메뉴 건너뛰기




Volumn 18, Issue 26, 2012, Pages 3853-3873

Pharmacological control of autophagy: Therapeutic perspectives in inflammatory bowel disease and colorectal cancer

Author keywords

AMP dependent kinase; Autophagy; Colorectal cancer; Endoplasmic Reticulum stress; Inflammatory bowel disease; Mammalian target of rapamycin

Indexed keywords

ACTIVATED TRANSCRIPTION FACTOR 6; AUTOPHAGY RELATED PROTEIN 16; BAFILOMYCIN A1; BECLIN 1; CASPASE RECRUITMENT DOMAIN PROTEIN 15; CETUXIMAB; CYTOKINE; EVEROLIMUS; FLUOROURACIL; GENISTEIN; HISTONE DEACETYLASE INHIBITOR; HYDROXYCHLOROQUINE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; INOSITOL REQUIRING TRANSMEMBRANE KINASE ENDORIBONUCLEASE 1; IRINOTECAN; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PANCREATIC ER KINASE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEASOME INHIBITOR; PROTEIN; PROTEIN BCL 2; PROTEIN P53; RAPAMYCIN; RAPAMYCIN DERIVATIVE; SIRTUIN; TEMSIROLIMUS; UNCLASSIFIED DRUG; UNINDEXED DRUG; ZOTAROLIMUS;

EID: 84864544220     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/138161212802083653     Document Type: Review
Times cited : (36)

References (316)
  • 1
    • 0026668042 scopus 로고
    • Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
    • Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 1992; 119: 301-11.
    • (1992) J Cell Biol , vol.119 , pp. 301-311
    • Takeshige, K.1    Baba, M.2    Tsuboi, S.3    Noda, T.4    Ohsumi, Y.5
  • 2
    • 0037005133 scopus 로고    scopus 로고
    • Autophagy in yeast: A review of the molecular machinery
    • Huang WP, Klionsky DJ. Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 2002; 27: 409-20.
    • (2002) Cell Struct Funct , vol.27 , pp. 409-420
    • Huang, W.P.1    Klionsky, D.J.2
  • 3
    • 61949303657 scopus 로고    scopus 로고
    • Autophagy in Caenorhabditis elegans
    • Sigmond T, Barna J, Tóth ML, et al. Autophagy in Caenorhabditis elegans. Methods Enzymol 2008; 451: 521-40.
    • (2008) Methods Enzymol , vol.451 , pp. 521-540
    • Sigmond, T.1    Barna, J.2    Tóth, M.L.3
  • 4
    • 77953713630 scopus 로고    scopus 로고
    • C. elegans screen identifies autophagy genes specific to multicellular organisms
    • Tian Y, Li Z, Hu W, et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 2010; 141: 1042-55.
    • (2010) Cell , vol.141 , pp. 1042-1055
    • Tian, Y.1    Li, Z.2    Hu, W.3
  • 5
    • 0041411115 scopus 로고    scopus 로고
    • Autophagic programmed cell death in Drosophila
    • Baehrecke EH. Autophagic programmed cell death in Drosophila. Cell Death Differ 2003; 10: 940-5.
    • (2003) Cell Death Differ , vol.10 , pp. 940-945
    • Baehrecke, E.H.1
  • 7
    • 0033791650 scopus 로고    scopus 로고
    • Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells
    • Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 2000; 69: 303-42.
    • (2000) Annu Rev Biochem , vol.69 , pp. 303-342
    • Kim, J.1    Klionsky, D.J.2
  • 8
    • 77951911179 scopus 로고    scopus 로고
    • Regulation of autophagy in mammals and its interplay with apoptosis
    • Fimia GM, Piacentini M. Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 2010; 67: 1581-8.
    • (2010) Cell Mol Life Sci , vol.67 , pp. 1581-1588
    • Fimia, G.M.1    Piacentini, M.2
  • 9
    • 69349103147 scopus 로고    scopus 로고
    • Function and regulation of macroautophagy in plants
    • Bassham DC. Function and regulation of macroautophagy in plants. Biochim Biophys Acta 2009; 1793: 1397-403.
    • (2009) Biochim Biophys Acta , vol.1793 , pp. 1397-1403
    • Bassham, D.C.1
  • 10
    • 77950467093 scopus 로고    scopus 로고
    • Autophagy in plants and phytopathogens
    • Yoshimoto K, Takano Y, Sakai Y. Autophagy in plants and phytopathogens. FEBS Lett 2010; 584: 1350-8.
    • (2010) FEBS Lett , vol.584 , pp. 1350-1358
    • Yoshimoto, K.1    Takano, Y.2    Sakai, Y.3
  • 11
    • 10744225487 scopus 로고    scopus 로고
    • A unified nomenclature for yeast autophagy-related genes
    • Klionsky DJ, Cregg JM, Dunn WA, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5: 539-45.
    • (2003) Dev Cell , vol.5 , pp. 539-545
    • Klionsky, D.J.1    Cregg, J.M.2    Dunn, W.A.3
  • 12
    • 74949090299 scopus 로고    scopus 로고
    • An overview of the molecular mechanism of autophagy
    • Yan Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009; 335: 1-32.
    • (2009) Curr Top Microbiol Immunol , vol.335 , pp. 1-32
    • Yan, Z.1    Klionsky, D.J.2
  • 14
    • 77953724901 scopus 로고    scopus 로고
    • A comprehensive glossary of autophagy-related molecules and processes
    • Klionsky DJ, Codogno P, Cuervo AM, et al. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 2010; 6: 438-48.
    • (2010) Autophagy , vol.6 , pp. 438-448
    • Klionsky, D.J.1    Codogno, P.2    Cuervo, A.M.3
  • 15
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466: 68-76.
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3    Harper, J.W.4
  • 17
    • 65249119430 scopus 로고    scopus 로고
    • Nutrientdependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, et al. Nutrientdependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20: 1981-91.
    • (2009) Mol Biol Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3
  • 18
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20: 1992-2003.
    • (2009) Mol Biol Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3
  • 19
    • 67549110195 scopus 로고    scopus 로고
    • A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
    • Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 2009; 5: 649-62.
    • (2009) Autophagy , vol.5 , pp. 649-662
    • Mercer, C.A.1    Kaliappan, A.2    Dennis, P.B.3
  • 20
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg/ULK1 complex in autophagy regulation
    • Mizushima N. The role of the Atg/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22, 132-9.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 21
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
    • Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010; 6: 764-76.
    • (2010) Autophagy , vol.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 22
    • 77953543377 scopus 로고    scopus 로고
    • The Beclin1-VPS34 complex-at the crossroads of autophagy and beyond
    • Funderburk SF, Wang QJ, Yue Z. The Beclin1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol 2010; 20: 355-62.
    • (2010) Trends Cell Biol , vol.20 , pp. 355-362
    • Funderburk, S.F.1    Wang, Q.J.2    Yue, Z.3
  • 23
    • 35348886043 scopus 로고    scopus 로고
    • Physiological functions of Atg6/Beclin 1: A unique autophagy-related protein
    • Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 2007; 17: 839-49.
    • (2007) Cell Res , vol.17 , pp. 839-849
    • Cao, Y.1    Klionsky, D.J.2
  • 24
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yan Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Cur Opin Cell Biol 2010; 22: 124-31.
    • (2010) Cur Opin Cell Biol , vol.22 , pp. 124-131
    • Yan, Z.1    Klionsky, D.J.2
  • 25
    • 0035286734 scopus 로고    scopus 로고
    • Molecular dissection of autophagy: Two ubiquitin-like systems
    • Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001; 2: 211-6.
    • (2001) Nat Rev Mol Cell Biol , vol.2 , pp. 211-216
    • Ohsumi, Y.1
  • 26
    • 0037166241 scopus 로고    scopus 로고
    • Formation of the -350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
    • Kuma A, Mizushima N, Ishihara N, Ohshumi Y. Formation of the -350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002; 277: 18619-25.
    • (2002) J Biol Chem , vol.277 , pp. 18619-18625
    • Kuma, A.1    Mizushima, N.2    Ishihara, N.3    Ohshumi, Y.4
  • 27
    • 0032545292 scopus 로고    scopus 로고
    • A new protein conjugation system in human the counterpart of the yeast Apg12p conjugation system essential for autophagy
    • Mizushima N, Sugita H, Yoshimori T, Ohsumi Y. A new protein conjugation system in human the counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 1998; 273: 33889-92.
    • (1998) J Biol Chem , vol.273 , pp. 33889-33892
    • Mizushima, N.1    Sugita, H.2    Yoshimori, T.3    Ohsumi, Y.4
  • 28
    • 0038325675 scopus 로고    scopus 로고
    • Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate
    • Mizushima N, Kuma A, Kobayasi Y, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116: 1679-88.
    • (2003) J Cell Sci , vol.116 , pp. 1679-1688
    • Mizushima, N.1    Kuma, A.2    Kobayasi, Y.3
  • 29
    • 35848970794 scopus 로고    scopus 로고
    • Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn's disease
    • Massey DC, Parkes M. Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn's disease. Autophagy 2007; 3: 649-51.
    • (2007) Autophagy , vol.3 , pp. 649-651
    • Massey, D.C.1    Parkes, M.2
  • 30
    • 0035503594 scopus 로고    scopus 로고
    • The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
    • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Oshumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 2001; 20: 5971-81.
    • (2001) EMBO J , vol.20 , pp. 5971-5981
    • Suzuki, K.1    Kirisako, T.2    Kamada, Y.3    Mizushima, N.4    Noda, T.5    Oshumi, Y.6
  • 31
    • 38049098543 scopus 로고    scopus 로고
    • The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. EMBO J 2007; 282: 37298-302.
    • (2007) EMBO J , vol.282 , pp. 37298-37302
    • Hanada, T.1    Noda, N.N.2    Satomi, Y.3
  • 32
    • 43949143804 scopus 로고    scopus 로고
    • The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
    • Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 2008; 19: 2092-100.
    • (2008) Mol Biol Cell , vol.19 , pp. 2092-2100
    • Fujita, N.1    Itoh, T.2    Omori, H.3    Fukuda, M.4    Noda, T.5    Yoshimori, T.6
  • 33
    • 0032701984 scopus 로고    scopus 로고
    • Formation process of autophagosome is traced with Apg8/Aut7p in yeast
    • Kirisako T, Baba M, Ishihara N, et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 1999; 147: 435-46.
    • (1999) J Cell Biol , vol.147 , pp. 435-446
    • Kirisako, T.1    Baba, M.2    Ishihara, N.3
  • 34
    • 0034707036 scopus 로고    scopus 로고
    • A ubiquitin-like system mediates protein lipidation
    • Ichimura Y, Kirisako T, TakaoT, et al. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408: 488-92.
    • (2000) Nature , vol.408 , pp. 488-492
    • Ichimura, Y.1    Kirisako, T.2    Takao, T.3
  • 35
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720-8.
    • (2000) EMBO J , vol.19 , pp. 5720-5728
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3
  • 36
    • 0028289946 scopus 로고
    • Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B
    • Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 1994; 269: 11492-7.
    • (1994) J Biol Chem , vol.269 , pp. 11492-11497
    • Mann, S.S.1    Hammarback, J.A.2
  • 37
    • 38949108670 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
    • Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4: 151-75.
    • (2008) Autophagy , vol.4 , pp. 151-175
    • Klionsky, D.J.1    Abeliovich, H.2    Agostinis, P.3
  • 38
    • 34548082024 scopus 로고    scopus 로고
    • A cycling protein complex required for selective autophagy
    • Legakis JE, Yen WL, Klionsky DJ. A cycling protein complex required for selective autophagy. Autophagy 2007; 3: 422-32.
    • (2007) Autophagy , vol.3 , pp. 422-432
    • Legakis, J.E.1    Yen, W.L.2    Klionsky, D.J.3
  • 39
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. J Mol Cel 2010; 40: 280-93.
    • (2010) J Mol Cel , vol.40 , pp. 280-293
    • Kroemer, G.1    Mariño, G.2    Levine, B.3
  • 40
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30: 678-88.
    • (2008) Mol Cell , vol.30 , pp. 678-688
    • Wei, Y.1    Pattingre, S.2    Sinha, S.3    Bassik, M.4    Levine, B.5
  • 42
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4: 648-57.
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 43
    • 63849149937 scopus 로고    scopus 로고
    • LKB1 and AMP-activated protein kinase control of mTOR signalling and growth
    • Shaw R J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 2009; 196: 65-80.
    • (2009) Acta Physiol (Oxf) , vol.196 , pp. 65-80
    • Shaw, R.J.1
  • 44
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-26.
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 45
    • 33846189759 scopus 로고    scopus 로고
    • Control of macroautophagy by calcium, calmodulin-dependent kinase kinaseb, and Bcl-2
    • Høyer-Hansen M, Bastholm L, Szyniarowski P, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinaseb, and Bcl-2. Mol Cell 2007; 25: 193-205.
    • (2007) Mol Cell , vol.25 , pp. 193-205
    • Høyer-Hansen, M.1    Bastholm, L.2    Szyniarowski, P.3
  • 46
    • 62649146372 scopus 로고    scopus 로고
    • TAK1 activates AMPKdependent cytoprotective autophagy in TRAILtreated epithelial cells
    • Herrero-Martin G, Høyer-Hansen M, Garcia-Garcia C, et al. TAK1 activates AMPKdependent cytoprotective autophagy in TRAILtreated epithelial cells. EMBO J 2009; 28: 677-85.
