-
1
-
-
84869051280
-
Mitochondrial disorders as windows into an ancient organelle
-
Vafai S.B., Mootha V.K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491:374-383.
-
(2012)
Nature
, vol.491
, pp. 374-383
-
-
Vafai, S.B.1
Mootha, V.K.2
-
2
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17:491-506.
-
(2013)
Cell Metab.
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
3
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle R.J., van der Bliek A.M. Mitochondrial fission, fusion, and stress. Science 2012, 337:1062-1065.
-
(2012)
Science
, vol.337
, pp. 1062-1065
-
-
Youle, R.J.1
van der Bliek, A.M.2
-
4
-
-
0013936320
-
Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria
-
Hackenbrock C.R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell Biol. 1966, 30:269-297.
-
(1966)
J. Cell Biol.
, vol.30
, pp. 269-297
-
-
Hackenbrock, C.R.1
-
5
-
-
84926258887
-
Disturbed mitochondrial dynamics and neurodegenerative disorders
-
Burte F., et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015, 11:11-24.
-
(2015)
Nat. Rev. Neurol.
, vol.11
, pp. 11-24
-
-
Burte, F.1
-
6
-
-
84910141948
-
Mitochondrial dynamics and inheritance during cell division, development and disease
-
Mishra P., Chan D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15:634-646.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 634-646
-
-
Mishra, P.1
Chan, D.C.2
-
7
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen H., et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 2003, 160:189-200.
-
(2003)
J. Cell Biol.
, vol.160
, pp. 189-200
-
-
Chen, H.1
-
8
-
-
84905996534
-
Charcot-Marie-Tooth disease type 2A: from typical to rare phenotypic and genotypic features
-
Bombelli F., et al. Charcot-Marie-Tooth disease type 2A: from typical to rare phenotypic and genotypic features. JAMA Neurol. 2014, 71:1036-1042.
-
(2014)
JAMA Neurol.
, vol.71
, pp. 1036-1042
-
-
Bombelli, F.1
-
9
-
-
38349185051
-
Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A
-
Detmer S.A., et al. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum. Mol. Genet. 2008, 17:367-375.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 367-375
-
-
Detmer, S.A.1
-
10
-
-
84934441687
-
Mitochondrial dynamism and heart disease: changing shape and shaping change
-
Dorn G.W. Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Mol. Med. 2015, 7:865-877.
-
(2015)
EMBO Mol. Med.
, vol.7
, pp. 865-877
-
-
Dorn, G.W.1
-
11
-
-
84936139805
-
Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction
-
Zorzano A., Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front. Aging Neurosci. 2015, 7:101.
-
(2015)
Front. Aging Neurosci.
, vol.7
, pp. 101
-
-
Zorzano, A.1
Claret, M.2
-
12
-
-
33750526473
-
A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis
-
Choi S.Y., et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 2006, 8:1255-1262.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 1255-1262
-
-
Choi, S.Y.1
-
13
-
-
79952509006
-
PiRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling
-
Huang H., et al. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 2011, 20:376-387.
-
(2011)
Dev. Cell
, vol.20
, pp. 376-387
-
-
Huang, H.1
-
14
-
-
79952525007
-
MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline
-
Watanabe T., et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 2011, 20:364-375.
-
(2011)
Dev. Cell
, vol.20
, pp. 364-375
-
-
Watanabe, T.1
-
15
-
-
84898995787
-
Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics
-
Baba T., et al. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J. Biol. Chem. 2014, 289:11497-11511.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 11497-11511
-
-
Baba, T.1
-
16
-
-
84940403792
-
Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission
-
Stepanyants N., et al. Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol. Biol. Cell 2015, 26:3104-3416.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 3104-3416
-
-
Stepanyants, N.1
-
17
-
-
84896264348
-
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
-
Anand R., et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204:919-999.
