메뉴 건너뛰기




Volumn 27, Issue 2, 2016, Pages 105-117

Mitochondrial Dynamics and Metabolic Regulation

Author keywords

Fission; Fusion; Metabolism; Mitochondria; Mitochondrial dynamics

Indexed keywords

MITOCHONDRIAL PROTEIN; MITOFUSIN 1; MITOFUSIN 2; PHOSPHOLIPID;

EID: 84958850926     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.12.001     Document Type: Review
Times cited : (973)

References (86)
  • 1
    • 84869051280 scopus 로고    scopus 로고
    • Mitochondrial disorders as windows into an ancient organelle
    • Vafai S.B., Mootha V.K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491:374-383.
    • (2012) Nature , vol.491 , pp. 374-383
    • Vafai, S.B.1    Mootha, V.K.2
  • 2
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17:491-506.
    • (2013) Cell Metab. , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 3
    • 84865544952 scopus 로고    scopus 로고
    • Mitochondrial fission, fusion, and stress
    • Youle R.J., van der Bliek A.M. Mitochondrial fission, fusion, and stress. Science 2012, 337:1062-1065.
    • (2012) Science , vol.337 , pp. 1062-1065
    • Youle, R.J.1    van der Bliek, A.M.2
  • 4
    • 0013936320 scopus 로고
    • Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria
    • Hackenbrock C.R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell Biol. 1966, 30:269-297.
    • (1966) J. Cell Biol. , vol.30 , pp. 269-297
    • Hackenbrock, C.R.1
  • 5
    • 84926258887 scopus 로고    scopus 로고
    • Disturbed mitochondrial dynamics and neurodegenerative disorders
    • Burte F., et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015, 11:11-24.
    • (2015) Nat. Rev. Neurol. , vol.11 , pp. 11-24
    • Burte, F.1
  • 6
    • 84910141948 scopus 로고    scopus 로고
    • Mitochondrial dynamics and inheritance during cell division, development and disease
    • Mishra P., Chan D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15:634-646.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 634-646
    • Mishra, P.1    Chan, D.C.2
  • 7
    • 0037455575 scopus 로고    scopus 로고
    • Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
    • Chen H., et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 2003, 160:189-200.
    • (2003) J. Cell Biol. , vol.160 , pp. 189-200
    • Chen, H.1
  • 8
    • 84905996534 scopus 로고    scopus 로고
    • Charcot-Marie-Tooth disease type 2A: from typical to rare phenotypic and genotypic features
    • Bombelli F., et al. Charcot-Marie-Tooth disease type 2A: from typical to rare phenotypic and genotypic features. JAMA Neurol. 2014, 71:1036-1042.
    • (2014) JAMA Neurol. , vol.71 , pp. 1036-1042
    • Bombelli, F.1
  • 9
    • 38349185051 scopus 로고    scopus 로고
    • Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A
    • Detmer S.A., et al. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum. Mol. Genet. 2008, 17:367-375.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 367-375
    • Detmer, S.A.1
  • 10
    • 84934441687 scopus 로고    scopus 로고
    • Mitochondrial dynamism and heart disease: changing shape and shaping change
    • Dorn G.W. Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Mol. Med. 2015, 7:865-877.
    • (2015) EMBO Mol. Med. , vol.7 , pp. 865-877
    • Dorn, G.W.1
  • 11
    • 84936139805 scopus 로고    scopus 로고
    • Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction
    • Zorzano A., Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front. Aging Neurosci. 2015, 7:101.
    • (2015) Front. Aging Neurosci. , vol.7 , pp. 101
    • Zorzano, A.1    Claret, M.2
  • 12
    • 33750526473 scopus 로고    scopus 로고
    • A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis
    • Choi S.Y., et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 2006, 8:1255-1262.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1255-1262
    • Choi, S.Y.1
  • 13
    • 79952509006 scopus 로고    scopus 로고
    • PiRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling
    • Huang H., et al. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 2011, 20:376-387.