    • (2009) EMBO J , vol.28 , pp. 677-685
    • Herrero-Martin, G.1    Høyer-Hansen, M.2    Garcia-Garcia, C.3
  • 47
    • 52149101812 scopus 로고    scopus 로고
    • Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
    • Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 2008; 15: 1572-81.
    • (2008) Cell Death Differ , vol.15 , pp. 1572-1581
    • Papandreou, I.1    Lim, A.L.2    Laderoute, K.3    Denko, N.C.4
  • 48
    • 79961118336 scopus 로고    scopus 로고
    • AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation
    • Shang L, Wang X. AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy 2011; 7: 924-6.
    • (2011) Autophagy , vol.7 , pp. 924-926
    • Shang, L.1    Wang, X.2
  • 49
    • 77953288455 scopus 로고    scopus 로고
    • Regulation of yeast sirtuins by NAD+ metabolism and calorie restriction
    • Lu SP, Lin SJ. Regulation of yeast sirtuins by NAD+ metabolism and calorie restriction. Biochim Biophys Acta 2010; 1804: 1567-75.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1567-1575
    • Lu, S.P.1    Lin, S.J.2
  • 50
    • 77953290752 scopus 로고    scopus 로고
    • SIRT1-dependent regulation of chromatin and transcription: Linking NAD+ metabolism and signalling to the con trol of cellular functions
    • Zhang T, Kraus WL. SIRT1-dependent regulation of chromatin and transcription: linking NAD+ metabolism and signalling to the con trol of cellular functions. Biochim Biophys Acta 2010; 1804: 1666-75.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1666-1675
    • Zhang, T.1    Kraus, W.L.2
  • 51
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458: 1056-60.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Cantó, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 52
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy
    • Lee IH, Cao L, Mostoslavsky R, et al. A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105: 3374-9.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 53
    • 55549096745 scopus 로고    scopus 로고
    • SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
    • Lan F, Caciedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008; 283: 27628-35.
    • (2008) J Biol Chem , vol.283 , pp. 27628-27635
    • Lan, F.1    Caciedo, J.M.2    Ruderman, N.3    Ido, Y.4
  • 56
    • 20444363122 scopus 로고    scopus 로고
    • The coordinate regulation ofthe p53 and mTOR pathways in cells
    • Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation ofthe p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 2005; 102: 8204-9.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 8204-8209
    • Feng, Z.1    Zhang, H.2    Levine, A.J.3    Jin, S.4
  • 57
    • 33745885329 scopus 로고    scopus 로고
    • DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
    • Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126: 121-34.
    • (2006) Cell , vol.126 , pp. 121-134
    • Crighton, D.1    Wilkinson, S.2    O'Prey, J.3
  • 58
    • 53649086181 scopus 로고    scopus 로고
    • Mutant p53 protein localized in the cytoplasm inhibits autophagy
    • Morselli E, Tasdemir E, Maiuri MC, et al. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 2008; 7: 3056-61.
    • (2008) Cell Cycle , vol.7 , pp. 3056-3061
    • Morselli, E.1    Tasdemir, E.2    Maiuri, M.C.3
  • 59
    • 44649141966 scopus 로고    scopus 로고
    • Regulation of autophagy by cytoplasmic p53
    • Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10: 676-87.
    • (2008) Nat Cell Biol , vol.10 , pp. 676-687
    • Tasdemir, E.1    Maiuri, M.C.2    Galluzzi, L.3
  • 60
    • 34249056243 scopus 로고    scopus 로고
    • p73 regulates DRAMindependent autophagy that does not contribute to programmed cell death
    • Crighton D, ÓPreyl JO, Bell HS, Ryan KM. p73 regulates DRAMindependent autophagy that does not contribute to programmed cell death. Cell Death Differ 2007; 14: 1071-9.
    • (2007) Cell Death Differ , vol.14 , pp. 1071-1079
    • Crighton, D.1    ÓPreyl, J.O.2    Bell, H.S.3    Ryan, K.M.4
  • 61
    • 59649114573 scopus 로고    scopus 로고
    • Autophagic clearance of aggregate-prone proteins associated with neurodegeneration
    • Sarkar S, Ravikumar B, Rubinsztein C. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Meth Enzymol 2009; 453: 83-110.
    • (2009) Meth Enzymol , vol.453 , pp. 83-110
    • Sarkar, S.1    Ravikumar, B.2    Rubinsztein, C.3
  • 62
    • 79960308079 scopus 로고    scopus 로고
    • Autophagy deregulation in neurodegenerative diseases-recent advances and future perspectives
    • Cheung ZH, Ip NY. Autophagy deregulation in neurodegenerative diseases-recent advances and future perspectives. J Neurochem 2011; 118: 317-25.
    • (2011) J Neurochem , vol.118 , pp. 317-325
    • Cheung, Z.H.1    Ip, N.Y.2
  • 63
    • 0442274441 scopus 로고    scopus 로고
    • Autophagic vacuolar myophaties
    • Nishino I. Autophagic vacuolar myophaties. Curr Neurol Neurosci Rep 2003; 3: 64-9.
    • (2003) Curr Neurol Neurosci Rep , vol.3 , pp. 64-69
    • Nishino, I.1
  • 64
    • 0442323561 scopus 로고    scopus 로고
    • Autophagy: In sickness and in health
    • Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004; 14: 70-7.
    • (2004) Trends Cell Biol , vol.14 , pp. 70-77
    • Cuervo, A.M.1
  • 65
    • 69349087479 scopus 로고    scopus 로고
    • Anti-and pro-tumor functions of autophagy
    • Morselli E, Galluzzi L, Kepp O, et al. Anti-and pro-tumor functions of autophagy. Biochim Biophys Acta 2009; 1793: 1524-32.
    • (2009) Biochim Biophys Acta , vol.1793 , pp. 1524-1532
    • Morselli, E.1    Galluzzi, L.2    Kepp, O.3
  • 66
    • 34548188741 scopus 로고    scopus 로고
    • Self-eating and self-killing: Crosstalk between autophagy and apoptosis
    • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741-52.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 741-752
    • Maiuri, M.C.1    Zalckvar, E.2    Kimchi, A.3    Kroemer, G.4
  • 67
    • 25444440875 scopus 로고    scopus 로고
    • The role of autophagy in cancer development and response to therapy
    • KondoY, Kanzawa T, Sawaya, Kondo S. The role of autophagy in cancer development and response to therapy. Nature Rev Cancer 2005; 5: 726-34.
    • (2005) Nature Rev Cancer , vol.5 , pp. 726-734
    • Kondo, Y.1    Kanzawa, T.2    Sawaya, K.S.3
  • 68
  • 70
    • 69949106925 scopus 로고    scopus 로고
    • The double-edged sword of autophagy modulation in cancer
    • White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009; 15: 5308-16.
    • (2009) Clin Cancer Res , vol.15 , pp. 5308-5316
    • White, E.1    DiPaola, R.S.2
  • 71
    • 78349266054 scopus 로고    scopus 로고
    • The autophagic tumor stroma model of cancer or "battery-operated tumor growth". A simple solution to the autophagy paradox
    • Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, et al. The autophagic tumor stroma model of cancer or "battery-operated tumor growth". A simple solution to the autophagy paradox. Cell Cycle 2010 9: 4297-306.
    • (2010) Cell Cycle , vol.9 , pp. 4297-4306
    • Martinez-Outschoorn, U.E.1    Whitaker-Menezes, D.2    Pavlides, S.3
  • 72
    • 77950509348 scopus 로고    scopus 로고
    • Autophagy and tumorigenesis
    • Chen N, Debnath J. Autophagy and tumorigenesis. FEBS Lett 2010; 584: 1427-35.
    • (2010) FEBS Lett , vol.584 , pp. 1427-1435
    • Chen, N.1    Debnath, J.2
  • 73
    • 80053575783 scopus 로고    scopus 로고
    • The multifaceted roles of autophagy in tumorsimplications for breast cancer
    • Debnath J. The multifaceted roles of autophagy in tumorsimplications for breast cancer. J Mammary Gland Biol Neoplasia 2011; 16: 173-87.
    • (2011) J Mammary Gland Biol Neoplasia , vol.16 , pp. 173-187
    • Debnath, J.1
  • 74
    • 0025167285 scopus 로고
    • Increased risk of largebowel cancer in Crohn's disease with colonic involvement
    • Ekbom A, Helmick C, Zack M, Adami H. Increased risk of largebowel cancer in Crohn's disease with colonic involvement. Lancet 1990; 336: 357-9.
    • (1990) Lancet , vol.336 , pp. 357-359
    • Ekbom, A.1    Helmick, C.2    Zack, M.3    Adami, H.4
  • 75
    • 77955279767 scopus 로고    scopus 로고
    • Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease
    • ÓConnor PM, Lapointe TK, Beck PL, et al. Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflamm Bowel Dis 2010; 16: 1411-20.
    • (2010) Inflamm Bowel Dis , vol.16 , pp. 1411-1420
    • ÓConnor, P.M.1    Lapointe, T.K.2    Beck, P.L.3
  • 76
    • 0026432216 scopus 로고
    • Inflammatory bowel disease
    • Podolsky DK. Inflammatory bowel disease. N Engl J Med 1991; 325: 928-37.
    • (1991) N Engl J Med , vol.325 , pp. 928-937
    • Podolsky, D.K.1
  • 77
    • 30344445931 scopus 로고    scopus 로고
    • Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities
    • Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12(Suppl 1): S3-S9.
    • (2006) Inflamm Bowel Dis , vol.12 , Issue.SUPPL. 1
    • Hanauer, S.B.1
  • 78
    • 60749115617 scopus 로고    scopus 로고
    • Recent advances in IBD pathogenesis: Genetics and immunology
    • Shih DQ, Targan SR, McGovern D. Recent advances in IBD pathogenesis: Genetics and immunology. Curr Gastroenterol Rep 2008; 10: 568-75.
    • (2008) Curr Gastroenterol Rep , vol.10 , pp. 568-575
    • Shih, D.Q.1    Targan, S.R.2    McGovern, D.3
  • 80
    • 79955555098 scopus 로고    scopus 로고
    • Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease
    • Kaser A, Blumberg RS. Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology 2011; 140: 1738-47.
    • (2011) Gastroenterology , vol.140 , pp. 1738-1747
    • Kaser, A.1    Blumberg, R.S.2
  • 81
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469: 323-35.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 82
    • 78650430453 scopus 로고    scopus 로고
    • Crohn disease. A current perspective on genetics, autophagy and immunity
    • Stappenbeck TS, Rioux JD, Mizoguchi A, et al. Crohn disease. A current perspective on genetics, autophagy and immunity. Autophagy 2011; 7: 355-74.
    • (2011) Autophagy , vol.7 , pp. 355-374
    • Stappenbeck, T.S.1    Rioux, J.D.2    Mizoguchi, A.3
  • 83
    • 79955564023 scopus 로고    scopus 로고
    • Intestinal inflammation and cancer
    • Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology 2011; 140: 1807-16.
    • (2011) Gastroenterology , vol.140 , pp. 1807-1816
    • Ullman, T.A.1    Itzkowitz, S.H.2
  • 84
    • 77954096426 scopus 로고    scopus 로고
    • A systems biology viewpoint on autophagy in health and disease
    • Huett A, Goel G, Xavier RJ. A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol 2010; 26: 302-9.
    • (2010) Curr Opin Gastroenterol , vol.26 , pp. 302-309
    • Huett, A.1    Goel, G.2    Xavier, R.J.3
  • 85
    • 50249086073 scopus 로고    scopus 로고
    • XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
    • Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008; 134: 743-56.
    • (2008) Cell , vol.134 , pp. 743-756
    • Kaser, A.1    Lee, A.H.2    Franke, A.3
  • 86
    • 33846627302 scopus 로고    scopus 로고
    • A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
    • Hampe A, Franke P, Rosential A, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39: 207-11.
    • (2007) Nat Genet , vol.39 , pp. 207-211
    • Hampe, A.1    Franke, P.2    Rosential, A.3
  • 87
    • 34548163868 scopus 로고    scopus 로고
    • Confirmation of the role of ATG16L1 as a Crohn's disease susceptibility gene
    • Cummings JRF, Pathan S, et al. Confirmation of the role of ATG16L1 as a Crohn's disease susceptibility gene. Inflamm Bowel Dis 2007; 13: 941-6.
    • (2007) Inflamm Bowel Dis , vol.13 , pp. 941-946
    • Cummings, J.R.F.1    Pathan, S.2
  • 88
    • 50449091647 scopus 로고    scopus 로고
    • Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease
    • McCarroll SA, Huett A, Kuballa SD, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet 2008; 40: 1107-12.
    • (2008) Nat Genet , vol.40 , pp. 1107-1112
    • McCarroll, S.A.1    Huett, A.2    Kuballa, S.D.3
  • 89
    • 33748506089 scopus 로고    scopus 로고
    • Human IRGM induces autophagy to eliminate intracellular mycobacteria
    • Singh SB, Davis. S, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313: 1438-41.
    • (2006) Science , vol.313 , pp. 1438-1441
    • Singh, S.B.1    Davis, S.2    Taylor, G.A.3    Deretic, V.4
  • 90
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008; 456: 264-8.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3
  • 91
    • 56249135538 scopus 로고    scopus 로고
    • A unique role for autophagy and Atg16L1 in Paneth cells in murine and human intestine
    • Cadwell K, Liu J, Brown S, et al. A unique role for autophagy and Atg16L1 in Paneth cells in murine and human intestine. Nature 2008; 456: 259-63.