-
(2014)
J. Cell Biol.
, vol.204
, pp. 919-999
-
-
Anand, R.1
-
18
-
-
33746299692
-
Regulation of mitochondrial morphology through proteolytic cleavage of OPA1
-
Ishihara N., et al. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006, 25:2966-2977.
-
(2006)
EMBO J.
, vol.25
, pp. 2966-2977
-
-
Ishihara, N.1
-
19
-
-
84871821553
-
Proteolytic control of mitochondrial function and morphogenesis
-
Anand R., et al. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833:195-204.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 195-204
-
-
Anand, R.1
-
20
-
-
84920187098
-
Improved locus-specific database for OPA1 mutations allows inclusion of advanced clinical data
-
Ferre M., et al. Improved locus-specific database for OPA1 mutations allows inclusion of advanced clinical data. Hum. Mutat. 2015, 36:20-25.
-
(2015)
Hum. Mutat.
, vol.36
, pp. 20-25
-
-
Ferre, M.1
-
21
-
-
84878256159
-
OPA1 Mutation and Late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability
-
Chen L., et al. OPA1 Mutation and Late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J. Am. Heart Assoc. 2012, 1:e003012.
-
(2012)
J. Am. Heart Assoc.
, vol.1
-
-
Chen, L.1
-
22
-
-
84930607266
-
The opa1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage
-
Varanita T., et al. The opa1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 2015, 21:834-844.
-
(2015)
Cell Metab.
, vol.21
, pp. 834-844
-
-
Varanita, T.1
-
23
-
-
84930588143
-
Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models
-
Civiletto G., et al. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 2015, 21:845-854.
-
(2015)
Cell Metab.
, vol.21
, pp. 845-854
-
-
Civiletto, G.1
-
24
-
-
84908250304
-
Determinants and functions of mitochondrial behavior
-
Labbe K., et al. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 2014, 30:357-391.
-
(2014)
Annu. Rev. Cell Dev. Biol.
, vol.30
, pp. 357-391
-
-
Labbe, K.1
-
25
-
-
80054844842
-
ER tubules mark sites of mitochondrial division
-
Friedman J.R., et al. ER tubules mark sites of mitochondrial division. Science 2011, 334:358-362.
-
(2011)
Science
, vol.334
, pp. 358-362
-
-
Friedman, J.R.1
-
26
-
-
78650987611
-
Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission
-
Mears J.A., et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 2011, 18:20-26.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 20-26
-
-
Mears, J.A.1
-
27
-
-
84878918809
-
Mechanisms of mitochondrial fission and fusion
-
van der Bliek A.M., et al. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 2013, 5:a011072.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a011072
-
-
van der Bliek, A.M.1
-
28
-
-
34247525092
-
A lethal defect of mitochondrial and peroxisomal fission
-
Waterham H.R., et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 2007, 356:1736-1741.
-
(2007)
N. Engl. J. Med.
, vol.356
, pp. 1736-1741
-
-
Waterham, H.R.1
-
29
-
-
84961113442
-
Proliferation and fission of peroxisomes - an update
-
Published online September 26, 2015
-
Schrader M., et al. Proliferation and fission of peroxisomes - an update. Biochim. Biophys. Acta 2015, Published online September 26, 2015. 10.1016/j.bbamcr.2015.09.024.
-
(2015)
Biochim. Biophys. Acta
-
-
Schrader, M.1
-
30
-
-
68249087424
-
Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice
-
Ishihara N., et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature 2009, 11:958-966.
-
(2009)
Nature
, vol.11
, pp. 958-966
-
-
Ishihara, N.1
-
31
-
-
84920872756
-
The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble
-
Dorn G.W., Kitsis R.N. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ. Res. 2015, 116:167-182.
-
(2015)
Circ. Res.
, vol.116
, pp. 167-182
-
-
Dorn, G.W.1
Kitsis, R.N.2
-
32
-
-
84908326342
-
Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles
-
Udagawa O., et al. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr. Biol. 2014, 24:2451-2458.
-
(2014)
Curr. Biol.