    • (2011) Dev. Cell , vol.20 , pp. 376-387
    • Huang, H.1
  • 14
    • 79952525007 scopus 로고    scopus 로고
    • MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline
    • Watanabe T., et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 2011, 20:364-375.
    • (2011) Dev. Cell , vol.20 , pp. 364-375
    • Watanabe, T.1
  • 15
    • 84898995787 scopus 로고    scopus 로고
    • Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics
    • Baba T., et al. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J. Biol. Chem. 2014, 289:11497-11511.
    • (2014) J. Biol. Chem. , vol.289 , pp. 11497-11511
    • Baba, T.1
  • 16
    • 84940403792 scopus 로고    scopus 로고
    • Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission
    • Stepanyants N., et al. Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol. Biol. Cell 2015, 26:3104-3416.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 3104-3416
    • Stepanyants, N.1
  • 17
    • 84896264348 scopus 로고    scopus 로고
    • The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
    • Anand R., et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204:919-999.
    • (2014) J. Cell Biol. , vol.204 , pp. 919-999
    • Anand, R.1
  • 18
    • 33746299692 scopus 로고    scopus 로고
    • Regulation of mitochondrial morphology through proteolytic cleavage of OPA1
    • Ishihara N., et al. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006, 25:2966-2977.
    • (2006) EMBO J. , vol.25 , pp. 2966-2977
    • Ishihara, N.1
  • 19
    • 84871821553 scopus 로고    scopus 로고
    • Proteolytic control of mitochondrial function and morphogenesis
    • Anand R., et al. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833:195-204.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 195-204
    • Anand, R.1
  • 20
    • 84920187098 scopus 로고    scopus 로고
    • Improved locus-specific database for OPA1 mutations allows inclusion of advanced clinical data
    • Ferre M., et al. Improved locus-specific database for OPA1 mutations allows inclusion of advanced clinical data. Hum. Mutat. 2015, 36:20-25.
    • (2015) Hum. Mutat. , vol.36 , pp. 20-25
    • Ferre, M.1
  • 21
    • 84878256159 scopus 로고    scopus 로고
    • OPA1 Mutation and Late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability
    • Chen L., et al. OPA1 Mutation and Late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J. Am. Heart Assoc. 2012, 1:e003012.
    • (2012) J. Am. Heart Assoc. , vol.1
    • Chen, L.1
  • 22
    • 84930607266 scopus 로고    scopus 로고
    • The opa1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage
    • Varanita T., et al. The opa1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 2015, 21:834-844.
    • (2015) Cell Metab. , vol.21 , pp. 834-844
    • Varanita, T.1
  • 23
    • 84930588143 scopus 로고    scopus 로고
    • Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models
    • Civiletto G., et al. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 2015, 21:845-854.
    • (2015) Cell Metab. , vol.21 , pp. 845-854
    • Civiletto, G.1
  • 24
    • 84908250304 scopus 로고    scopus 로고
    • Determinants and functions of mitochondrial behavior
    • Labbe K., et al. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 2014, 30:357-391.
    • (2014) Annu. Rev. Cell Dev. Biol. , vol.30 , pp. 357-391
    • Labbe, K.1
  • 25
    • 80054844842 scopus 로고    scopus 로고
    • ER tubules mark sites of mitochondrial division
    • Friedman J.R., et al. ER tubules mark sites of mitochondrial division. Science 2011, 334:358-362.
    • (2011) Science , vol.334 , pp. 358-362
    • Friedman, J.R.1
  • 26
    • 78650987611 scopus 로고    scopus 로고
    • Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission
    • Mears J.A., et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 2011, 18:20-26.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 20-26
    • Mears, J.A.1
  • 27
    • 84878918809 scopus 로고    scopus 로고
    • Mechanisms of mitochondrial fission and fusion
    • van der Bliek A.M., et al. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 2013, 5:a011072.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a011072
    • van der Bliek, A.M.1
  • 28
    • 34247525092 scopus 로고    scopus 로고
    • A lethal defect of mitochondrial and peroxisomal fission
    • Waterham H.R., et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 2007, 356:1736-1741.