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1    Liu, J.2    Brown, S.3
  • 92
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010; 16: 90-7.
    • (2010) Nat Med , vol.16 , pp. 90-97
    • Cooney, R.1    Baker, J.2    Brain, O.3
  • 93
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11: 55-62.
    • (2010) Nat Immunol , vol.11 , pp. 55-62
    • Travassos, L.H.1    Carneiro, L.A.2    Ramjeet, M.3
  • 94
    • 80052146101 scopus 로고    scopus 로고
    • The machinery of Nod-like receptors: Refining the paths to immunity and cell death
    • Saleh M. The machinery of Nod-like receptors: refining the paths to immunity and cell death. Immunol Rev 2011; 243: 235-46.
    • (2011) Immunol Rev , vol.243 , pp. 235-246
    • Saleh, M.1
  • 95
    • 33947134377 scopus 로고    scopus 로고
    • Autophagy-dependent viral recognition by plasmacytoid dendritic cells
    • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007; 315: 1398-401.
    • (2007) Science , vol.315 , pp. 1398-1401
    • Lee, H.K.1    Lund, J.M.2    Ramanathan, B.3    Mizushima, N.4    Iwasaki, A.5
  • 96
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007; 450: 1253-7.
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1    Dillon, C.P.2    Tait, S.W.3
  • 97
    • 77950362382 scopus 로고    scopus 로고
    • The inflammasomes
    • Schroder K, Tschopp J. The inflammasomes. Cell 2010; 140: 821-32.
    • (2010) Cell , vol.140 , pp. 821-832
    • Schroder, K.1    Tschopp, J.2
  • 98
    • 32944464648 scopus 로고    scopus 로고
    • Pathogen recognition and innate immunity
    • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124: 783-801.
    • (2006) Cell , vol.124 , pp. 783-801
    • Akira, S.1    Uematsu, S.2    Takeuchi, O.3
  • 99
    • 60749104683 scopus 로고    scopus 로고
    • The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis
    • Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10: 241-7.
    • (2009) Nat Immunol , vol.10 , pp. 241-247
    • Franchi, L.1    Eigenbrod, T.2    Munoz-Planillo, R.3    Nunez, G.4
  • 100
  • 101
    • 67650216238 scopus 로고    scopus 로고
    • Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes
    • Stephenson LM, Miller BC, Ng A, et al. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. Autophagy 2009; 5: 625-35.
    • (2009) Autophagy , vol.5 , pp. 625-635
    • Stephenson, L.M.1    Miller, B.C.2    Ng, A.3
  • 102
    • 62449110463 scopus 로고    scopus 로고
    • Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
    • Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA 2009; 106: 2770-5.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 2770-2775
    • Tal, M.C.1    Sasai, M.2    Lee, H.K.3    Yordy, B.4    Shadel, G.S.5    Iwasaki, A.6
  • 103
    • 62149128961 scopus 로고    scopus 로고
    • Death and resurrection of the human IRGM gene
    • Bekpen C, Marques-Bonet T, Alkan C, et al. Death and resurrection of the human IRGM gene. PLoS Genet 2009; 5: e1000403.
    • (2009) PLoS Genet , vol.5
    • Bekpen, C.1    Marques-Bonet, T.2    Alkan, C.3
  • 104
    • 67649607465 scopus 로고    scopus 로고
    • Autophagy, immunity, and microbial adaptations
    • Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 2009; 5: 527-49.
    • (2009) Cell Host Microbe , vol.5 , pp. 527-549
    • Deretic, V.1    Levine, B.2
  • 105
    • 38449097465 scopus 로고    scopus 로고
    • The IFN-inducible GTPase LRG47 (Irgm1) negatively regulates TLR4-triggered proinflamma tory cytokine production and prevents endotoxemia
    • Bafica A, Feng CG, Santiago HC, et al. The IFN-inducible GTPase LRG47 (Irgm1) negatively regulates TLR4-triggered proinflamma tory cytokine production and prevents endotoxemia. J Immunol 2007; 179: 5514-22.
    • (2007) J Immunol , vol.179 , pp. 5514-5522
    • Bafica, A.1    Feng, C.G.2    Santiago, H.C.3
  • 106
    • 77954754620 scopus 로고    scopus 로고
    • Autophagy and Crohn's disease: At the crossroads of infection, inflammation, immunity, and cancer
    • Brest P, Corcelle EA, Cesaro A, et al. Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med 2010; 10: 486-502.
    • (2010) Curr Mol Med , vol.10 , pp. 486-502
    • Brest, P.1    Corcelle, E.A.2    Cesaro, A.3
  • 107
    • 79954459822 scopus 로고    scopus 로고
    • Inflammasome-independent modulation of cytokine response by autophagy in human cells
    • Crisan TO, Plantinga TS, van de Veerdonk FL, et al. Inflammasome-independent modulation of cytokine response by autophagy in human cells. PLoS One 2011; 6: e18666.
    • (2011) PLoS One , vol.6
    • Crisan, T.O.1    Plantinga, T.S.2    van de Veerdonk, F.L.3
  • 108
    • 66449099090 scopus 로고    scopus 로고
    • Autophagy suppresses tumorigenesis through elimination of p62
    • Mathew R, Karp CM, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062-75.
    • (2009) Cell , vol.137 , pp. 1062-1075
    • Mathew, R.1    Karp, C.M.2    Beaudoin, B.3
  • 109
    • 47149092405 scopus 로고    scopus 로고
    • Targeting the p27 E3 ligase SCF (Skp2) results in p27-and Skp2-mediated cell-cycle arrest and activation of autophagy
    • Chen Q, Xie W, Kuhn DJ, et al. Targeting the p27 E3 ligase SCF (Skp2) results in p27-and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 2008; 111: 4690-9.
    • (2008) Blood , vol.111 , pp. 4690-4699
    • Chen, Q.1    Xie, W.2    Kuhn, D.J.3
  • 110
    • 77952559255 scopus 로고    scopus 로고
    • The Skp2 promoter integrates signaling through the NF-κB, p53, and Akt/GSK3β pathways to regulate autophagy and apoptosis
    • Barré B, Perkins ND. The Skp2 promoter integrates signaling through the NF-κB, p53, and Akt/GSK3β pathways to regulate autophagy and apoptosis. Mol Cell 2010; 38: 524-38.
    • (2010) Mol Cell , vol.38 , pp. 524-538
    • Barré, B.1    Perkins, N.D.2
  • 111
    • 0037847511 scopus 로고    scopus 로고
    • Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis
    • Dubuquoy L, Jansson EA, Deeb S, et al. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 2003; 124: 1265-76.
    • (2003) Gastroenterology , vol.124 , pp. 1265-1276
    • Dubuquoy, L.1    Jansson, E.A.2    Deeb, S.3
  • 112
    • 0347756655 scopus 로고    scopus 로고
    • Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA
    • Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 2004; 5: 104-12.
    • (2004) Nat Immunol , vol.5 , pp. 104-112
    • Kelly, D.1    Campbell, J.I.2    King, T.P.3
  • 113
    • 22644444207 scopus 로고    scopus 로고
    • Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2
    • Cario E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 2005; 54: 1182-93.
    • (2005) Gut , vol.54 , pp. 1182-1193
    • Cario, E.1
  • 114
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119: 753-66.
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3    Taylor, G.A.4    Colombo, M.I.5    Deretic, V.6
  • 115
    • 2142752480 scopus 로고    scopus 로고
    • Cellular autophagy: Surrender, avoidance and subversion by microorganisms
    • Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2004; 2: 301-14.
    • (2004) Nat Rev Microbiol , vol.2 , pp. 301-314
    • Kirkegaard, K.1    Taylor, M.P.2    Jackson, W.T.3
  • 119
    • 64049086218 scopus 로고    scopus 로고
    • Multiple regulatory and effector roles of autophagy in immunity
    • Deretic V. Multiple regulatory and effector roles of autophagy in immunity. Curr Opin Immunol 2009; 21: 53-62.
    • (2009) Curr Opin Immunol , vol.21 , pp. 53-62
    • Deretic, V.1
  • 120
    • 19344373577 scopus 로고    scopus 로고
    • Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens
    • Zhou D, Li P, Lin Y, et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 2005; 22: 571-81.
    • (2005) Immunity , vol.22 , pp. 571-581
    • Zhou, D.1    Li, P.2    Lin, Y.3
  • 121
    • 20344361954 scopus 로고    scopus 로고
    • Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
    • Dengjel J, Schoor O, Fischer R, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 2005; 102: 7922-7.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 7922-7927
    • Dengjel, J.1    Schoor, O.2    Fischer, R.3
  • 122
    • 76949091325 scopus 로고    scopus 로고
    • In vivo requirement for Atg5 in antigen presentation by dendritic cells
    • Lee HK, Mattei LM, Steinberg BE, et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 2010; 32: 227-39.
    • (2010) Immunity , vol.32 , pp. 227-239
    • Lee, H.K.1    Mattei, L.M.2    Steinberg, B.E.3
  • 123
    • 33846224369 scopus 로고    scopus 로고
    • MHC class II antigen loading compartments continuously receive input from autophagosomes
    • Schmid D, Pypaert M, Münz C. MHC class II antigen loading compartments continuously receive input from autophagosomes. Immunity 2007; 26: 79-92.
    • (2007) Immunity , vol.26 , pp. 79-92
    • Schmid, D.1    Pypaert, M.2    Münz, C.3
  • 124
    • 34447629523 scopus 로고    scopus 로고
    • Innate and adaptive immunity through autophagy
    • Schmid D, Münz C. Innate and adaptive immunity through autophagy. Immunity 2007; 27: 11-21.
    • (2007) Immunity , vol.27 , pp. 11-21
    • Schmid, D.1    Münz, C.2
  • 125
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15: 1101-11.
    • (2004) Mol Biol Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1    Yamamoto, A.2    Matsui, M.3    Yoshimori, T.4    Ohsumi, Y.5
  • 126
    • 79959271087 scopus 로고    scopus 로고
    • Intestinal homeostasis and its breakdown in inflammatory bowel disease
    • Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011; 474: 298-306.
    • (2011) Nature , vol.474 , pp. 298-306
    • Maloy, K.J.1    Powrie, F.2
  • 127
    • 0030731743 scopus 로고    scopus 로고
    • Paneth cells and innate immunity in the crypt microenvironment
    • Ouellette AJ. Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 1997; 113: 1779-84.
    • (1997) Gastroenterology , vol.113 , pp. 1779-1784
    • Ouellette, A.J.1
  • 128
    • 0034252291 scopus 로고    scopus 로고
    • Paneth cells-guardians of the gut cell hatchery
    • Ganz T. Paneth cells-guardians of the gut cell hatchery. Nat Immunol 2000; 1: 99-100.
    • (2000) Nat Immunol , vol.1 , pp. 99-100
    • Ganz, T.1
  • 129
    • 43549117511 scopus 로고    scopus 로고
    • The mucosal immune system at the gastrointestinal barrier
    • Schenk M, Mueller C. The mucosal immune system at the gastrointestinal barrier. Best Pract Res Clin Gastroenterol 2008; 22: 391-409.
    • (2008) Best Pract Res Clin Gastroenterol , vol.22 , pp. 391-409
    • Schenk, M.1    Mueller, C.2
  • 130
    • 61649114427 scopus 로고    scopus 로고
    • A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease
    • Cadwell K, Patel KK, Komatsu M, Virgin HW 4th, Stappenbeck TS. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy. 2009; 5: 250-2.
    • (2009) Autophagy , vol.5 , pp. 250-252
    • Cadwell, K.1    Patel, K.K.2    Komatsu, M.3    Virgin IV, H.W.4    Stappenbeck, T.S.5
  • 131
    • 65749101996 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress in the intestinal epithelium and iflammatory bowel disease
    • Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intestinal epithelium and iflammatory bowel disease. Semin Immunol 2009; 21: 156-163.
    • (2009) Semin Immunol , vol.21 , pp. 156-163
    • Kaser, A.1    Blumberg, R.S.2
  • 132
    • 34250899722 scopus 로고    scopus 로고
    • Signal integration in the endoplasmic reticulum unfolded protein response
    • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519-29.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 519-529
    • Ron, D.1    Walter, P.2
  • 133
    • 50249116184 scopus 로고    scopus 로고
    • The endoplasmic reticulum stress response in immunity and autoimmunity
    • Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2008; 8: 663-74.
    • (2008) Nat Rev Immunol , vol.8 , pp. 663-674
    • Todd, D.J.1    Lee, A.H.2    Glimcher, L.H.3
  • 134
    • 69749123786 scopus 로고    scopus 로고
    • Fine-tuning of the unfolded protein response: Assembling the IRE1alpha interactome. Mol
    • Hetz C, Glimcher L. Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol. Cell 2009; 35: 551-61.
    • (2009) Cell , vol.35 , pp. 551-561
    • Hetz, C.1    Glimcher, L.2
  • 135
    • 35848969791 scopus 로고    scopus 로고
    • ER stress signaling and the BCL-2 family of proteins: From adaptation to irreversible cellular damage
    • Hetz C. ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage, Antioxid Redox Signal 2007; 9: 2345-55.
