M.6
-
43
-
-
84876339267
-
The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery.
-
Lin, L., Yang, P., Huang, X., Zhang, H., Lu, Q. and Zhang, H. (2013). The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J. Cell Biol. 201, 113-129.
-
(2013)
J. Cell Biol.
, vol.201
, pp. 113-129
-
-
Lin, L.1
Yang, P.2
Huang, X.3
Zhang, H.4
Lu, Q.5
Zhang, H.6
-
44
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells.
-
Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W. et al. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
45
-
-
77950510302
-
The Cvt pathway as a model for selective autophagy.
-
Lynch-Day, M. A. and Klionsky, D. J. (2010). The Cvt pathway as a model for selective autophagy. FEBS Lett. 584, 1359-1366.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1359-1366
-
-
Lynch-Day, M.A.1
Klionsky, D.J.2
-
46
-
-
74049129024
-
The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells.
-
Mauvezin, C., Orpinell, M., Francis, V. A., Mansilla, F., Duran, J., Ribas, V., Palacín, M., Boya, P., Teleman, A. A. and Zorzano, A. (2010). The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep. 11, 37-44.
-
(2010)
EMBO Rep.
, vol.11
, pp. 37-44
-
-
Mauvezin, C.1
Orpinell, M.2
Francis, V.A.3
Mansilla, F.4
Duran, J.5
Ribas, V.6
Palacín, M.7
Boya, P.8
Teleman, A.A.9
Zorzano, A.10
-
47
-
-
79959999581
-
Microautophagy in mammalian cells: revisiting a 40-year-old conundrum.
-
Mijaljica, D., Prescott, M. and Devenish, R. J. (2011). Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673-682.
-
(2011)
Autophagy
, vol.7
, pp. 673-682
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
48
-
-
81055144784
-
Autophagy: renovation of cells and tissues.
-
Mizushima, N. and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
49
-
-
80054025654
-
The role of Atg proteins in autophagosome formation.
-
Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
50
-
-
37249005256
-
Identification of clathrin heavy chain as a direct interaction partner for the gammaa-minobutyric acid type A receptor associated protein.
-
Mohrlüder, J., Hoffmann, Y., Stangler, T., Hänel, K. and Willbold, D. (2007a). Identification of clathrin heavy chain as a direct interaction partner for the gammaa-minobutyric acid type A receptor associated protein. Biochemistry 46, 14537-14543.
-
(2007)
Biochemistry
, vol.46
, pp. 14537-14543
-
-
Mohrlüder, J.1
Hoffmann, Y.2
Stangler, T.3
Hänel, K.4
Willbold, D.5
-
51
-
-
35448936487
-
Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library.
-
Mohrlüder, J., Stangler, T., Hoffmann, Y., Wiesehan, K., Mataruga, A. and Willbold, D. (2007b). Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library. FEBS J. 274, 5543-5555.
-
(2007)
FEBS J.
, vol.274
, pp. 5543-5555
-
-
Mohrlüder, J.1
Stangler, T.2
Hoffmann, Y.3
Wiesehan, K.4
Mataruga, A.5
Willbold, D.6
-
52
-
-
33846692198
-
Signal integration and diversification through the p62 scaffold protein.
-
Moscat, J., Diaz-Meco, M. T. and Wooten, M. W. (2007). Signal integration and diversification through the p62 scaffold protein. Trends Biochem. Sci. 32, 95-100.
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 95-100
-
-
Moscat, J.1
Diaz-Meco, M.T.2
Wooten, M.W.3
-
53
-
-
84861782476
-
Bacterial autophagy: restriction or promotion of bacterial replication?
-
Mostowy, S. and Cossart, P. (2012). Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol. 22, 283-291.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 283-291
-
-
Mostowy, S.1
Cossart, P.2
-
54
-
-
79960670161
-
p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways.
