-
1
-
-
0035886016
-
The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors
-
Philp AJ, Campbell IG, Leet C, et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res 2001;61:7426-9.
-
(2001)
Cancer Res
, vol.61
, pp. 7426-7429
-
-
Philp, A.J.1
Campbell, I.G.2
Leet, C.3
-
2
-
-
0036195196
-
AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis
-
Roy HK, Olusola BF, Clemens DL, et al. AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis 2002;23:201-5.
-
(2002)
Carcinogenesis
, vol.23
, pp. 201-205
-
-
Roy, H.K.1
Olusola, B.F.2
Clemens, D.L.3
-
3
-
-
0036632368
-
The phosphatidylinositol 3-Kinase AKT pathway in human cancer
-
Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489-501.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 489-501
-
-
Vivanco, I.1
Sawyers, C.L.2
-
4
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12:9-22.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
5
-
-
1242307944
-
Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma
-
Khaleghpour K, Li Y, Banville D, Yu Z, Shen SH. Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis 2004;25:241-8.
-
(2004)
Carcinogenesis
, vol.25
, pp. 241-248
-
-
Khaleghpour, K.1
Li, Y.2
Banville, D.3
Yu, Z.4
Shen, S.H.5
-
6
-
-
0036278927
-
The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3′-kinase, in human colon cancer cells
-
Semba S, Itoh N, Ito M, Harada M, Yamakawa M. The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3′-kinase, in human colon cancer cells. Clin Cancer Res 2002;8:1957-63.
-
(2002)
Clin Cancer Res
, vol.8
, pp. 1957-1963
-
-
Semba, S.1
Itoh, N.2
Ito, M.3
Harada, M.4
Yamakawa, M.5
-
7
-
-
58149509984
-
Take your PIK: Phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy
-
Ihle NT, Powis G. Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther 2009;8:1-9.
-
(2009)
Mol Cancer Ther
, vol.8
, pp. 1-9
-
-
Ihle, N.T.1
Powis, G.2
-
8
-
-
33745325973
-
Targeted molecular therapy of the PI3K pathway: Therapeutic significance of PI3K subunit targeting in colorectal carcinoma
-
Rychahou PG, Jackson LN, Silva SR, Rajaraman S, Evers BM. Targeted molecular therapy of the PI3K pathway: therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann Surg 2006;243:833-42.
-
(2006)
Ann Surg
, vol.243
, pp. 833-842
-
-
Rychahou, P.G.1
Jackson, L.N.2
Silva, S.R.3
Rajaraman, S.4
Evers, B.M.5
-
9
-
-
24344482476
-
Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)
-
Rychahou PG, Murillo CA, Evers BM. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery 2005;138:391-7.
-
(2005)
Surgery
, vol.138
, pp. 391-397
-
-
Rychahou, P.G.1
Murillo, C.A.2
Evers, B.M.3
-
10
-
-
58149503692
-
Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis
-
Rychahou PG, Kang J, Gulhati P, et al. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci U S A 2008;105:20315-20.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20315-20320
-
-
Rychahou, P.G.1
Kang, J.2
Gulhati, P.3
-
11
-
-
0141645559
-
Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells
-
Sheng H, Shao J, Townsend CM, Jr., Evers BM. Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut 2003;52:1472-8.
-
(2003)
Gut
, vol.52
, pp. 1472-1478
-
-
Sheng, H.1
Shao, J.2
Townsend Jr., C.M.3
Evers, B.M.4
-
12
-
-
0036278686
-
Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3′-kinase inhibition in the KM20 human colon cancer cell line
-
Wang Q, Li N, Wang X, Kim MM, Evers BM. Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3′-kinase inhibition in the KM20 human colon cancer cell line. Clin Cancer Res 2002;8:1940-7.
-
(2002)
Clin Cancer Res
, vol.8
, pp. 1940-1947
-
-
Wang, Q.1
Li, N.2
Wang, X.3
Kim, M.M.4
Evers, B.M.5
-
13
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009;10:307-18.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
14
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004;6:1122-8.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
-
15
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006;22:159-68.
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
-
16
-
-
33947538050
-
Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism
-
Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007;26:1932-40.