    • (2007) Antioxid Redox Signal , vol.9 , pp. 2345-2355
    • Hetz, C.1
  • 136
    • 37849026130 scopus 로고    scopus 로고
    • The daily job of night killers: Alternative roles of the BCL-2 family in organelle physiology
    • Hetz C, Glimcher L. The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology, Trends Cell Biol 2008; 18: 38-44.
    • (2008) Trends Cell Biol , vol.18 , pp. 38-44
    • Hetz, C.1    Glimcher, L.2
  • 137
    • 47949099916 scopus 로고    scopus 로고
    • From endoplasmic-reticulum stress to the inflammatory response
    • Zhang K, Kaufman R. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454: 455-62.
    • (2008) Nature , vol.454 , pp. 455-462
    • Zhang, K.1    Kaufman, R.2
  • 138
    • 80052546811 scopus 로고    scopus 로고
    • Inflammation and cellular stress: A mechanistic link between immune-mediated and metabolically driven pathologies
    • Rath E, Haller D. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur J Nutr 2011; 50: 219-33.
    • (2011) Eur J Nutr , vol.50 , pp. 219-233
    • Rath, E.1    Haller, D.2
  • 139
    • 22244446505 scopus 로고    scopus 로고
    • The mammalian unfolded protein response
    • Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74: 739-89.
    • (2005) Annu Rev Biochem , vol.74 , pp. 739-789
    • Schroder, M.1    Kaufman, R.J.2
  • 140
    • 0035966269 scopus 로고    scopus 로고
    • XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor
    • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107: 881-91.
    • (2001) Cell , vol.107 , pp. 881-891
    • Yoshida, H.1    Matsui, T.2    Yamamoto, A.3    Okada, T.4    Mori, K.5
  • 141
    • 0037011917 scopus 로고    scopus 로고
    • IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
    • Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92-96.
    • (2002) Nature , vol.415 , pp. 92-96
    • Calfon, M.1    Zeng, H.2    Urano, F.3
  • 142
    • 0037083755 scopus 로고    scopus 로고
    • IRE1-mediated unconventional mRNA splicing and S2Pmediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response
    • Lee K, Tirasophon W, Shen X, et al. IRE1-mediated unconventional mRNA splicing and S2Pmediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002; 16: 452-66.
    • (2002) Genes Dev , vol.16 , pp. 452-466
    • Lee, K.1    Tirasophon, W.2    Shen, X.3
  • 143
    • 0142059951 scopus 로고    scopus 로고
    • XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
    • Lee A, Iwakoshi N, Glimcher L. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response, Mol Cell Biol 2003; 23: 7448-59.
    • (2003) Mol Cell Biol , vol.23 , pp. 7448-7459
    • Lee, A.1    Iwakoshi, N.2    Glimcher, L.3
  • 144
    • 41649114777 scopus 로고    scopus 로고
    • The UPRosome and XBP-1: Mastering secretory cell function
    • Hetz C, Glimcher L. The UPRosome and XBP-1: mastering secretory cell function. Curr Immunol Rev 2008; 4: 1-10.
    • (2008) Curr Immunol Rev , vol.4 , pp. 1-10
    • Hetz, C.1    Glimcher, L.2
  • 145
  • 146
    • 33745893809 scopus 로고    scopus 로고
    • Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response
    • Hollien J, Weissman J. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006; 313: 104-7.
    • (2006) Science , vol.313 , pp. 104-107
    • Hollien, J.1    Weissman, J.2
  • 147
    • 68049110633 scopus 로고    scopus 로고
    • IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates
    • Han D, Lerner AG, Vande Walle L, et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009; 138: 562-75.
    • (2009) Cell , vol.138 , pp. 562-575
    • Han, D.1    Lerner, A.G.2    Vande Walle, L.3
  • 148
    • 0036606540 scopus 로고    scopus 로고
    • ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats
    • Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002; 16: 1345-55.
    • (2002) Genes Dev , vol.16 , pp. 1345-1355
    • Nishitoh, H.1    Matsuzawa, A.2    Tobiume, K.3
  • 149
    • 0034723235 scopus 로고    scopus 로고
    • Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
    • Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287: 664-6.
    • (2000) Science , vol.287 , pp. 664-666
    • Urano, F.1    Wang, X.2    Bertolotti, A.3
  • 150
    • 77249150521 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and intestinal inflammation
    • Kaser A, Blumberg RS. Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol 2010; 3: 11-6.
    • (2010) Mucosal Immunol , vol.3 , pp. 11-16
    • Kaser, A.1    Blumberg, R.S.2
  • 151
    • 77954144700 scopus 로고    scopus 로고
    • Martínez-Naves E., Blumberg R. Endoplasmic reticulum stress: Implications for inflammatory bowel disease pathogenesis
    • Kaser, A. Martínez-Naves E., Blumberg R. Endoplasmic reticulum stress: implications for inflammatory bowel disease pathogenesis. Curr Opin Gastroenterol 2010, 26: 318-26.
    • (2010) Curr Opin Gastroenterol , vol.26 , pp. 318-326
    • Kaser, A.1
  • 152
    • 0032509216 scopus 로고    scopus 로고
    • Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose regulated proteins. Involvement of basic leucine zipper transcription factors
    • Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273: 33741-9.
    • (1998) J Biol Chem , vol.273 , pp. 33741-33749
    • Yoshida, H.1    Haze, K.2    Yanagi, H.3    Yura, T.4    Mori, K.5
  • 153
    • 0035937721 scopus 로고    scopus 로고
    • Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response
    • Kokame K, Kato H, Miyata T. Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 2001; 276: 9199-205.
    • (2001) J Biol Chem , vol.276 , pp. 9199-9205
    • Kokame, K.1    Kato, H.2    Miyata, T.3
  • 154
    • 34548172495 scopus 로고    scopus 로고
    • Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1
    • Yamamoto K, Sato T, Matsui T, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 2007; 13: 365-76.
    • (2007) Dev Cell , vol.13 , pp. 365-376
    • Yamamoto, K.1    Sato, T.2    Matsui, T.3
  • 155
    • 33845480131 scopus 로고    scopus 로고
    • Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
    • Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4: e423, 2006.
    • (2006) PLoS Biol 4 , vol.e423
    • Bernales, S.1    McDonald, K.L.2    Walter, P.3
  • 156
    • 33845459165 scopus 로고    scopus 로고
    • Autophagy is activated for cell survival after endoplasmic reticulum stress
    • Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220-31.
    • (2006) Mol Cell Biol , vol.26 , pp. 9220-9231
    • Ogata, M.1    Hino, S.2    Saito, A.3
  • 157
    • 33749579383 scopus 로고    scopus 로고
    • Endoplasmic Reticulum stress triggers autophagy
    • Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic Reticulum stress triggers autophagy. J Biol Chem 2006; 281: 30299-304.
    • (2006) J Biol Chem , vol.281 , pp. 30299-30304
    • Yorimitsu, T.1    Nair, U.2    Yang, Z.3    Klionsky, D.J.4
  • 158
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67-93.
    • (2009) Annu Rev Genet , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 159
    • 33947497050 scopus 로고    scopus 로고
    • Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival
    • Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 2007: 282; 4702-10.
    • (2007) J Biol Chem , vol.282 , pp. 4702-4710
    • Ding, W.X.1    Ni, H.M.2    Gao, W.3
  • 160
    • 33846211417 scopus 로고    scopus 로고
    • ER stress (PERK/elF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
    • Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/elF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007; 14: 230-39.
    • (2007) Cell Death Differ , vol.14 , pp. 230-239
    • Kouroku, Y.1    Fujita, E.2    Tanida, I.3
  • 161
    • 77953232252 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress mediates radiation-induced autophagy via PERKelF2α in caspase-3/7 deficient cells
    • Kim KW, Moretti L, Mitchell LR, Jung DK, Lu. Endoplasmic reticulum stress mediates radiation-induced autophagy via PERKelF2α in caspase-3/7 deficient cells. Oncogene 2010; 29: 3241-51.
    • (2010) Oncogene , vol.29 , pp. 3241-3251
    • Kim, K.W.1    Moretti, L.2    Mitchell, L.R.3    Jung, D.K.4    Lu5
  • 162
    • 34548299555 scopus 로고    scopus 로고
    • Linking of autophagy to ubiquitinproteasome system is important for the regulation of endoplasmic reticulum stress and cell viability
    • Ding WX, Ni HM, Gao W, et al. Linking of autophagy to ubiquitinproteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 2007b; 171: 513-24.
    • (2007) Am J Pathol , vol.171 , pp. 513-524
    • Ding, W.X.1    Ni, H.M.2    Gao, W.3
  • 163
    • 33947386684 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress: A new pathway to induce autophagy
    • Yorimitsu T, Klionsky DJ. Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 2007; 3: 160-2.
    • (2007) Autophagy , vol.3 , pp. 160-162
    • Yorimitsu, T.1    Klionsky, D.J.2
  • 164
    • 34548037901 scopus 로고    scopus 로고
    • Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium
    • Høyer-Hansen M, Jäättelä M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 2007; 14: 1576-82.
    • (2007) Cell Death Differ , vol.14 , pp. 1576-1582
    • Høyer-Hansen, M.1    Jäättelä, M.2
  • 165
    • 47249157360 scopus 로고    scopus 로고
    • Protein kinase Cθ is required for autophagy in response to stress in the endoplasmic reticulum
    • Sakaki K, Wu J, Kaufman RJ. Protein kinase Cθ is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 2008; 283: 15370-80.
    • (2008) J Biol Chem , vol.283 , pp. 15370-15380
    • Sakaki, K.1    Wu, J.2    Kaufman, R.J.3
  • 166
    • 77953024622 scopus 로고    scopus 로고
    • Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: Implications for future therapeutic approaches
    • Stephen M, Schleicher, Moretti L, Varki V, Lu B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: Implications for future therapeutic approaches. Drug Resist Updat 2010; 13: 79-86.
    • (2010) Drug Resist Updat , vol.13 , pp. 79-86
    • Stephen, M.1    Schleicher Moretti, L.2    Varki, V.3    Lu, B.4
  • 167
    • 54949135707 scopus 로고    scopus 로고
    • The endoplasmic reticulum in apoptosis and autophagy: Role of BCL-2 protein family
    • Heath-Engel HM, Chang NC, Shore GC. The endoplasmic reticulum in apoptosis and autophagy: role of BCL-2 protein family. Oncogene 2008; 27: 6419-33.
    • (2008) Oncogene , vol.27 , pp. 6419-6433
    • Heath-Engel, H.M.1    Chang, N.C.2    Shore, G.C.3
  • 168
    • 57849136841 scopus 로고    scopus 로고
    • van der Klei I. Autophagy: Principles and significance in health and disease
    • Todde V, Veenhuis M., van der Klei I. Autophagy: principles and significance in health and disease. Biochim Biophys Acta 2009; 1972: 3-13.
    • (2009) Biochim Biophys Acta , vol.1972 , pp. 3-13
    • Todde, V.1    Veenhuis, M.2
  • 169
    • 0031595210 scopus 로고    scopus 로고
    • Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa
    • Rogler G, Brand K, Vogl D, et al. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 1998; 115: 357-69.
    • (1998) Gastroenterology , vol.115 , pp. 357-369
    • Rogler, G.1    Brand, K.2    Vogl, D.3
  • 170
    • 15444376847 scopus 로고    scopus 로고
    • Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis
    • Andresen L, Jorgensen VL, Perner A, Hansen A, Eugen-Olsen J, Rask-Madsen J. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 2005; 54: 503-9.
    • (2005) Gut , vol.54 , pp. 503-509
    • Andresen, L.1    Jorgensen, V.L.2    Perner, A.3    Hansen, A.4    Eugen-Olsen, J.5    Rask-Madsen, J.6
  • 171
    • 33645815074 scopus 로고    scopus 로고
    • Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression
    • Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 2006; 26: 3071-84.
    • (2006) Mol Cell Biol , vol.26 , pp. 3071-3084
    • Hu, P.1    Han, Z.2    Couvillon, A.D.3    Kaufman, R.J.4    Exton, J.H.5
  • 172
    • 8644282751 scopus 로고    scopus 로고
    • Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2
    • Deng J, Lu PD, Zhang Y, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Bio 2004; 24: 10161-8.
    • (2004) Mol Cell Bio , vol.24 , pp. 10161-10168
    • Deng, J.1    Lu, P.D.2    Zhang, Y.3
  • 173
    • 33846234333 scopus 로고    scopus 로고
    • Interleukin 10 blocked endoplasmic reticulum stress in intestinal epithelial cells: Impact on chronic inflammation
    • Shkoda A, Ruiz P, Daniel H, et al. Interleukin 10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 2007 132: 190-207.
    • (2007) Gastroenterology , vol.132 , pp. 190-207
    • Shkoda, A.1    Ruiz, P.2    Daniel, H.3
  • 174
    • 0029001576 scopus 로고
    • A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B
    • Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J 1995; 14: 2580-8.
    • (1995) EMBO J , vol.14 , pp. 2580-2588
    • Pahl, H.L.1    Baeuerle, P.A.2
  • 176
    • 5644231992 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
    • Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306: 457-61.
    • (2004) Science , vol.306 , pp. 457-461
    • Ozcan, U.1    Cao, Q.2    Yilmaz, E.3
  • 178
    • 33750585364 scopus 로고    scopus 로고
    • Absence of bacterially induced RELMbeta reduces injury in the dextran sodium sulfate model of colitis
    • McVay LD, Keilbaugh SA, Wong TM, et al. Absence of bacterially induced RELMbeta reduces injury in the dextran sodium sulfate model of colitis. J Clin Invest 2006; 116: 2914-23.