    • (2007) N. Engl. J. Med. , vol.356 , pp. 1736-1741
    • Waterham, H.R.1
  • 29
    • 84961113442 scopus 로고    scopus 로고
    • Proliferation and fission of peroxisomes - an update
    • Published online September 26, 2015
    • Schrader M., et al. Proliferation and fission of peroxisomes - an update. Biochim. Biophys. Acta 2015, Published online September 26, 2015. 10.1016/j.bbamcr.2015.09.024.
    • (2015) Biochim. Biophys. Acta
    • Schrader, M.1
  • 30
    • 68249087424 scopus 로고    scopus 로고
    • Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice
    • Ishihara N., et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature 2009, 11:958-966.
    • (2009) Nature , vol.11 , pp. 958-966
    • Ishihara, N.1
  • 31
    • 84920872756 scopus 로고    scopus 로고
    • The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble
    • Dorn G.W., Kitsis R.N. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ. Res. 2015, 116:167-182.
    • (2015) Circ. Res. , vol.116 , pp. 167-182
    • Dorn, G.W.1    Kitsis, R.N.2
  • 32
    • 84908326342 scopus 로고    scopus 로고
    • Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles
    • Udagawa O., et al. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr. Biol. 2014, 24:2451-2458.
    • (2014) Curr. Biol. , vol.24 , pp. 2451-2458
    • Udagawa, O.1
  • 33
    • 84942195533 scopus 로고    scopus 로고
    • Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
    • Wang L., et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia 2015, 58:2371-2380.
    • (2015) Diabetologia , vol.58 , pp. 2371-2380
    • Wang, L.1
  • 34
    • 84898603457 scopus 로고    scopus 로고
    • Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics
    • Baker M.J., et al. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 2014, 33:578-593.
    • (2014) EMBO J. , vol.33 , pp. 578-593
    • Baker, M.J.1
  • 35
    • 84897538678 scopus 로고    scopus 로고
    • Proteolytic cleavage of opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
    • Mishra P., et al. Proteolytic cleavage of opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 2014, 19:630-641.
    • (2014) Cell Metab. , vol.19 , pp. 630-641
    • Mishra, P.1
  • 36
    • 84924853843 scopus 로고    scopus 로고
    • YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress
    • Rainbolt T.K., et al. YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress. EMBO Rep. 2015, 16:97-106.
    • (2015) EMBO Rep. , vol.16 , pp. 97-106
    • Rainbolt, T.K.1
  • 37
    • 0042526632 scopus 로고    scopus 로고
    • Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA
    • Herlan M., et al. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 2003, 278:27781-27788.
    • (2003) J. Biol. Chem. , vol.278 , pp. 27781-27788
    • Herlan, M.1
  • 38
    • 0043095416 scopus 로고    scopus 로고
    • Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion
    • Sesaki H., et al. Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion. Biochem. Biophys. Res. Commun. 2003, 308:276-283.
    • (2003) Biochem. Biophys. Res. Commun. , vol.308 , pp. 276-283
    • Sesaki, H.1
  • 39
    • 84930040430 scopus 로고    scopus 로고
    • New roles for mitochondrial proteases in health, ageing and disease
    • Quiros P.M., et al. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16:345-359.
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 345-359
    • Quiros, P.M.1
  • 40
    • 3843125367 scopus 로고    scopus 로고
    • Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis
    • Tondera D. Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J. Biol. Chem. 2004, 279:31544-31555.
    • (2004) J. Biol. Chem. , vol.279 , pp. 31544-31555
    • Tondera, D.1
  • 41
    • 23844539004 scopus 로고    scopus 로고
    • The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells
    • Tondera D. The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci. 2005, 118:3049-3059.