-
Mostowy, S., Sancho-Shimizu, V., Hamon, M. A., Simeone, R., Brosch, R., Johansen, T. and Cossart, P. (2011). p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 286, 26987-26995.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 26987-26995
-
-
Mostowy, S.1
Sancho-Shimizu, V.2
Hamon, M.A.3
Simeone, R.4
Brosch, R.5
Johansen, T.6
Cossart, P.7
-
55
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: lessons from yeast.
-
Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458-467.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
56
-
-
84865251228
-
The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation.
-
Nakatogawa, H., Ohbayashi, S., Sakoh-Nakatogawa, M., Kakuta, S., Suzuki, S. W., Kirisako, H., Kondo-Kakuta, C., Noda, N. N., Yamamoto, H. and Ohsumi, Y. (2012). The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287, 28503-28507.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 28503-28507
-
-
Nakatogawa, H.1
Ohbayashi, S.2
Sakoh-Nakatogawa, M.3
Kakuta, S.4
Suzuki, S.W.5
Kirisako, H.6
Kondo-Kakuta, C.7
Noda, N.N.8
Yamamoto, H.9
Ohsumi, Y.10
-
57
-
-
84870527124
-
TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kB signalling
-
Newman, A. C., Scholefield, C. L., Kemp, A. J., Newman, M., McIver, E. G., Kamal, A. and Wilkinson, S. (2012). TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kB signalling. PLoS ONE 7, e50672.
-
(2012)
PLoS ONE
, vol.7
, pp. 50672
-
-
Newman, A.C.1
Scholefield, C.L.2
Kemp, A.J.3
Newman, M.4
McIver, E.G.5
Kamal, A.6
Wilkinson, S.7
-
58
-
-
57249083972
-
Structural basis of target recognition by Atg8/LC3 during selective autophagy.
-
Noda, N. N., Kumeta, H., Nakatogawa, H., Satoo, K., Adachi, W., Ishii, J., Fujioka, Y., Ohsumi, Y. and Inagaki, F. (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211-1218.
-
(2008)
Genes Cells
, vol.13
, pp. 1211-1218
-
-
Noda, N.N.1
Kumeta, H.2
Nakatogawa, H.3
Satoo, K.4
Adachi, W.5
Ishii, J.6
Fujioka, Y.7
Ohsumi, Y.8
Inagaki, F.9
-
59
-
-
77950484269
-
Atg8-family interacting motif crucial for selective autophagy.
-
Noda, N. N., Ohsumi, Y. and Inagaki, F. (2010). Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379-1385.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1379-1385
-
-
Noda, N.N.1
Ohsumi, Y.2
Inagaki, F.3
-
60
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance.
-
Novak, I., Kirkin, V., McEwan, D. G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Löhr, F., Popovic, D., Occhipinti, A. et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51.
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
Rogov, V.7
Löhr, F.8
Popovic, D.9
Occhipinti, A.10
-
61
-
-
64049119964
-
The TP53INP2 protein is required for autophagy in mammalian cells.
-
Nowak, J., Archange, C., Tardivel-Lacombe, J., Pontarotti, P., Pébusque, M. J., Vaccaro, M. I., Velasco, G., Dagorn, J. C. and Iovanna, J. L. (2009). The TP53INP2 protein is required for autophagy in mammalian cells. Mol. Biol. Cell 20, 870-881.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 870-881
-
-
Nowak, J.1
Archange, C.2
Tardivel-Lacombe, J.3
Pontarotti, P.4
Pébusque, M.J.5
Vaccaro, M.I.6
Velasco, G.7
Dagorn, J.C.8
Iovanna, J.L.9
-
62
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy.
-
Okamoto, K., Kondo-Okamoto, N. and Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87-97.
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
63
-
-
76249112828
-
Autophagy protects against Sindbis virus infection of the central nervous system.
-
Orvedahl, A., MacPherson, S., Sumpter, R., Jr, Tallóczy, Z., Zou, Z. and Levine, B. (2010). Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115-127.