    • (2006) J Clin Invest , vol.116 , pp. 2914-2923
    • McVay, L.D.1    Keilbaugh, S.A.2    Wong, T.M.3
  • 179
    • 15544381570 scopus 로고    scopus 로고
    • Self-renewal and cancer of the gut: Two sides of a coin
    • Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science 2005; 307: 1904-9.
    • (2005) Science , vol.307 , pp. 1904-1909
    • Radtke, F.1    Clevers, H.2
  • 180
    • 58549111588 scopus 로고    scopus 로고
    • Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
    • Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 2008; 105: 20858-63.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 20858-20863
    • Vaishnava, S.1    Behrendt, C.L.2    Ismail, A.S.3    Eckmann, L.4    Hooper, L.V.5
  • 181
    • 74749103667 scopus 로고    scopus 로고
    • Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/-mice
    • Zhao F, Edwards R, Dizon D, et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/-mice. Dev Biol 2010; 338: 270-9.
    • (2010) Dev Biol , vol.338 , pp. 270-279
    • Zhao, F.1    Edwards, R.2    Dizon, D.3
  • 182
    • 20644462344 scopus 로고    scopus 로고
    • Mammalian defensins in the antimicrobial immune response
    • Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005; 6: 551-7.
    • (2005) Nat Immunol , vol.6 , pp. 551-557
    • Selsted, M.E.1    Ouellette, A.J.2
  • 183
    • 74049122536 scopus 로고    scopus 로고
    • Enteric defensins are essential regulators of intestinal microbial ecology
    • Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010; 11: 76-83.
    • (2010) Nat Immunol , vol.11 , pp. 76-83
    • Salzman, N.H.1    Hung, K.2    Haribhai, D.3
  • 184
    • 0029242886 scopus 로고
    • Tumor necrosis factor-alpha induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells
    • Levine SJ, Larivee P, Logun C, Angus CW, Ognibene FP, Shelhamer JH. Tumor necrosis factor-alpha induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells. Am J Respir Cell Mol Biol 1995; 12: 196-204.
    • (1995) Am J Respir Cell Mol Biol , vol.12 , pp. 196-204
    • Levine, S.J.1    Larivee, P.2    Logun, C.3    Angus, C.W.4    Ognibene, F.P.5    Shelhamer, J.H.6
  • 185
    • 0034023162 scopus 로고    scopus 로고
    • Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180
    • Enss ML, Cornberg M, Wagner S, et al. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 2000; 49: 162-9.
    • (2000) Inflamm Res , vol.49 , pp. 162-169
    • Enss, M.L.1    Cornberg, M.2    Wagner, S.3
  • 186
    • 0034045707 scopus 로고    scopus 로고
    • Interleukin-9 upregulates mucus expression in the airways
    • Louahed J, Toda M, Jen J, et al. Interleukin-9 upregulates mucus expression in the airways. Am J Respir Cell Mol Biol 2000; 22: 649-56.
    • (2000) Am J Respir Cell Mol Biol , vol.22 , pp. 649-656
    • Louahed, J.1    Toda, M.2    Jen, J.3
  • 187
    • 0041628462 scopus 로고    scopus 로고
    • SH. Interleukin-1beta induces MUC2 gene expression and mucin secretion via activation of PKCMEK/ ERK, and PI3K in human airway epithelial cells
    • Kim YD, Jeon JY, Woo HJ, et al. SH. Interleukin-1beta induces MUC2 gene expression and mucin secretion via activation of PKCMEK/ ERK, and PI3K in human airway epithelial cells. J Korean Med Sci 2002; 17: 765-71.
    • (2002) J Korean Med Sci , vol.17 , pp. 765-771
    • Kim, Y.D.1    Jeon, J.Y.2    Woo, H.J.3
  • 188
    • 0042848801 scopus 로고    scopus 로고
    • mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogenactivated protein kinase pathway in human colon cancer cells
    • Iwashita J, Sato Y, Sugaya H, Takahashi N, Sasaki H, Abe T. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogenactivated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 2003; 81: 275-82.
    • (2003) Immunol Cell Biol , vol.81 , pp. 275-282
    • Iwashita, J.1    Sato, Y.2    Sugaya, H.3    Takahashi, N.4    Sasaki, H.5    Abe, T.6
  • 189
    • 0031029855 scopus 로고    scopus 로고
    • Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease
    • Li JD, Dohrman AF, Gallup M, et al. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc Natl Acad Sci USA 1997; 94: 967-72.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 967-972
    • Li, J.D.1    Dohrman, A.F.2    Gallup, M.3
  • 190
    • 0031836613 scopus 로고    scopus 로고
    • Mucin gene (MUC2 and MUC5AC) upregulation by Gram-positive and Gram-negative bacteria
    • Dohrman A, Miyata S, Gallup M, et al. Mucin gene (MUC2 and MUC5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim Biophys Acta 1998; 1406: 251-9.
    • (1998) Biochim Biophys Acta , vol.1406 , pp. 251-259
    • Dohrman, A.1    Miyata, S.2    Gallup, M.3
  • 191
    • 0036152681 scopus 로고    scopus 로고
    • Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells
    • Lemjabbar H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 2002; 8: 41-6.
    • (2002) Nat Med , vol.8 , pp. 41-46
    • Lemjabbar, H.1    Basbaum, C.2
  • 192
    • 0037199957 scopus 로고    scopus 로고
    • Induction of MUC2 and MUC5AC mucin by factors of the epidermal growth factor family is mediated by EGF-R/Ras/Raf/MAPK signaling cascade and Sp1
    • Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I. Induction of MUC2 and MUC5AC mucin by factors of the epidermal growth factor family is mediated by EGF-R/Ras/Raf/MAPK signaling cascade and Sp1. J Biol Chem 2002; 277: 32258-67.
    • (2002) J Biol Chem , vol.277 , pp. 32258-32267
    • Perrais, M.1    Pigny, P.2    Copin, M.C.3    Aubert, J.P.4    van Seuningen, I.5
  • 193
    • 9244245819 scopus 로고    scopus 로고
    • Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose
    • Gaudier E, Jarry A, Blottiere HM, et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 2004; 287: G1168-74.
    • (2004) Am J Physiol Gastrointest Liver Physiol , vol.287
    • Gaudier, E.1    Jarry, A.2    Blottiere, H.M.3
  • 194
    • 27444435921 scopus 로고    scopus 로고
    • Vasoactive intestinal peptide upregulates MUC2 intestinal mucin via CREB/ATF1
    • Hokari R, Lee H, Crawley SC, et al. Vasoactive intestinal peptide upregulates MUC2 intestinal mucin via CREB/ATF1. Am J Physiol Gastrointest Liver Physiol 2005; 289: G949-59.
    • (2005) Am J Physiol Gastrointest Liver Physiol , vol.289
    • Hokari, R.1    Lee, H.2    Crawley, S.C.3
  • 195
    • 34547122270 scopus 로고    scopus 로고
    • Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways
    • El Homsi M, Ducroc R, Claustre J, et al. Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways. Am J Physiol Gastrointest Liver Physiol 2007; 293: G365-73.
    • (2007) Am J Physiol Gastrointest Liver Physiol , vol.293
    • El Homsi, M.1    Ducroc, R.2    Claustre, J.3
  • 196
    • 38849180895 scopus 로고    scopus 로고
    • Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells
    • Lee SY, Lee MS, Cherla RP, Tesh VL. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell Microbiol 2008; 10: 770-80.
    • (2008) Cell Microbiol , vol.10 , pp. 770-780
    • Lee, S.Y.1    Lee, M.S.2    Cherla, R.P.3    Tesh, V.L.4
  • 197
    • 26644450729 scopus 로고    scopus 로고
    • Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha
    • Xue X, Piao JH, Nakajima A, et al. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 2005; 280: 33917-25.
    • (2005) J Biol Chem , vol.280 , pp. 33917-33925
    • Xue, X.1    Piao, J.H.2    Nakajima, A.3
  • 198
    • 0035094262 scopus 로고    scopus 로고
    • Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice
    • Bertolotti A, Wang X, Novoa I, et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 2001; 107: 585-93.
    • (2001) J Clin Invest , vol.107 , pp. 585-593
    • Bertolotti, A.1    Wang, X.2    Novoa, I.3
  • 199
    • 41549092745 scopus 로고    scopus 로고
    • Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis
    • Heazlewood CK, Cook MC, Eri R, et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008; 5: e54.
    • (2008) PLoS Med , vol.5
    • Heazlewood, C.K.1    Cook, M.C.2    Eri, R.3
  • 200
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672-6.
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1    Jackson, S.2    Seaman, M.3
  • 201
    • 33745751085 scopus 로고    scopus 로고
    • Autophagic and tumour suppressor activity of a novel Beclin-1-binding protein UVRAG
    • Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin-1-binding protein UVRAG. Nat Cell Biol 2006; 8: 688-99.
    • (2006) Nat Cell Biol , vol.8 , pp. 688-699
    • Liang, C.1    Feng, P.2    Ku, B.3
  • 202
    • 0344826531 scopus 로고    scopus 로고
    • Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/δ716 Cdx2+/-compound mutant mice
    • Aoki K, Tamai Y, Horiike S, Oshima M, Taketo MM. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/δ716 Cdx2+/-compound mutant mice. Nat Genet 2003; 35: 323-30.
    • (2003) Nat Genet , vol.35 , pp. 323-330
    • Aoki, K.1    Tamai, Y.2    Horiike, S.3    Oshima, M.4    Taketo, M.M.5
  • 203
    • 51649126752 scopus 로고    scopus 로고
    • Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in Apcrrrrrr716 777777mice
    • Fujishita T, Aoki K, Lane HA, Aoki M, Taketo MM. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in Apcrrrrrr716 777777mice. Proc Natl Acad Sci USA 2008; 105: 13544-9.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 13544-13549
    • Fujishita, T.1    Aoki, K.2    Lane, H.A.3    Aoki, M.4    Taketo, M.M.5
  • 204
    • 77956288187 scopus 로고    scopus 로고
    • Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: MTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1
    • Slattery ML, Herrick JS, Lundgreen A, Fitzpatrick FA, Curtin K, Wolff RK. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: MTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis 2010; 31: 1604-1611.
    • (2010) Carcinogenesis , vol.31 , pp. 1604-1611
    • Slattery, M.L.1    Herrick, J.S.2    Lundgreen, A.3    Fitzpatrick, F.A.4    Curtin, K.5    Wolff, R.K.6
  • 205
    • 77952311165 scopus 로고    scopus 로고
    • Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer
    • Johnson SM, Gulhati P, Rampy BA, et al. Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg 2010; 210: 767-76, 776-8.
    • (2010) J Am Coll Surg , vol.210
    • Johnson, S.M.1    Gulhati, P.2    Rampy, B.A.3
  • 206
    • 73149122504 scopus 로고    scopus 로고
    • Targeted inhibition of Mammalian Target of Rapamycin signaling inhibits tumorigenesis of colorectal cancer
    • Gulhati P, Cai Q, Li J, et al. Targeted inhibition of Mammalian Target of Rapamycin signaling inhibits tumorigenesis of colorectal cancer. Clin Cancer Res 2009; 15: 7207-16.
    • (2009) Clin Cancer Res , vol.15 , pp. 7207-7216
    • Gulhati, P.1    Cai, Q.2    Li, J.3
  • 207
    • 68949198785 scopus 로고    scopus 로고
    • mTOR Signaling pathway is a target for the treatment of colorectal cancer
    • Zhang YJ, Dai Q, Sun DF, et al. mTOR Signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 2009a; 16: 2617-28.
    • (2009) Ann Surg Oncol , vol.16 , pp. 2617-2628
    • Zhang, Y.J.1    Dai, Q.2    Sun, D.F.3
  • 208
    • 77955046859 scopus 로고    scopus 로고
    • Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer
    • Ekstrand AI, Jönsson M, Lindblom A, Borg A, Nilbert M. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer. Familial Cancer 2010; 9: 125-9.
    • (2010) Familial Cancer , vol.9 , pp. 125-129
    • Ekstrand, A.I.1    Jönsson, M.2    Lindblom, A.3    Borg, A.4    Nilbert, M.5
  • 209
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955-68.
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1    Ouyang, H.2    Zhu, T.3
  • 211
    • 78649833334 scopus 로고    scopus 로고
    • p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation
    • Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci USA 2010; 107: 18511-6.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 18511-18516
    • Scherz-Shouval, R.1    Weidberg, H.2    Gonen, C.3    Wilder, S.4    Elazar, Z.5    Oren, M.6
  • 212
    • 0037067666 scopus 로고    scopus 로고
    • The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signalling pathways
    • Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signalling pathways. J Biol Chem 2002; 277: 25226-32.
    • (2002) J Biol Chem , vol.277 , pp. 25226-25232
    • Fryer, L.G.1    Parbu-Patel, A.2    Carling, D.3
  • 213
    • 18144453903 scopus 로고    scopus 로고
    • Mitochondrial metabolism and type-2 diabetes: A specific target of metformin
    • Leverve XM, Guigas B, Detaille D, et al. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab 2003; 29: 6S88-94.