    • (2005) J. Cell Sci. , vol.118 , pp. 3049-3059
    • Tondera, D.1
  • 42
    • 34047173074 scopus 로고    scopus 로고
    • Mitochondrial bioenergetics and structural network organization
    • Benard G., et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 2007, 120:838-848.
    • (2007) J. Cell Sci. , vol.120 , pp. 838-848
    • Benard, G.1
  • 43
    • 67049089786 scopus 로고    scopus 로고
    • SLP-2 is required for stress-induced mitochondrial hyperfusion
    • Tondera D., et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 2009, 28:1589-1600.
    • (2009) EMBO J. , vol.28 , pp. 1589-1600
    • Tondera, D.1
  • 44
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10190-10195.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 10190-10195
    • Rambold, A.S.1
  • 45
    • 80051752834 scopus 로고    scopus 로고
    • Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy
    • Gomes L.C., et al. Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle 2011, 10:2635-2639.
    • (2011) Cell Cycle , vol.10 , pp. 2635-2639
    • Gomes, L.C.1
  • 46
    • 84867916208 scopus 로고    scopus 로고
    • Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses
    • Christie D.A., et al. Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses. J. Immunol. 2012, 189:4349-4360.
    • (2012) J. Immunol. , vol.189 , pp. 4349-4360
    • Christie, D.A.1
  • 47
    • 84929222831 scopus 로고    scopus 로고
    • Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function
    • Mitsopoulos P., et al. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol. Cell. Biol. 2015, 35:1838-1847.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 1838-1847
    • Mitsopoulos, P.1
  • 48
    • 84911958739 scopus 로고    scopus 로고
    • MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria
    • Lee J.Y., et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J. Cell Sci. 2014, 127:4954-4963.
    • (2014) J. Cell Sci. , vol.127 , pp. 4954-4963
    • Lee, J.Y.1
  • 49
    • 84863011641 scopus 로고    scopus 로고
    • Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
    • Jheng H.F., et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell. Biol. 2012, 32:309-319.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 309-319
    • Jheng, H.F.1
  • 50
    • 84884823792 scopus 로고    scopus 로고
    • Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance
    • Schneeberger M., et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 2013, 155:172-187.
    • (2013) Cell , vol.155 , pp. 172-187
    • Schneeberger, M.1
  • 51
    • 33644552417 scopus 로고    scopus 로고
    • Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology
    • Yu T., et al. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:2653-2658.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 2653-2658
    • Yu, T.1
  • 52
    • 84925755753 scopus 로고    scopus 로고
    • Mitochondrial control by DRP1 in brain tumor initiating cells
    • Xie Q., et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat. Neurosci. 2015, 18:501-510.
    • (2015) Nat. Neurosci. , vol.18 , pp. 501-510
    • Xie, Q.1
  • 53
    • 84884877043 scopus 로고    scopus 로고
    • Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity
    • Dietrich M.O., et al. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 2013, 155:188-199.
    • (2013) Cell , vol.155 , pp. 188-199
    • Dietrich, M.O.1
  • 54
    • 24144462451 scopus 로고    scopus 로고
    • Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6
    • Bach D., et al. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 2005, 54:2685-2693.
    • (2005) Diabetes , vol.54 , pp. 2685-2693
    • Bach, D.1
  • 55
    • 84859107894 scopus 로고    scopus 로고
    • Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging
    • Yamaguchi J., et al. Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging. Transgenic Res. 2012, 21:439-447.
    • (2012) Transgenic Res. , vol.21 , pp. 439-447
    • Yamaguchi, J.1
  • 56
    • 84859448265 scopus 로고    scopus 로고
    • Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
    • Sebastian D., et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5523-5528.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 5523-5528
    • Sebastian, D.1
  • 57
    • 84927633805 scopus 로고    scopus 로고
    • Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation
    • Touvier T., et al. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation. Cell Death Dis. 2015, 6:e1663.