-
(2010)
Cell Host Microbe
, vol.7
, pp. 115-127
-
-
Orvedahl, A.1
MacPherson, S.2
Sumpter, R.3
Tallóczy, Z.4
Zou, Z.5
Levine, B.6
-
64
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.
-
Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Øvervatn, A., Bjørkøy, G. and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131-24145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Øvervatn, A.7
Bjørkøy, G.8
Johansen, T.9
-
65
-
-
76149086512
-
FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport.
-
Pankiv, S., Alemu, E. A., Brech, A., Bruun, J. A., Lamark, T., Overvatn, A., Bjørkøy, G. and Johansen, T. (2010). FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188, 253-269.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 253-269
-
-
Pankiv, S.1
Alemu, E.A.2
Brech, A.3
Bruun, J.A.4
Lamark, T.5
Overvatn, A.6
Bjørkøy, G.7
Johansen, T.8
-
66
-
-
84880202019
-
Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk
-
Petherick, K. J., Williams, A. C., Lane, J. D., Ordonez-Moran, P., Huelsken, J., Collard, T. J., Smart, H. J., Batson, J., Malik, K., Paraskeva, C., et al, (2013). Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J.
-
(2013)
EMBO J
-
-
Petherick, K.J.1
Williams, A.C.2
Lane, J.D.3
Ordonez-Moran, P.4
Huelsken, J.5
Collard, T.J.6
Smart, H.J.7
Batson, J.8
Malik, K.9
Paraskeva, C.10
-
67
-
-
58149344946
-
Midbody ring disposal by autophagy is a post-abscission event of cytokinesis.
-
Pohl, C. and Jentsch, S. (2009). Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11, 65-70.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 65-70
-
-
Pohl, C.1
Jentsch, S.2
-
68
-
-
77949997805
-
Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties.
-
Ponpuak, M., Davis, A. S., Roberts, E. A., Delgado, M. A., Dinkins, C., Zhao, Z., Virgin, H. W., 4th, Kyei, G. B., Johansen, T., Vergne, I. et al. (2010). Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329-341.
-
(2010)
Immunity
, vol.32
, pp. 329-341
-
-
Ponpuak, M.1
Davis, A.S.2
Roberts, E.A.3
Delgado, M.A.4
Dinkins, C.5
Zhao, Z.6
Virgin, H.W.7
Kyei, G.B.8
Johansen, T.9
Vergne, I.10
-
69
-
-
84861396483
-
Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers.
-
Popovic, D., Akutsu, M., Novak, I., Harper, J. W., Behrends, C. and Dikic, I. (2012). Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell. Biol. 32, 1733-1744.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1733-1744
-
-
Popovic, D.1
Akutsu, M.2
Novak, I.3
Harper, J.W.4
Behrends, C.5
Dikic, I.6
-
70
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures.
-
Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. and Rubinsztein, D. C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747-757.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
71
-
-
79959498837
-
Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1.
-
Rozenknop, A., Rogov, V. V., Rogova, N. Y., Löhr, F., Güntert, P., Dikic, I. and Dötsch, V. (2011). Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J. Mol. Biol. 410, 477-487.
-
(2011)
J. Mol. Biol.
, vol.410
, pp. 477-487
-
-
Rozenknop, A.1
Rogov, V.V.2
Rogova, N.Y.3
Löhr, F.4
Güntert, P.5
Dikic, I.6
Dötsch, V.7
-
72
-
-
84859012788
-
DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family encoding dual regulators of autophagy and transcription
-
Sancho, A., Duran, J., García-España, A., Mauvezin, C., Alemu, E. A., Lamark, T., Macias, M. J., DeSalle, R., Royo, M., Sala, D. et al. (2012). DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family encoding dual regulators of autophagy and transcription. PLoS ONE 7, e34034.