    • (2003) Diabetes Metab , vol.29
    • Leverve, X.M.1    Guigas, B.2    Detaille, D.3
  • 214
    • 34547114031 scopus 로고    scopus 로고
    • Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
    • Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67: 6745-52.
    • (2007) Cancer Res , vol.67 , pp. 6745-6752
    • Buzzai, M.1    Jones, R.G.2    Amaravadi, R.K.3
  • 216
    • 33645766204 scopus 로고    scopus 로고
    • Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin
    • Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006; 29: 254-8.
    • (2006) Diabetes Care , vol.29 , pp. 254-258
    • Bowker, S.L.1    Majumdar, S.R.2    Veugelers, P.3    Johnson, J.A.4
  • 217
    • 68449094325 scopus 로고    scopus 로고
    • The influence of glucose-lowering therapies on cancer risk in type 2 diabetes
    • Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009; 52: 1766-77.
    • (2009) Diabetologia , vol.52 , pp. 1766-1777
    • Currie, C.J.1    Poole, C.D.2    Gale, E.A.3
  • 218
    • 69549097703 scopus 로고    scopus 로고
    • New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes
    • Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JMM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 2009; 32: 1620-5.
    • (2009) Diabetes Care , vol.32 , pp. 1620-1625
    • Libby, G.1    Donnelly, L.A.2    Donnan, P.T.3    Alessi, D.R.4    Morris, A.D.5    Evans, J.M.M.6
  • 219
    • 77957231343 scopus 로고    scopus 로고
    • Prognostic significance of AMPactivated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer
    • Baba Y, Nosho K, Shima K, et al. Prognostic significance of AMPactivated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer. Br J Cancer 2010; 103: 1025-33.
    • (2010) Br J Cancer , vol.103 , pp. 1025-1033
    • Baba, Y.1    Nosho, K.2    Shima, K.3
  • 220
    • 36549044009 scopus 로고    scopus 로고
    • Function of the SIRT1 protein deacetylase in cancer
    • Stünkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2007; 2: 1360-8.
    • (2007) Biotechnol J , vol.2 , pp. 1360-1368
    • Stünkel, W.1    Peh, B.K.2    Tan, Y.C.3
  • 221
    • 67650691722 scopus 로고    scopus 로고
    • SIRT1 histonedeacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer
    • Nosho K, Shima K, Irahara N, et al. SIRT1 histonedeacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol 2009; 22: 922-32.
    • (2009) Mod Pathol , vol.22 , pp. 922-932
    • Nosho, K.1    Shima, K.2    Irahara, N.3
  • 222
    • 67650563916 scopus 로고    scopus 로고
    • Sirt1 is an inhibitor of proliferation and tumor formation in colon cancer
    • Kabra N, Li Z, Chen L, et al. Sirt1 is an inhibitor of proliferation and tumor formation in colon cancer. J Biol Chem 2009; 284: 18210-7.
    • (2009) J Biol Chem , vol.284 , pp. 18210-18217
    • Kabra, N.1    Li, Z.2    Chen, L.3
  • 223
    • 77953626157 scopus 로고    scopus 로고
    • Biology of colorectal cancer
    • Saif MW, Chu E. Biology of colorectal cancer. Cancer J 2010; 16: 196-201.
    • (2010) Cancer J , vol.16 , pp. 196-201
    • Saif, M.W.1    Chu, E.2
  • 224
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 2008; 3: e2020.
    • (2008) PLoS ONE , vol.3
    • Firestein, R.1    Blander, G.2    Michan, S.3
  • 225
    • 0033119801 scopus 로고    scopus 로고
    • [-catenin regulates expression of cyclin D1 in colon carcinoma cells
    • Tetsu O, McCormick F. [-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422-6.
    • (1999) Nature , vol.398 , pp. 422-426
    • Tetsu, O.1    McCormick, F.2
  • 226
    • 63049111216 scopus 로고    scopus 로고
    • PCAF acetylates [-catenin and improves its stability
    • Ge X, Jin Q, Zhang F, Yan T, Zhai Q. PCAF acetylates [-catenin and improves its stability. Mol Biol Cell 2009; 20; 419-27.
    • (2009) Mol Biol Cell , vol.20 , pp. 419-427
    • Ge, X.1    Jin, Q.2    Zhang, F.3    Yan, T.4    Zhai, Q.5
  • 227
    • 77952714326 scopus 로고    scopus 로고
    • SIRT1 regulates Dishevalled proteins and promotes transient and constitutive Wnt signalling
    • Holloway KR, Calhoun TN, Saxena M, et al. SIRT1 regulates Dishevalled proteins and promotes transient and constitutive Wnt signalling. Proc Natl Acad Sci USA 2010; 107: 9216-21.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 9216-9221
    • Holloway, K.R.1    Calhoun, T.N.2    Saxena, M.3
  • 228
    • 79956331962 scopus 로고    scopus 로고
    • Cancer cell survival following DNA damage-mediated premature senescence is regulated by Mammalian Target of Rapamycin (mTOR)-dependent inhibition of Sirtuin 1
    • Back JH, Rezvani HR, ZhunY, et al. Cancer cell survival following DNA damage-mediated premature senescence is regulated by Mammalian Target of Rapamycin (mTOR)-dependent inhibition of Sirtuin 1. J Biol Chem 2011; 286: 19100-8.
    • (2011) J Biol Chem , vol.286 , pp. 19100-19108
    • Back, J.H.1    Rezvani, H.R.2    Zhun, Y.3
  • 229
    • 0028950217 scopus 로고
    • Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells
    • Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 2: 815-22.
    • (1995) J Biol Chem , vol.2 , pp. 815-822
    • Sabers, C.J.1    Martin, M.M.2    Brunn, G.J.3
  • 230
    • 50249111131 scopus 로고    scopus 로고
    • Use of sirolimus (rapamycin) to treat refractory Crohn's disease
    • Massey DC, Bredin F, Parkes M. Use of sirolimus (rapamycin) to treat refractory Crohn's disease. Gut 2008; 57: 1294-6.
    • (2008) Gut , vol.57 , pp. 1294-1296
    • Massey, D.C.1    Bredin, F.2    Parkes, M.3
  • 231
    • 76149117809 scopus 로고    scopus 로고
    • A novel mouse model of inflammatory bowel disease links mammalian target of rapamycindependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis
    • Deng L, Zhou JF, Sellers RS, et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycindependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 2010; 176: 952-67.
    • (2010) Am J Pathol , vol.176 , pp. 952-967
    • Deng, L.1    Zhou, J.F.2    Sellers, R.S.3
  • 232
    • 77953699668 scopus 로고    scopus 로고
    • Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer
    • Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010; 6: 322-9.
    • (2010) Autophagy , vol.6 , pp. 322-329
    • Dalby, K.N.1    Tekedereli, I.2    Lopez-Berestein, G.3    Ozpolat, B.4
  • 233
    • 77956363593 scopus 로고    scopus 로고
    • Autophagic pathways as new targets for cancer drug development
    • Liu B, Cheng Y, Liu Q, Bao JK, Yang JM. Autophagic pathways as new targets for cancer drug development. Acta Pharmacol Sin 2010; 31: 1154-64.
    • (2010) Acta Pharmacol Sin , vol.31 , pp. 1154-1164
    • Liu, B.1    Cheng, Y.2    Liu, Q.3    Bao, J.K.4    Yang, J.M.5
  • 234
    • 77951247552 scopus 로고    scopus 로고
    • Targeting cancer cells through autophagy for anticancer therapy
    • Turcotte S, Giaccia AJ. Targeting cancer cells through autophagy for anticancer therapy. Curr Opin Cell Biol 2010; 22: 246-51.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 246-251
    • Turcotte, S.1    Giaccia, A.J.2
  • 235
    • 84873073348 scopus 로고    scopus 로고
    • Principles and current strategies for targeting autophagy for cancer treatment
    • Amaravadi RK, Lippincott-Schwartz J, Yin XM, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 2011; 15; 7: 54-66.
    • (2011) Clin Cancer Res , vol.15 , Issue.7 , pp. 54-66
    • Amaravadi, R.K.1    Lippincott-Schwartz, J.2    Yin, X.M.3
  • 236
    • 78751556979 scopus 로고    scopus 로고
    • Autophagy as a therapeutic target in cancer
    • Chen N, Karantza V. Autophagy as a therapeutic target in cancer. Cancer Biol Ther 2011; 11: 157-68.
    • (2011) Cancer Biol Ther , vol.11 , pp. 157-168
    • Chen, N.1    Karantza, V.2
  • 237
    • 78650448754 scopus 로고    scopus 로고
    • Chemical modulators of autophagy as biological probes and potential therapeutics
    • Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 2011; 7: 9-17.
    • (2011) Nat Chem Biol , vol.7 , pp. 9-17
    • Fleming, A.1    Noda, T.2    Yoshimori, T.3    Rubinsztein, D.C.4
  • 238
    • 79956224883 scopus 로고    scopus 로고
    • Targeting autophagy during cancer therapy to improve clinical outcomes
    • Levy JM, Thorburn A. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther 2011; 131: 130-41.
    • (2011) Pharmacol Ther , vol.131 , pp. 130-141
    • Levy, J.M.1    Thorburn, A.2
  • 239
    • 78649634631 scopus 로고    scopus 로고
    • Targeting apoptotic and autophagic pathways for cancer therapeutics
    • Liu JJ, Lin M, Yu JY, Liu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 2011; 300: 105-14.
    • (2011) Cancer Lett , vol.300 , pp. 105-114
    • Liu, J.J.1    Lin, M.2    Yu, J.Y.3    Liu, B.4    Bao, J.K.5
  • 240
    • 79951713155 scopus 로고    scopus 로고
    • Autophagy: Molecular mechanisms and their implications for anticancer therapies
    • Meschini S, Condello M, Lista P, Arancia G. Autophagy: Molecular mechanisms and their implications for anticancer therapies. Curr Cancer Drug Targets 2011; 11: 357-79.
    • (2011) Curr Cancer Drug Targets , vol.11 , pp. 357-379
    • Meschini, S.1    Condello, M.2    Lista, P.3    Arancia, G.4
  • 241
    • 79957895563 scopus 로고    scopus 로고
    • p53 signaling and autophagy in cancer: A revolutionary strategy could be developed for cancer treatment
    • Sui X, Jin L, Huang X, Geng S, He C, Hu X. p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy 2011; 7: 565-71.
    • (2011) Autophagy , vol.7 , pp. 565-571
    • Sui, X.1    Jin, L.2    Huang, X.3    Geng, S.4    He, C.5    Hu, X.6
  • 242
    • 79955681859 scopus 로고    scopus 로고
    • Discovery of small molecules that target autophagy for cancer treatment
    • Wu L, Yan B. Discovery of small molecules that target autophagy for cancer treatment. Curr Med Chem 2011; 18: 1866-73.
    • (2011) Curr Med Chem , vol.18 , pp. 1866-1873
    • Wu, L.1    Yan, B.2
  • 244
    • 33745859721 scopus 로고    scopus 로고
    • Autophagy, bafilomycin, cell death: The "a-B-cs" of plecomacrolide-induced neuroprotection
    • Shacka JJ, Klocke BJ, Roth KA. Autophagy, bafilomycin, cell death: the "a-B-cs" of plecomacrolide-induced neuroprotection. Autophagy 2006; 2: 228-30.
    • (2006) Autophagy , vol.2 , pp. 228-230
    • Shacka, J.J.1    Klocke, B.J.2    Roth, K.A.3
  • 245
    • 0005677775 scopus 로고
    • 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
    • Seglen PO, Gordon PB. 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 1982; 79: 1889-2.
    • (1982) Proc Natl Acad Sci USA , vol.79 , pp. 1882-1889
    • Seglen, P.O.1    Gordon, P.B.2
  • 246
    • 8044257699 scopus 로고    scopus 로고
    • The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes
    • Blommaart EFC, Krause U, Schellens JPM, Vreeling-Sindelarova H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243: 240-6.
    • (1997) Eur J Biochem , vol.243 , pp. 240-246
    • Blommaart, E.F.C.1    Krause, U.2    Schellens, J.P.M.3    Vreeling-Sindelarova, H.4    Meijer, A.J.5
  • 247
    • 0017714087 scopus 로고
    • Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats
    • Reddy BS, Watanabe K, Weisburger JH, Wynder EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 1977; 37: 3238-42.
    • (1977) Cancer Res , vol.37 , pp. 3238-3242
    • Reddy, B.S.1    Watanabe, K.2    Weisburger, J.H.3    Wynder, E.L.4
  • 248
    • 70349572089 scopus 로고    scopus 로고
    • Deoxycholate, an endogenous cytotoxin/genotoxin, induces the autophagic stresssurvival pathway: Implications for colon carcinogenesis
    • Payne CM, Crowley-Skillicorn C, Holubec H, et al. Deoxycholate, an endogenous cytotoxin/genotoxin, induces the autophagic stresssurvival pathway: implications for colon carcinogenesis. J Toxicol 2009; 2009: 785907.
    • (2009) J Toxicol , vol.2009 , pp. 785907
    • Payne, C.M.1    Crowley-Skillicorn, C.2    Holubec, H.3
  • 249
    • 63349098256 scopus 로고    scopus 로고
    • Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells
    • Wu YC, Wu WKK, Li Y, et al. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem Biophys Res Commun 2009; 382: 451-6.