-
(2007)
Oncogene
, vol.26
, pp. 1932-1940
-
-
Wan, X.1
Harkavy, B.2
Shen, N.3
Grohar, P.4
Helman, L.J.5
-
17
-
-
8444224619
-
Balancing Akt with S6K: Implications for both metabolic diseases and tumorigenesis
-
Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 2004;167:399-403.
-
(2004)
J Cell Biol
, vol.167
, pp. 399-403
-
-
Manning, B.D.1
-
18
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 2005;307:1098-101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
19
-
-
33947330747
-
Re-evaluating AKT regulation: Role of TOR complex 2 in tissue growth
-
Hietakangas V, Cohen SM. Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev 2007;21:632-7.
-
(2007)
Genes Dev
, vol.21
, pp. 632-637
-
-
Hietakangas, V.1
Cohen, S.M.2
-
20
-
-
0027394794
-
Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in nodenegative breast cancer
-
Allred DC, Clark GM, Elledge R, et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in nodenegative breast cancer. J Natl Cancer Inst 1993;85:200-6.
-
(1993)
J Natl Cancer Inst
, vol.85
, pp. 200-206
-
-
Allred, D.C.1
Clark, G.M.2
Elledge, R.3
-
21
-
-
73149104348
-
-
SAS/STAT 91 user's guide. Cary NC, SAS Institute, Inc
-
SAS/STAT 91 user's guide. Cary (NC): SAS Institute, Inc.; 2004.
-
(2004)
-
-
-
22
-
-
1042267229
-
Determinants of rapamycin sensitivity in breast cancer cells
-
Noh WC, Mondesire WH, Peng JY, et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 2004;10:1013-23.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 1013-1023
-
-
Noh, W.C.1
Mondesire, W.H.2
Peng, J.Y.3
-
23
-
-
6044223545
-
Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers
-
Zhou X, Tan M, Stone HV, et al. Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 2004;10:6779-88.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 6779-6788
-
-
Zhou, X.1
Tan, M.2
Stone, H.V.3
-
24
-
-
54749095517
-
Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/Rictor-independent Akt activation
-
Wang X, Yue P, Kim YA, Fu H, Khuri FR, Sun SY. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/Rictor-independent Akt activation. Cancer Res 2008;68:7409-18.
-
(2008)
Cancer Res
, vol.68
, pp. 7409-7418
-
-
Wang, X.1
Yue, P.2
Kim, Y.A.3
Fu, H.4
Khuri, F.R.5
Sun, S.Y.6
-
25
-
-
33947203621
-
PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms
-
Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 2007;25:917-31.
-
(2007)
Mol Cell
, vol.25
, pp. 917-931
-
-
Brognard, J.1
Sierecki, E.2
Gao, T.3
Newton, A.C.4
-
26
-
-
15944406764
-
PHLPP: A phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth
-
Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005;18:13-24.
-
(2005)
Mol Cell
, vol.18
, pp. 13-24
-
-
Gao, T.1
Furnari, F.2
Newton, A.C.3
-
27
-
-
60549099721
-
Loss of PHLPP expression in colon cancer: Role in proliferation and tumorigenesis
-
Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 2009;28:994-1004.
-
(2009)
Oncogene
, vol.28
, pp. 994-1004
-
-
Liu, J.1
Weiss, H.L.2
Rychahou, P.3
Jackson, L.N.4
Evers, B.M.5
Gao, T.6
-
28
-
-
58649114084
-
mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin DA, Stevens DM, Saitoh M, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009;15:148-59.
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
Stevens, D.M.2
Saitoh, M.3
-
29
-
-
37549048521
-
mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of Rictor
-
Masri J, Bernath A, Martin J, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of Rictor. Cancer Res 2007;67:11712-20.
-
(2007)
Cancer Res
, vol.67
, pp. 11712-11720
-
-
Masri, J.1
Bernath, A.2
Martin, J.3
-
30
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of Rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF, Romanino K, Cloetta D, et al. Skeletal muscle-specific ablation of raptor, but not of Rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008;8:411-24.
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
Romanino, K.2
Cloetta, D.3
-
31
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009;7:e38.
-
(2009)
PLoS Biol
, vol.7
-
-
Feldman, M.E.1
Apsel, B.2
Uotila, A.3
-
32
-
-
68149096799
-
-
Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal 2009;2:pe24.
-
Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal 2009;2:pe24.
-
-
-
-
33
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009;284:8023-32.
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
|