-
(2012)
PLoS ONE
, vol.7
, pp. 34034
-
-
Sancho, A.1
Duran, J.2
García-España, A.3
Mauvezin, C.4
Alemu, E.A.5
Lamark, T.6
Macias, M.J.7
DeSalle, R.8
Royo, M.9
Sala, D.10
-
73
-
-
84255169600
-
Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling.
-
Sandilands, E., Serrels, B., McEwan, D. G., Morton, J. P., Macagno, J. P., McLeod, K., Stevens, C., Brunton, V. G., Langdon, W. Y., Vidal, M. et al. (2012). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol. 14, 51-60.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 51-60
-
-
Sandilands, E.1
Serrels, B.2
McEwan, D.G.3
Morton, J.P.4
Macagno, J.P.5
McLeod, K.6
Stevens, C.7
Brunton, V.G.8
Langdon, W.Y.9
Vidal, M.10
-
74
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells.
-
Sandoval, H., Thiagarajan, P., Dasgupta, S. K., Schumacher, A., Prchal, J. T., Chen, M. and Wang, J. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232-235.
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
Thiagarajan, P.2
Dasgupta, S.K.3
Schumacher, A.4
Prchal, J.T.5
Chen, M.6
Wang, J.7
-
75
-
-
65649136884
-
The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy.
-
Satoo, K., Noda, N. N., Kumeta, H., Fujioka, Y., Mizushima, N., Ohsumi, Y. and Inagaki, F. (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 28, 1341-1350.
-
(2009)
EMBO J.
, vol.28
, pp. 1341-1350
-
-
Satoo, K.1
Noda, N.N.2
Kumeta, H.3
Fujioka, Y.4
Mizushima, N.5
Ohsumi, Y.6
Inagaki, F.7
-
76
-
-
67650219052
-
Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy.
-
Schwarten, M., Mohrlüder, J., Ma, P., Stoldt, M., Thielmann, Y., Stangler, T., Hersch, N., Hoffmann, B., Merkel, R. and Willbold, D. (2009). Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690-698.
-
(2009)
Autophagy
, vol.5
, pp. 690-698
-
-
Schwarten, M.1
Mohrlüder, J.2
Ma, P.3
Stoldt, M.4
Thielmann, Y.5
Stangler, T.6
Hersch, N.7
Hoffmann, B.8
Merkel, R.9
Willbold, D.10
-
77
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation.
-
Schweers, R. L., Zhang, J., Randall, M. S., Loyd, M. R., Li, W., Dorsey, F. C., Kundu, M., Opferman, J. T., Cleveland, J. L., Miller, J. L. et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. USA 104, 19500-19505.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
Zhang, J.2
Randall, M.S.3
Loyd, M.R.4
Li, W.5
Dorsey, F.C.6
Kundu, M.7
Opferman, J.T.8
Cleveland, J.L.9
Miller, J.L.10
-
78
-
-
84865164864
-
TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death.
-
Seillier, M., Peuget, S., Gayet, O., Gauthier, C., N'Guessan, P., Monte, M., Carrier, A., Iovanna, J. L. and Dusetti, N. J. (2012). TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ. 19, 1525-1535.
-
(2012)
Cell Death Differ.
, vol.19
, pp. 1525-1535
-
-
Seillier, M.1
Peuget, S.2
Gayet, O.3
Gauthier, C.4
N'Guessan, P.5
Monte, M.6
Carrier, A.7
Iovanna, J.L.8
Dusetti, N.J.9
-
79
-
-
79960878784
-
Atg8: an autophagy-related ubiquitin-like protein family.
-
Shpilka, T., Weidberg, H., Pietrokovski, S. and Elazar, Z. (2011). Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 12, 226.
-
(2011)
Genome Biol.
, vol.12
, pp. 226
-
-
Shpilka, T.1
Weidberg, H.2
Pietrokovski, S.3
Elazar, Z.4
-
80
-
-
52649121942
-
The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes.