    • (2009) Biochem Biophys Res Commun , vol.382 , pp. 451-456
    • Wu, Y.C.1    Wu, W.K.K.2    Li, Y.3
  • 250
    • 63349086921 scopus 로고    scopus 로고
    • Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis
    • Zheng Y, Zhao YL, Deng X, et al. Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest 2009; 27: 286-92.
    • (2009) Cancer Invest , vol.27 , pp. 286-292
    • Zheng, Y.1    Zhao, Y.L.2    Deng, X.3
  • 251
    • 77954556955 scopus 로고    scopus 로고
    • Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells
    • Sasaki K, Tsuno NH, Tsurita G, et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 2010; 10: 370.
    • (2010) BMC Cancer , vol.10 , pp. 370
    • Sasaki, K.1    Tsuno, N.H.2    Tsurita, G.3
  • 252
    • 48249156591 scopus 로고    scopus 로고
    • Autophagy: An emerging target for cancer therapy
    • Høyer-Hansen M, Jäättelä M. Autophagy: an emerging target for cancer therapy. Autophagy 2008; 4: 574-80.
    • (2008) Autophagy , vol.4 , pp. 574-580
    • Høyer-Hansen, M.1    Jäättelä, M.2
  • 253
    • 0035881870 scopus 로고    scopus 로고
    • Autophagy delays sulindac sulphide-induced apoptosis in the human intestinal colon cancer cell line HT-29
    • Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E. Autophagy delays sulindac sulphide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res 2001; 268: 139-49.
    • (2001) Exp Cell Res , vol.268 , pp. 139-149
    • Bauvy, C.1    Gane, P.2    Arico, S.3    Codogno, P.4    Ogier-Denis, E.5
  • 254
    • 50349098812 scopus 로고    scopus 로고
    • Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells
    • Han J, Hou W, Goldstein LA, et al. Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 2008; 283: 19665-77.
    • (2008) J Biol Chem , vol.283 , pp. 19665-19677
    • Han, J.1    Hou, W.2    Goldstein, L.A.3
  • 255
    • 35448980704 scopus 로고    scopus 로고
    • Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation
    • Sato K, Tsuchihara S, Fujii M, et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 2007; 67: 9677-84.
    • (2007) Cancer Res , vol.67 , pp. 9677-9684
    • Sato, K.1    Tsuchihara, S.2    Fujii, M.3
  • 256
    • 77149128638 scopus 로고    scopus 로고
    • Inhibition of autophagy potentiates sulphorane-induced apoptosis in human colon cancer cells
    • Nishikawa T, Tsuno NH, Okaji Y, et al. Inhibition of autophagy potentiates sulphorane-induced apoptosis in human colon cancer cells. Ann Surg Oncol 2010; 17: 592-602.
    • (2010) Ann Surg Oncol , vol.17 , pp. 592-602
    • Nishikawa, T.1    Tsuno, N.H.2    Okaji, Y.3
  • 257
    • 77953289524 scopus 로고    scopus 로고
    • Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model
    • Li J, Hou N, Faried A; Tsutsumi S, Kuwano H. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer 2010; 46: 1900-9.
    • (2010) Eur J Cancer , vol.46 , pp. 1900-1909
    • Li, J.1    Hou, N.2    Faried, A.3    Tsutsumi, S.4    Kuwano, H.5
  • 258
    • 60449092595 scopus 로고    scopus 로고
    • Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells
    • Li J, Hou N, Faried A; Tsutsumi S, Takeuchi T, Kuwano H. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol 2009; 16: 761-71.
    • (2009) Ann Surg Oncol , vol.16 , pp. 761-771
    • Li, J.1    Hou, N.2    Faried, A.3    Tsutsumi, S.4    Takeuchi, T.5    Kuwano, H.6
  • 259
    • 77951217696 scopus 로고    scopus 로고
    • Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells
    • Bijnsdorp IV, Peters GJ, Temmink OH, Fukushima M, Kruyt FA. Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int J Cancer 2010; 126: 2457-68.
    • (2010) Int J Cancer , vol.126 , pp. 2457-2468
    • Bijnsdorp, I.V.1    Peters, G.J.2    Temmink, O.H.3    Fukushima, M.4    Kruyt, F.A.5
  • 260
    • 71049121968 scopus 로고    scopus 로고
    • A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy
    • Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 2009; 8: 100.
    • (2009) Mol Cancer , vol.8 , pp. 100
    • Nakamura, Y.1    Yogosawa, S.2    Izutani, Y.3    Watanabe, H.4    Otsuji, E.5    Sakai, T.6
  • 262
    • 34047136753 scopus 로고    scopus 로고
    • Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis
    • Higdon JV, Delage B, Williams DE, Dashwood RD. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 2007; 55: 224-36.
    • (2007) Pharmacol Res , vol.55 , pp. 224-236
    • Higdon, J.V.1    Delage, B.2    Williams, D.E.3    Dashwood, R.D.4
  • 263
    • 80054848925 scopus 로고    scopus 로고
    • Mechanisms of action of isothiocyanates in cancer chemoprevention: An update
    • DOI: 10.1039/C1FO10114E
    • Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2011; DOI: 10.1039/C1FO10114E.
    • (2011) Food Funct
    • Navarro, S.L.1    Li, F.2    Lampe, J.W.3
  • 264
    • 77953988178 scopus 로고    scopus 로고
    • Triterpenes from Ganoderma lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK)
    • Thyagarajan A, Jedinak A, Nguyen H, et al. Triterpenes from Ganoderma lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK). Nutr Cancer 2010; 62: 630-40.
    • (2010) Nutr Cancer , vol.62 , pp. 630-640
    • Thyagarajan, A.1    Jedinak, A.2    Nguyen, H.3
  • 265
    • 13444252965 scopus 로고    scopus 로고
    • Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins
    • Ellington AA, Berhow M, Singletary KW. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis 2005; 26: 159-67.
    • (2005) Carcinogenesis , vol.26 , pp. 159-167
    • Ellington, A.A.1    Berhow, M.2    Singletary, K.W.3
  • 266
    • 68549083507 scopus 로고    scopus 로고
    • Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signalling
    • Johnson SM, Gulhati P, Arrieta I, et al. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signalling. Anticancer Res 2009; 29: 3185-90.
    • (2009) Anticancer Res , vol.29 , pp. 3185-3190
    • Johnson, S.M.1    Gulhati, P.2    Arrieta, I.3
  • 267
    • 77954474565 scopus 로고    scopus 로고
    • Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells
    • Kim Y, Oh S, Yun HS, Oh S, Kim SH. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 2010; 51: 123-30.
    • (2010) Lett Appl Microbiol , vol.51 , pp. 123-130
    • Kim, Y.1    Oh, S.2    Yun, H.S.3    Oh, S.4    Kim, S.H.5
  • 268
    • 78649392683 scopus 로고    scopus 로고
    • Anthocyanins are novel AMPKA1 stimulators that suppress tumor growth by inhibiting mTOR phosphorylation
    • Lee YK, Lee WS, Kim GS, Park OJ. Anthocyanins are novel AMPKA1 stimulators that suppress tumor growth by inhibiting mTOR phosphorylation. Oncol Rep 2010; 24: 1471-7.
    • (2010) Oncol Rep , vol.24 , pp. 1471-1477
    • Lee, Y.K.1    Lee, W.S.2    Kim, G.S.3    Park, O.J.4
  • 269
    • 79959936615 scopus 로고    scopus 로고
    • Antitumor effects of a novel benzonaphthofurandione derivative (8e) on the human colon cancer cells in vitro and in vivo through cell cycle arrest accompanied with the modulation of EGFR and mTOR signaling
    • Chung HJ, Rhee HK, Lee SK, Park Choo HY. Antitumor effects of a novel benzonaphthofurandione derivative (8e) on the human colon cancer cells in vitro and in vivo through cell cycle arrest accompanied with the modulation of EGFR and mTOR signaling. Chem Biol Interact 2011; 193: 43-9.
    • (2011) Chem Biol Interact , vol.193 , pp. 43-49
    • Chung, H.J.1    Rhee, H.K.2    Lee, S.K.3    Park Choo, H.Y.4
  • 270
    • 79957873765 scopus 로고    scopus 로고
    • Chrysophanic acid blocks proliferation of colon cancer cells by inhibiting EGFR/mTOR pathway
    • Lee MS, Cha EY, Sul JY, Song IS, Kim JY. Chrysophanic acid blocks proliferation of colon cancer cells by inhibiting EGFR/mTOR pathway. Phytother Res 2011; 25: 833-837.
    • (2011) Phytother Res , vol.25 , pp. 833-837
    • Lee, M.S.1    Cha, E.Y.2    Sul, J.Y.3    Song, I.S.4    Kim, J.Y.5
  • 271
    • 80052267544 scopus 로고    scopus 로고
    • Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation
    • Xie CM, Chan WY, Yu S, Zhao J, Cheng CHK. Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med 2011; 51: 1365-75.
    • (2011) Free Radic Biol Med , vol.51 , pp. 1365-1375
    • Xie, C.M.1    Chan, W.Y.2    Yu, S.3    Zhao, J.4    Cheng, C.H.K.5
  • 272
    • 75149136162 scopus 로고    scopus 로고
    • Bacillus calmette-guerin cell wall cytoskeleton enhances colon cancer radiosensitivity through autophagy
    • Yuk JM, Shin DM, Song KS, et al. Bacillus calmette-guerin cell wall cytoskeleton enhances colon cancer radiosensitivity through autophagy. Autophagy 2010; 6: 46-60.
    • (2010) Autophagy , vol.6 , pp. 46-60
    • Yuk, J.M.1    Shin, D.M.2    Song, K.S.3
  • 273
    • 79958052481 scopus 로고    scopus 로고
    • Drug targeting of sphingolipid metabolism: Sphingomyelinases and ceramidases
    • Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011; 163: 694-712
    • (2011) Br J Pharmacol , vol.163 , pp. 694-712
    • Canals, D.1    Perry, D.M.2    Jenkins, R.W.3    Hannun, Y.A.4
  • 274
    • 0035114217 scopus 로고    scopus 로고
    • Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer
    • Selzner M, Bielawska A, Morse MA, et al. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 2001; 61: 1233-40.
    • (2001) Cancer Res , vol.61 , pp. 1233-1240
    • Selzner, M.1    Bielawska, A.2    Morse, M.A.3
  • 275
    • 67449098149 scopus 로고    scopus 로고
    • Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation
    • Nemoto S, Nakamura M, Osawa Y, et al. Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 2009; 284: 10422-32.
    • (2009) J Biol Chem , vol.284 , pp. 10422-10432
    • Nemoto, S.1    Nakamura, M.2    Osawa, Y.3
  • 276
    • 73649093448 scopus 로고    scopus 로고
    • Autophagic cell death induced by 5-FU in Bax or PUMA deficient human colon cancer cell
    • Xiong HY, Guo XL, Bu XX, et al. Autophagic cell death induced by 5-FU in Bax or PUMA deficient human colon cancer cell. Cancer Lett 2010; 288: 68-74.
    • (2010) Cancer Lett , vol.288 , pp. 68-74
    • Xiong, H.Y.1    Guo, X.L.2    Bu, X.X.3
  • 277
    • 79959693748 scopus 로고    scopus 로고
    • Targeting the Mammalian Target of Rapamycin (mTOR) in cancer therapy: Lessons from past and future perspectives
    • Dufour M, Dormond-Meuwly A, Demartines N, Dormond O. Targeting the Mammalian Target of Rapamycin (mTOR) in cancer therapy: Lessons from past and future perspectives. Cancers 2011; 3: 2478-500.
    • (2011) Cancers , vol.3 , pp. 2478-2500
    • Dufour, M.1    Dormond-Meuwly, A.2    Demartines, N.3    Dormond, O.4
  • 278
    • 67349119907 scopus 로고    scopus 로고
    • Combined inhibition of Dnmt and mTOR signaling inhibits formation and growth of colorectal cancer
    • Zhang YJ, Zhao SL, Tian XQ, et al. Combined inhibition of Dnmt and mTOR signaling inhibits formation and growth of colorectal cancer. Int J Colorectal Dis 2009; 24: 629-39.
    • (2009) Int J Colorectal Dis , vol.24 , pp. 629-639
    • Zhang, Y.J.1    Zhao, S.L.2    Tian, X.Q.3
  • 279
    • 70350417837 scopus 로고    scopus 로고
    • Effective treatment of advanced colorectal cancer by rapamycin and 5-FU/oxaliplatin monitored by TIMP-1
    • Wagner M, Roh V, Strehlen M, et al. Effective treatment of advanced colorectal cancer by rapamycin and 5-FU/oxaliplatin monitored by TIMP-1. J Gastrointest Surg 2009; 13: 1781-90.
    • (2009) J Gastrointest Surg , vol.13 , pp. 1781-1790
    • Wagner, M.1    Roh, V.2    Strehlen, M.3
  • 280
    • 40349108627 scopus 로고    scopus 로고
    • Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs
    • Bianco R, Garofalo S, Rosa R, et al. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. Br J Cancer 2008; 98: 923-30.
    • (2008) Br J Cancer , vol.98 , pp. 923-930
    • Bianco, R.1    Garofalo, S.2    Rosa, R.3
  • 281
    • 43249131245 scopus 로고    scopus 로고
    • Dose-and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: A phase I tumor pharmacodynamic study in patients with advanced solid tumors
    • Tabernero J, Rojo F, Calvo E, et al. Dose-and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 2008; 26: 1603-10.