, vol.24
, pp. 2451-2458
-
-
Udagawa, O.1
-
33
-
-
84942195533
-
Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
-
Wang L., et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia 2015, 58:2371-2380.
-
(2015)
Diabetologia
, vol.58
, pp. 2371-2380
-
-
Wang, L.1
-
34
-
-
84898603457
-
Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics
-
Baker M.J., et al. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 2014, 33:578-593.
-
(2014)
EMBO J.
, vol.33
, pp. 578-593
-
-
Baker, M.J.1
-
35
-
-
84897538678
-
Proteolytic cleavage of opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
-
Mishra P., et al. Proteolytic cleavage of opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 2014, 19:630-641.
-
(2014)
Cell Metab.
, vol.19
, pp. 630-641
-
-
Mishra, P.1
-
36
-
-
84924853843
-
YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress
-
Rainbolt T.K., et al. YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress. EMBO Rep. 2015, 16:97-106.
-
(2015)
EMBO Rep.
, vol.16
, pp. 97-106
-
-
Rainbolt, T.K.1
-
37
-
-
0042526632
-
Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA
-
Herlan M., et al. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 2003, 278:27781-27788.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 27781-27788
-
-
Herlan, M.1
-
38
-
-
0043095416
-
Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion
-
Sesaki H., et al. Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion. Biochem. Biophys. Res. Commun. 2003, 308:276-283.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.308
, pp. 276-283
-
-
Sesaki, H.1
-
39
-
-
84930040430
-
New roles for mitochondrial proteases in health, ageing and disease
-
Quiros P.M., et al. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16:345-359.
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 345-359
-
-
Quiros, P.M.1
-
40
-
-
3843125367
-
Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis
-
Tondera D. Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J. Biol. Chem. 2004, 279:31544-31555.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 31544-31555
-
-
Tondera, D.1
-
41
-
-
23844539004
-
The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells
-
Tondera D. The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci. 2005, 118:3049-3059.
-
(2005)
J. Cell Sci.
, vol.118
, pp. 3049-3059
-
-
Tondera, D.1
-
42
-
-
34047173074
-
Mitochondrial bioenergetics and structural network organization
-
Benard G., et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 2007, 120:838-848.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 838-848
-
-
Benard, G.1
-
43
-
-
67049089786
-
SLP-2 is required for stress-induced mitochondrial hyperfusion
-
Tondera D., et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 2009, 28:1589-1600.
-
(2009)
EMBO J.
, vol.28
, pp. 1589-1600
-
-
Tondera, D.1
-
44
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10190-10195.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
-
45
-
-
80051752834
-
Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy
-
Gomes L.C., et al. Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle 2011, 10:2635-2639.
-
(2011)
Cell Cycle
, vol.10
, pp. 2635-2639
-
-
Gomes, L.C.1
-
46
-
-
84867916208
-
Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses
-
Christie D.A., et al. Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses. J. Immunol. 2012, 189:4349-4360.
-
(2012)
J. Immunol.
, vol.189
, pp. 4349-4360
-
-
Christie, D.A.1
-
47
-
-
84929222831
-
Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function
-
Mitsopoulos P., et al. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol. Cell. Biol. 2015, 35:1838-1847.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 1838-1847
-
-
Mitsopoulos, P.1
-
48
-
-
84911958739
-
MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria
-
Lee J.Y., et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J. Cell Sci. 2014, 127:4954-4963.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4954-4963
-
-
Lee, J.Y.1
-
49
-
-
84863011641
-
Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
-
Jheng H.F., et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell. Biol. 2012, 32:309-319.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 309-319
-
-
Jheng, H.F.1
-
50
-
-
84884823792
-
Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance
-
Schneeberger M., et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 2013, 155:172-187.
-
(2013)
Cell
, vol.155
, pp. 172-187
-
-
Schneeberger, M.1
-
51
-
-
33644552417
-
Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology
-
Yu T., et al. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:2653-2658.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 2653-2658
-
-
Yu, T.1
-
52
-
-
84925755753
-
Mitochondrial control by DRP1 in brain tumor initiating cells
-
Xie Q., et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat. Neurosci. 2015, 18:501-510.