-
Shvets, E., Fass, E., Scherz-Shouval, R. and Elazar, Z. (2008). The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 121, 2685-2695.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2685-2695
-
-
Shvets, E.1
Fass, E.2
Scherz-Shouval, R.3
Elazar, Z.4
-
81
-
-
79959950861
-
Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes.
-
Shvets, E., Abada, A., Weidberg, H. and Elazar, Z. (2011). Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes. Autophagy 7, 683-688.
-
(2011)
Autophagy
, vol.7
, pp. 683-688
-
-
Shvets, E.1
Abada, A.2
Weidberg, H.3
Elazar, Z.4
-
82
-
-
68049105101
-
Rab GTPases as coordinators of vesicle traffic.
-
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513-525.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 513-525
-
-
Stenmark, H.1
-
83
-
-
82755166963
-
The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis.
-
Suttangkakul, A., Li, F., Chung, T. and Vierstra, R. D. (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761-3779.
-
(2011)
Plant Cell
, vol.23
, pp. 3761-3779
-
-
Suttangkakul, A.1
Li, F.2
Chung, T.3
Vierstra, R.D.4
-
84
-
-
77956924900
-
Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p.
-
Suzuki, K., Kondo, C., Morimoto, M. and Ohsumi, Y. (2010). Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J. Biol. Chem. 285, 30019-30025.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 30019-30025
-
-
Suzuki, K.1
Kondo, C.2
Morimoto, M.3
Ohsumi, Y.4
-
85
-
-
80052363973
-
Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1.
-
Svenning, S., Lamark, T., Krause, K. and Johansen, T. (2011). Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 7, 993-1010.
-
(2011)
Autophagy
, vol.7
, pp. 993-1010
-
-
Svenning, S.1
Lamark, T.2
Krause, K.3
Johansen, T.4
-
86
-
-
84865287281
-
Keap1 degradation by autophagy for the maintenance of redox homeostasis.
-
Taguchi, K., Fujikawa, N., Komatsu, M., Ishii, T., Unno, M., Akaike, T., Motohashi, H. and Yamamoto, M. (2012). Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc. Natl. Acad. Sci. USA 109, 13561-13566.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 13561-13566
-
-
Taguchi, K.1
Fujikawa, N.2
Komatsu, M.3
Ishii, T.4
Unno, M.5
Akaike, T.6
Motohashi, H.7
Yamamoto, M.8
-
87
-
-
84864463147
-
Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion
-
Thomsen, M. C. and Nielsen, M. (2012). Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 40, W281-W287.
-
(2012)
Nucleic Acids Res
, vol.40
-
-
Thomsen, M.C.1
Nielsen, M.2
-
88
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria.
-
Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. and Randow, F. (2009). The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215-1221.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
Ryzhakov, G.2
Bloor, S.3
von Muhlinen, N.4
Randow, F.5
-
89
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion.
-
Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. and Randow, F. (2012). Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418.
-
(2012)
Nature
, vol.482
, pp. 414-418
-
-
Thurston, T.L.1
Wandel, M.P.2
von Muhlinen, N.3
Foeglein, A.4
Randow, F.5
-
90
-
-
84869080400
-
LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
-
von Muhlinen, N., Akutsu, M., Ravenhill, B. J., Foeglein, A., Bloor, S., Rutherford, T. J., Freund, S. M., Komander, D. and Randow, F. (2012). LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell 48, 329-342.
-
(2012)
Mol. Cell
, vol.48
, pp. 329-342
-
-
von Muhlinen, N.1
Akutsu, M.2
Ravenhill, B.J.3
Foeglein, A.4
Bloor, S.5
Rutherford, T.J.6
Freund, S.M.7
Komander, D.8
Randow, F.9
-
91
-
-
84862810829
-
Calreticulin signaling in health and disease.
-
Wang, W. A., Groenendyk, J. and Michalak, M. (2012). Calreticulin signaling in health and disease. Int. J. Biochem. Cell Biol. 44, 842-846.