    • (2015) Cell Death Dis. , vol.6
    • Touvier, T.1
  • 58
    • 80051667626 scopus 로고    scopus 로고
    • FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study
    • Suomalainen A., et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011, 10:806-818.
    • (2011) Lancet Neurol. , vol.10 , pp. 806-818
    • Suomalainen, A.1
  • 59
    • 84883271527 scopus 로고    scopus 로고
    • Mfn2 modulates the UPR and mitochondrial function via repression of PERK
    • Munoz J.P., et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 2013, 32:2348-2361.
    • (2013) EMBO J. , vol.32 , pp. 2348-2361
    • Munoz, J.P.1
  • 60
    • 84892600839 scopus 로고    scopus 로고
    • Mitochondrial form and function
    • Friedman J.R., Nunnari J. Mitochondrial form and function. Nature 2014, 505:335-343.
    • (2014) Nature , vol.505 , pp. 335-343
    • Friedman, J.R.1    Nunnari, J.2
  • 61
    • 84944554813 scopus 로고    scopus 로고
    • Hepatic insulin resistance and increased hepatic glucose production in mice lacking Fgf21
    • Camporez J., et al. Hepatic insulin resistance and increased hepatic glucose production in mice lacking Fgf21. J. Endocrinol. 2015, 226:207-217.
    • (2015) J. Endocrinol. , vol.226 , pp. 207-217
    • Camporez, J.1
  • 62
    • 84881508008 scopus 로고    scopus 로고
    • The starvation hormone, fibroblast growth factor-21, extends lifespan in mice
    • Zhang Y., et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 2012, 1:e00065.
    • (2012) Elife , vol.1
    • Zhang, Y.1
  • 63
    • 79959910616 scopus 로고    scopus 로고
    • The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells
    • Zhang Z., et al. The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Mol. Biol. Cell 2011, 22:2235-2245.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 2235-2245
    • Zhang, Z.1
  • 64
    • 20244381365 scopus 로고    scopus 로고
    • Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
    • Delettre C., et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 2000, 26:207-210.
    • (2000) Nat. Genet. , vol.26 , pp. 207-210
    • Delettre, C.1
  • 65
    • 2442589922 scopus 로고    scopus 로고
    • Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
    • Zuchner S., et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 2004, 36:449-451.
    • (2004) Nat. Genet. , vol.36 , pp. 449-451
    • Zuchner, S.1
  • 66
    • 84938271321 scopus 로고    scopus 로고
    • Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder
    • Abrams A.J., et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat. Genet. 2015, 47:926-932.
    • (2015) Nat. Genet. , vol.47 , pp. 926-932
    • Abrams, A.J.1
  • 67
    • 84924385915 scopus 로고    scopus 로고
    • Hypothalamic POMC neurons promote cannabinoid-induced feeding
    • Koch M., et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 2015, 519:45-50.
    • (2015) Nature , vol.519 , pp. 45-50
    • Koch, M.1
  • 68
    • 84898612040 scopus 로고    scopus 로고
    • Dynamic survey of mitochondria by ubiquitin
    • Escobar-Henriques M., Langer T. Dynamic survey of mitochondria by ubiquitin. EMBO Rep. 2014, 15:231-243.
    • (2014) EMBO Rep. , vol.15 , pp. 231-243
    • Escobar-Henriques, M.1    Langer, T.2
  • 69
    • 84923167247 scopus 로고    scopus 로고
    • USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
    • Cunningham C.N., et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 2015, 17:160-169.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 160-169
    • Cunningham, C.N.1
  • 70
    • 84928924502 scopus 로고    scopus 로고
    • USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death
    • Liang J.R., et al. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep. 2015, 16:618-627.