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 501-510
-
-
Xie, Q.1
-
53
-
-
84884877043
-
Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity
-
Dietrich M.O., et al. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 2013, 155:188-199.
-
(2013)
Cell
, vol.155
, pp. 188-199
-
-
Dietrich, M.O.1
-
54
-
-
24144462451
-
Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6
-
Bach D., et al. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 2005, 54:2685-2693.
-
(2005)
Diabetes
, vol.54
, pp. 2685-2693
-
-
Bach, D.1
-
55
-
-
84859107894
-
Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging
-
Yamaguchi J., et al. Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging. Transgenic Res. 2012, 21:439-447.
-
(2012)
Transgenic Res.
, vol.21
, pp. 439-447
-
-
Yamaguchi, J.1
-
56
-
-
84859448265
-
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
-
Sebastian D., et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5523-5528.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 5523-5528
-
-
Sebastian, D.1
-
57
-
-
84927633805
-
Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation
-
Touvier T., et al. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation. Cell Death Dis. 2015, 6:e1663.
-
(2015)
Cell Death Dis.
, vol.6
-
-
Touvier, T.1
-
58
-
-
80051667626
-
FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study
-
Suomalainen A., et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011, 10:806-818.
-
(2011)
Lancet Neurol.
, vol.10
, pp. 806-818
-
-
Suomalainen, A.1
-
59
-
-
84883271527
-
Mfn2 modulates the UPR and mitochondrial function via repression of PERK
-
Munoz J.P., et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 2013, 32:2348-2361.
-
(2013)
EMBO J.
, vol.32
, pp. 2348-2361
-
-
Munoz, J.P.1
-
60
-
-
84892600839
-
Mitochondrial form and function
-
Friedman J.R., Nunnari J. Mitochondrial form and function. Nature 2014, 505:335-343.
-
(2014)
Nature
, vol.505
, pp. 335-343
-
-
Friedman, J.R.1
Nunnari, J.2
-
61
-
-
84944554813
-
Hepatic insulin resistance and increased hepatic glucose production in mice lacking Fgf21
-
Camporez J., et al. Hepatic insulin resistance and increased hepatic glucose production in mice lacking Fgf21. J. Endocrinol. 2015, 226:207-217.
-
(2015)
J. Endocrinol.
, vol.226
, pp. 207-217
-
-
Camporez, J.1
-
62
-
-
84881508008
-
The starvation hormone, fibroblast growth factor-21, extends lifespan in mice
-
Zhang Y., et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 2012, 1:e00065.
-
(2012)
Elife
, vol.1
-
-
Zhang, Y.1
-
63
-
-
79959910616
-
The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells
-
Zhang Z., et al. The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Mol. Biol. Cell 2011, 22:2235-2245.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2235-2245
-
-
Zhang, Z.1
-
64
-
-
20244381365
-
Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
-
Delettre C., et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 2000, 26:207-210.
-
(2000)
Nat. Genet.
, vol.26
, pp. 207-210
-
-
Delettre, C.1
-
65
-
-
2442589922
-
Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
-
Zuchner S., et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 2004, 36:449-451.
-
(2004)
Nat. Genet.
, vol.36
, pp. 449-451
-
-
Zuchner, S.1
-
66
-
-
84938271321
-
Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder
-
Abrams A.J., et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat. Genet. 2015, 47:926-932.
-
(2015)
Nat. Genet.
, vol.47
, pp. 926-932
-
-
Abrams, A.J.1
-
67
-
-
84924385915
-
Hypothalamic POMC neurons promote cannabinoid-induced feeding
-
Koch M., et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 2015, 519:45-50.