-
(2012)
Int. J. Biochem. Cell Biol.
, vol.44
, pp. 842-846
-
-
Wang, W.A.1
Groenendyk, J.2
Michalak, M.3
-
92
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes.
-
Weidberg, H., Shvets, E. and Elazar, Z. (2011). Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80, 125-156.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
93
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth.
-
Wild, P., Farhan, H., McEwan, D. G., Wagner, S., Rogov, V. V., Brady, N. R., Richter, B., Korac, J., Waidmann, O., Choudhary, C. et al. (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
Brady, N.R.6
Richter, B.7
Korac, J.8
Waidmann, O.9
Choudhary, C.10
-
94
-
-
77956499358
-
Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway.
-
Yamaguchi, M., Noda, N. N., Nakatogawa, H., Kumeta, H., Ohsumi, Y. and Inagaki, F. (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285, 29599-29607.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 29599-29607
-
-
Yamaguchi, M.1
Noda, N.N.2
Nakatogawa, H.3
Kumeta, H.4
Ohsumi, Y.5
Inagaki, F.6
-
95
-
-
2942618768
-
A renaissance for SRC.
-
Yeatman, T. J. (2004). A renaissance for SRC. Nat. Rev. Cancer 4, 470-480.
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 470-480
-
-
Yeatman, T.J.1
-
96
-
-
0036144410
-
p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases.
-
Zatloukal, K., Stumptner, C., Fuchsbichler, A., Heid, H., Schnoelzer, M., Kenner, L., Kleinert, R., Prinz, M., Aguzzi, A. and Denk, H. (2002). p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am. J. Pathol. 160, 255-263.
-
(2002)
Am. J. Pathol.
, vol.160
, pp. 255-263
-
-
Zatloukal, K.1
Stumptner, C.2
Fuchsbichler, A.3
Heid, H.4
Schnoelzer, M.5
Kenner, L.6
Kleinert, R.7
Prinz, M.8
Aguzzi, A.9
Denk, H.10
-
97
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy.
-
Zhang, J. and Ney, P. A. (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16, 939-946.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
98
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia.
-
Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., Gonzalez, F. J. and Semenza, G. L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892-10903.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
Gonzalez, F.J.7
Semenza, G.L.8
-
99
-
-
79959467280
-
GABARAPL1 negatively regulates Wnt/b-catenin signaling by mediating Dvl2 degradation through the autophagy pathway.
-
Zhang, Y., Wang, F., Han, L., Wu, Y., Li, S., Yang, X., Wang, Y., Ren, F., Zhai, Y., Wang, D. et al. (2011). GABARAPL1 negatively regulates Wnt/b-catenin signaling by mediating Dvl2 degradation through the autophagy pathway. Cell Physiol Biochem. 27, 503-512.
-
(2011)
Cell Physiol Biochem.
, vol.27
, pp. 503-512
-
-
Zhang, Y.1
Wang, F.2
Han, L.3
Wu, Y.4
Li, S.5
Yang, X.6
Wang, Y.7
Ren, F.8
Zhai, Y.9
Wang, D.10
-
100
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway.
-
Zheng, Y. T., Shahnazari, S., Brech, A., Lamark, T., Johansen, T. and Brumell, J. H. (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909-5916.
-
(2009)
J. Immunol.
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
Shahnazari, S.2
Brech, A.3
Lamark, T.4
Johansen, T.5
Brumell, J.H.6
-
101
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis.
-
Zhu, Y., Massen, S., Terenzio, M., Lang, V., Chen-Lindner, S., Eils, R., Novak, I., Dikic, I., Hamacher-Brady, A. and Brady, N. R. (2013). Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288, 1099-1113.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
Massen, S.2
Terenzio, M.3
Lang, V.4
Chen-Lindner, S.5
Eils, R.6
Novak, I.7
Dikic, I.8
Hamacher-Brady, A.9
Brady, N.R.10
|