    • (2015) EMBO Rep. , vol.16 , pp. 618-627
    • Liang, J.R.1
  • 71
    • 84865395988 scopus 로고    scopus 로고
    • Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis
    • Leboucher G.P., et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol. Cell 2012, 47:547-557.
    • (2012) Mol. Cell , vol.47 , pp. 547-557
    • Leboucher, G.P.1
  • 72
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183:795-803.
    • (2008) J. Cell Biol. , vol.183 , pp. 795-803
    • Narendra, D.1
  • 73
    • 84899148319 scopus 로고    scopus 로고
    • Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis
    • Li J., et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol. Cell. Biol. 2014, 34:1788-1799.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 1788-1799
    • Li, J.1
  • 74
    • 56349087120 scopus 로고    scopus 로고
    • Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta
    • Liesa M., et al. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS ONE 2008, 3:e3613.
    • (2008) PLoS ONE , vol.3
    • Liesa, M.1
  • 75
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
    • Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127:1109-1122.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 76
    • 84876886863 scopus 로고    scopus 로고
    • The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
    • Muller-Rischart A.K., et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 2013, 49:908-921.
    • (2013) Mol. Cell , vol.49 , pp. 908-921
    • Muller-Rischart, A.K.1
  • 77
    • 80053539605 scopus 로고    scopus 로고
    • NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
    • Mauro C., et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell. Biol. 2011, 13:1272-1279.
    • (2011) Nat. Cell. Biol. , vol.13 , pp. 1272-1279
    • Mauro, C.1
  • 78
    • 84891801047 scopus 로고    scopus 로고
    • Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway
    • Parra V., et al. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes 2014, 63:75-88.
    • (2014) Diabetes , vol.63 , pp. 75-88
    • Parra, V.1
  • 79
    • 84904726166 scopus 로고    scopus 로고
    • Mitochondrial hyperfusion promotes NF-kappaB activation via the mitochondrial E3 ligase MULAN
    • Zemirli N., et al. Mitochondrial hyperfusion promotes NF-kappaB activation via the mitochondrial E3 ligase MULAN. FEBS J. 2014, 281:3095-3112.
    • (2014) FEBS J. , vol.281 , pp. 3095-3112
    • Zemirli, N.1
  • 80
    • 78651232227 scopus 로고    scopus 로고
    • MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1
    • Wang J.X., et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 2011, 17:71-78.
    • (2011) Nat. Med. , vol.17 , pp. 71-78
    • Wang, J.X.1
  • 81
    • 34249689057 scopus 로고    scopus 로고
    • Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
    • Taguchi N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282:11521-11529.
    • (2007) J. Biol. Chem. , vol.282 , pp. 11521-11529
    • Taguchi, N.1
  • 82
    • 84924761433 scopus 로고    scopus 로고
    • Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth
    • Kashatus J.A., et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 2015, 57:537-551.
    • (2015) Mol. Cell , vol.57 , pp. 537-551
    • Kashatus, J.A.1
  • 83
    • 84954527661 scopus 로고    scopus 로고
    • Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein
    • Published online November 12, 2015
    • Xu S., et al. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 2015, Published online November 12, 2015. 10.1091/mbc.E15-09-0678.
    • (2015) Mol. Biol. Cell
    • Xu, S.1
  • 84
    • 76649142385 scopus 로고    scopus 로고
    • Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1
    • Park Y.Y., et al. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123:619-626.
    • (2010) J. Cell Sci. , vol.123 , pp. 619-626
    • Park, Y.Y.1
  • 85
    • 67650076601 scopus 로고    scopus 로고
    • MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission
    • Braschi E., et al. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 2009, 10:748-754.
    • (2009) EMBO Rep. , vol.10 , pp. 748-754
    • Braschi, E.1
  • 86
    • 67650534951 scopus 로고    scopus 로고
    • Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis
    • Zunino R., et al. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J. Biol. Chem. 2009, 284:17783-17795.
    • (2009) J. Biol. Chem. , vol.284 , pp. 17783-17795
    • Zunino, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.