-
(2015)
Nature
, vol.519
, pp. 45-50
-
-
Koch, M.1
-
68
-
-
84898612040
-
Dynamic survey of mitochondria by ubiquitin
-
Escobar-Henriques M., Langer T. Dynamic survey of mitochondria by ubiquitin. EMBO Rep. 2014, 15:231-243.
-
(2014)
EMBO Rep.
, vol.15
, pp. 231-243
-
-
Escobar-Henriques, M.1
Langer, T.2
-
69
-
-
84923167247
-
USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
-
Cunningham C.N., et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 2015, 17:160-169.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 160-169
-
-
Cunningham, C.N.1
-
70
-
-
84928924502
-
USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death
-
Liang J.R., et al. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep. 2015, 16:618-627.
-
(2015)
EMBO Rep.
, vol.16
, pp. 618-627
-
-
Liang, J.R.1
-
71
-
-
84865395988
-
Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis
-
Leboucher G.P., et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol. Cell 2012, 47:547-557.
-
(2012)
Mol. Cell
, vol.47
, pp. 547-557
-
-
Leboucher, G.P.1
-
72
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183:795-803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
-
73
-
-
84899148319
-
Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis
-
Li J., et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol. Cell. Biol. 2014, 34:1788-1799.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 1788-1799
-
-
Li, J.1
-
74
-
-
56349087120
-
Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta
-
Liesa M., et al. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS ONE 2008, 3:e3613.
-
(2008)
PLoS ONE
, vol.3
-
-
Liesa, M.1
-
75
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127:1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
-
76
-
-
84876886863
-
The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
-
Muller-Rischart A.K., et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 2013, 49:908-921.
-
(2013)
Mol. Cell
, vol.49
, pp. 908-921
-
-
Muller-Rischart, A.K.1
-
77
-
-
80053539605
-
NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
-
Mauro C., et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell. Biol. 2011, 13:1272-1279.
-
(2011)
Nat. Cell. Biol.
, vol.13
, pp. 1272-1279
-
-
Mauro, C.1
-
78
-
-
84891801047
-
Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway
-
Parra V., et al. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes 2014, 63:75-88.
-
(2014)
Diabetes
, vol.63
, pp. 75-88
-
-
Parra, V.1
-
79
-
-
84904726166
-
Mitochondrial hyperfusion promotes NF-kappaB activation via the mitochondrial E3 ligase MULAN
-
Zemirli N., et al. Mitochondrial hyperfusion promotes NF-kappaB activation via the mitochondrial E3 ligase MULAN. FEBS J. 2014, 281:3095-3112.
-
(2014)
FEBS J.
, vol.281
, pp. 3095-3112
-
-
Zemirli, N.1
-
80
-
-
78651232227
-
MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1
-
Wang J.X., et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 2011, 17:71-78.
-
(2011)
Nat. Med.
, vol.17
, pp. 71-78
-
-
Wang, J.X.1
-
81
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282:11521-11529.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11521-11529
-
-
Taguchi, N.1
-
82
-
-
84924761433
-
Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth
-
Kashatus J.A., et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 2015, 57:537-551.
-
(2015)
Mol. Cell
, vol.57
, pp. 537-551
-
-
Kashatus, J.A.1
-
83
-
-
84954527661
-
Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein
-
Published online November 12, 2015
-
Xu S., et al. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 2015, Published online November 12, 2015. 10.1091/mbc.E15-09-0678.
-
(2015)
Mol. Biol. Cell
-
-
Xu, S.1
-
84
-
-
76649142385
-
Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1
-
Park Y.Y., et al. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123:619-626.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 619-626
-
-
Park, Y.Y.1
-
85
-
-
67650076601
-
MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission
-
Braschi E., et al. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 2009, 10:748-754.
-
(2009)
EMBO Rep.
, vol.10
, pp. 748-754
-
-
Braschi, E.1
-
86
-
-
67650534951
-
Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis
-
Zunino R., et al. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J. Biol. Chem. 2009, 284:17783-17795.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 17783-17795
-
-
Zunino, R.1
|