    • (2008) J Clin Oncol , vol.26 , pp. 1603-1610
    • Tabernero, J.1    Rojo, F.2    Calvo, E.3
  • 282
    • 77955265956 scopus 로고    scopus 로고
    • A Phase 1 clinical study of temsirolimus (CCI-779) in Japanese patients with advanced solid tumors
    • Fujisaka Y, Yamada Y, Yamamoto N, Horiike A, Tamura T. A Phase 1 clinical study of temsirolimus (CCI-779) in Japanese patients with advanced solid tumors. Jpn J Clin Oncol 2010; 40: 732-8.
    • (2010) Jpn J Clin Oncol , vol.40 , pp. 732-738
    • Fujisaka, Y.1    Yamada, Y.2    Yamamoto, N.3    Horiike, A.4    Tamura, T.5
  • 283
    • 74949131430 scopus 로고    scopus 로고
    • Phase I clinical and pharmacokinetic study of RAD001 (everolimus) administered daily to Japanese patients with advanced solid tumors
    • Okamoto I, Doi T, Ohtsu A, et al. Phase I clinical and pharmacokinetic study of RAD001 (everolimus) administered daily to Japanese patients with advanced solid tumors. Jpn J Clin Oncol 2010; 40: 17-23.
    • (2010) Jpn J Clin Oncol , vol.40 , pp. 17-23
    • Okamoto, I.1    Doi, T.2    Ohtsu, A.3
  • 284
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122-8.
    • (2004) Nat Cell Biol , vol.6 , pp. 1122-1128
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3
  • 285
    • 34547907805 scopus 로고    scopus 로고
    • Expanding mTOR signalling
    • Yang Q, Guan KL. Expanding mTOR signalling. Cell Res 2007; 17: 666-81.
    • (2007) Cell Res , vol.17 , pp. 666-681
    • Yang, Q.1    Guan, K.L.2
  • 286
    • 77952305228 scopus 로고    scopus 로고
    • Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo
    • Roulin D, Cerantola Y, Dormond-Meuwly A, Demartines N, Dormond O. Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. Mol Cancer 2010; 9: 57.
    • (2010) Mol Cancer , vol.9 , pp. 57
    • Roulin, D.1    Cerantola, Y.2    Dormond-Meuwly, A.3    Demartines, N.4    Dormond, O.5
  • 287
    • 79955486858 scopus 로고    scopus 로고
    • mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
    • Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011; 71: 3246-56.
    • (2011) Cancer Res , vol.71 , pp. 3246-3256
    • Gulhati, P.1    Bowen, K.A.2    Liu, J.3
  • 288
    • 80051590039 scopus 로고    scopus 로고
    • Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: Distinct from rapamycin
    • Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: Distinct from rapamycin. Mol Cancer Ther 2011; 10: 1394-406.
    • (2011) Mol Cancer Ther , vol.10 , pp. 1394-1406
    • Bhagwat, S.V.1    Gokhale, P.C.2    Crew, A.P.3
  • 289
    • 78650929230 scopus 로고    scopus 로고
    • Recent clinical trials of mTOR-targeted cancer therapies
    • Don AS, Zheng XF. Recent clinical trials of mTOR-targeted cancer therapies. Rev Recent Clin Trials 2011; 6: 24-35.
    • (2011) Rev Recent Clin Trials , vol.6 , pp. 24-35
    • Don, A.S.1    Zheng, X.F.2
  • 290
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin resistant outputs of mTORC1 and mTORC2
    • Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009; 7: e38.
    • (2009) PLoS Biol , vol.7
    • Feldman, M.E.1    Apsel, B.2    Uotila, A.3
  • 291
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycinresistant functions of mTORC1
    • Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycinresistant functions of mTORC1. J Biol Chem 2009; 284: 8023-32.
    • (2009) J Biol Chem , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1    Kang, S.A.2    Chang, J.W.3
  • 292
    • 79953709986 scopus 로고    scopus 로고
    • Targeting the mTOR kinase domain: The second generation of mTOR inhibitors
    • Zhang YJ, Duan Y, Zheng XFS. Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 2011; 16: 325-31.
    • (2011) Drug Discov Today , vol.16 , pp. 325-331
    • Zhang, Y.J.1    Duan, Y.2    Zheng, X.F.S.3
  • 293
    • 75149112670 scopus 로고    scopus 로고
    • AZD8055 is a potent, selective, and orally bioavailable ATP-competitive Mammalian Target of Rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
    • Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive Mammalian Target of Rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70: 288-98.
    • (2010) Cancer Res , vol.70 , pp. 288-298
    • Chresta, C.M.1    Davies, B.R.2    Hickson, I.3
  • 294
    • 2442482810 scopus 로고    scopus 로고
    • Autophagy as a cell death and tumor suppressor mechanism
    • Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004; 23: 2891-906.
    • (2004) Oncogene , vol.23 , pp. 2891-2906
    • Gozuacik, D.1    Kimchi, A.2
  • 295
    • 7644242953 scopus 로고    scopus 로고
    • Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stressreactive oxygen species in head and neck squamous cell carcinoma cells
    • Firbley A, Zeng O, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stressreactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 2004; 24: 9695-704.
    • (2004) Mol Cell Biol , vol.24 , pp. 9695-9704
    • Firbley, A.1    Zeng, O.2    Wang, C.Y.3
  • 296
    • 33947516495 scopus 로고    scopus 로고
    • Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells
    • Ustundag Y, Bronk SF, Gores GJ. Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells. World J Gastroenterol 2007; 13: 851-7.
    • (2007) World J Gastroenterol , vol.13 , pp. 851-857
    • Ustundag, Y.1    Bronk, S.F.2    Gores, G.J.3
  • 297
    • 36348961452 scopus 로고    scopus 로고
    • HIV protease inhibitors nelfinavir and atazanavir induce glioblastoma cell death by triggering endoplasmic reticulum (ER) stress
    • Pyrko P, Kardosh A, Wang W, Xiong W, Schönthal AH, Chen TC. HIV protease inhibitors nelfinavir and atazanavir induce glioblastoma cell death by triggering endoplasmic reticulum (ER) stress. Cancer Res 2007; 67: 10920-8.
    • (2007) Cancer Res , vol.67 , pp. 10920-10928
    • Pyrko, P.1    Kardosh, A.2    Wang, W.3    Xiong, W.4    Schönthal, A.H.5    Chen, T.C.6
  • 298
    • 46249115957 scopus 로고    scopus 로고
    • Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation
    • Harada M, Hanada S, Toivola DM, Ghori N, Omary MB. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 2008; 47: 2026-35.
    • (2008) Hepatology , vol.47 , pp. 2026-2035
    • Harada, M.1    Hanada, S.2    Toivola, D.M.3    Ghori, N.4    Omary, M.B.5
  • 299
    • 56449087512 scopus 로고    scopus 로고
    • Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways
    • Fels DR, Ye J, Segan AT, et al. Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res 2008; 68: 9323-30.
    • (2008) Cancer Res , vol.68 , pp. 9323-9330
    • Fels, D.R.1    Ye, J.2    Segan, A.T.3
  • 300
    • 67651155954 scopus 로고    scopus 로고
    • Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy
    • Ding WX, Ni HM, Gao W, et al. Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy. Mol Cancer Ther 2009; 8: 2036-45.
    • (2009) Mol Cancer Ther , vol.8 , pp. 2036-2045
    • Ding, W.X.1    Ni, H.M.2    Gao, W.3
  • 301
    • 37249071337 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors in cancer treatment: A review of the clinical toxicity and the modulation of gene expression in cancer cell
    • Bruserud O, Stapnes C, Ersvaer E, Gjerten BT, Ryningen A. Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell. Curr Pharm Biotechnol 2007; 8: 388-400.
    • (2007) Curr Pharm Biotechnol , vol.8 , pp. 388-400
    • Bruserud, O.1    Stapnes, C.2    Ersvaer, E.3    Gjerten, B.T.4    Ryningen, A.5
  • 302
    • 42349091446 scopus 로고    scopus 로고
    • Role of the aggresome pathway in cancer: Targeting histone deacetylase 6-dependent protein degradation
    • Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, Sakamoto KM. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res 2008; 68: 2557-60.
    • (2008) Cancer Res , vol.68 , pp. 2557-2560
    • Rodriguez-Gonzalez, A.1    Lin, T.2    Ikeda, A.K.3    Simms-Waldrip, T.4    Fu, C.5    Sakamoto, K.M.6
  • 303
    • 11144221007 scopus 로고    scopus 로고
    • Apoptotic and autophagic cell death induced by histone deacetylase inhibitors
    • Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004; 101: 18030-5.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 18030-18035
    • Shao, Y.1    Gao, Z.2    Marks, P.A.3    Jiang, X.4
  • 304
    • 60849106339 scopus 로고    scopus 로고
    • Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models
    • Pitts TM, Morrow M, Kaufman SA, Tentler JJ, Eckhardt SG. Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models. Mol Cancer Ther 2009; 8: 342-9.
    • (2009) Mol Cancer Ther , vol.8 , pp. 342-349
    • Pitts, T.M.1    Morrow, M.2    Kaufman, S.A.3    Tentler, J.J.4    Eckhardt, S.G.5
  • 305
    • 77958575758 scopus 로고    scopus 로고
    • Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation
    • Carew JS, Medina EC, Esquivel II JA, et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 2010; 14: 2448-59.
    • (2010) J Cell Mol Med , vol.14 , pp. 2448-2459
    • Carew, J.S.1    Medina, E.C.2    Esquivel II, J.A.3
  • 306
    • 61449113987 scopus 로고    scopus 로고
    • The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase
    • Zakikhani M, Dowling RJO, Sonenberg N, Pollak MN. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res 2008; 1: 369-75.
    • (2008) Cancer Prev Res , vol.1 , pp. 369-375
    • Zakikhani, M.1    Dowling, R.J.O.2    Sonenberg, N.3    Pollak, M.N.4
  • 307
    • 33750535008 scopus 로고    scopus 로고
    • Selenium regulates cyclooxygenase-2 and extracellular signal-regulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells
    • Hwang JT, Kim YM, Surh YJ, et al. Selenium regulates cyclooxygenase-2 and extracellular signal-regulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells. Cancer Res 2006; 66: 10057-63.
    • (2006) Cancer Res , vol.66 , pp. 10057-10063
    • Hwang, J.T.1    Kim, Y.M.2    Surh, Y.J.3
  • 308
    • 33845789994 scopus 로고    scopus 로고
    • Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway
    • Hwang JT, Ha J, Park IJ, et al. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 2007; 247: 115-21.
    • (2007) Cancer Lett , vol.247 , pp. 115-121
    • Hwang, J.T.1    Ha, J.2    Park, I.J.3
  • 309
    • 44849099894 scopus 로고    scopus 로고
    • The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level
    • Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008; 27: 3576-86.
    • (2008) Oncogene , vol.27 , pp. 3576-3586
    • Ben Sahra, I.1    Laurent, K.2    Loubat, A.3
  • 310
    • 55449124298 scopus 로고    scopus 로고
    • Metformin suppresses intestinal polyp growth in ApcMin/+ mice
    • Tomimoto A, Endo H, Sugiyama, et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci 2008; 99: 2136-41.
    • (2008) Cancer Sci , vol.99 , pp. 2136-2141
    • Tomimoto, A.1    Endo, H.2    Sugiyama3
  • 311
    • 77954468475 scopus 로고    scopus 로고
    • Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase
    • Hosono K, Endo H, Takahashi H, et al. Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcinog 2010; 49: 662-71.
    • (2010) Mol Carcinog , vol.49 , pp. 662-671
    • Hosono, K.1    Endo, H.2    Takahashi, H.3
  • 312
    • 77956411030 scopus 로고    scopus 로고
    • Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial
    • Hosono K, Endo H, Takahashi H, Sugiyama M, et al. Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res (Phila) 2010; 3: 1077-83.
    • (2010) Cancer Prev Res (Phila) , vol.3 , pp. 1077-1083
    • Hosono, K.1    Endo, H.2    Takahashi, H.3    Sugiyama, M.4
  • 313
    • 79953661884 scopus 로고    scopus 로고
    • Understanding the benefit of metformin use in cancer treatment
    • Dowling RJ, Goodwin PJ, Stambolic V. Understanding the benefit of metformin use in cancer treatment. BMC Med 2011; 9: 33.
    • (2011) BMC Med , vol.9 , pp. 33
    • Dowling, R.J.1    Goodwin, P.J.2    Stambolic, V.3
  • 314
    • 83555164657 scopus 로고    scopus 로고
    • Metformin and neoplasia: Implications and indications
    • Aljada A, Mousa SA. Metformin and neoplasia: implications and indications. Pharmacol Ther 2012; 133: 108-15.
    • (2012) Pharmacol Ther , vol.133 , pp. 108-115
    • Aljada, A.1    Mousa, S.A.2
  • 316
    • 79954729192 scopus 로고    scopus 로고
    • Adiponectin supports cell survival in glucose deprivation through enhancement of autophagic response in colorectal cancer cells
    • Habeeb BS, KitayamaJ, Nagawa H. Adiponectin supports cell survival in glucose deprivation through enhancement of autophagic response in colorectal cancer cells. Cancer Sci 2011; 102: 999-1006.
    • (2011) Cancer Sci , vol.102 , pp. 999-1006
    • Habeeb, B.S.1    Kitayama, J.2    Nagawa, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.